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              Numerical calculations are carried out to obtain solutions of a theoretical expression of interfacial 
          polarization, which was proposed by Hanai [Kolloid Z., 171, 23 (1960) ), applicable to concentrated 

          disperse systems of spherical particles. It is found that the dielectric relaxation characterized by the 
           changes in the dielectric constants and the electrical conductivities extends over an apparently broader 

          range of frequency in comparison with a single relaxation system, and that the complex plane plots 
           of the complex dielectric constants show remarkable depression from a semicircle. Some comparisons 

          of the limiting dielectric constants and electrical conductivities at low and high frequencies are made 
           between the present results and those by approximate equations so far used. The relaxation frequency 

          giving the maximum loss factor is found to be strongly dependent on the concentration of the disperse 
           phase and to reduce to very low values at higher concentrations in conformity with experimental results. 

                               I INTRODUCTION 

           As is well known, a heterogeneous system of spherical particles dispersed in a con-
       tinuous phase shows a dielectric relaxation due to interfacial polarization. The dielectric 

       relaxation has been discussed by many workers') qualitatively in the light of Wagner's 
       theory. Since closer consideration revealed that Wagner's theory was in agreement with 

        experimental results only at lower concentrations of the disperse phase, Hanai2,3) proposed 

       a theory which is expected to be applicable to higher concentrations. 
           According to our dielectric study of water-in-oil (W/O) emulsions,4'5) remarkable 

        dielectric relaxations were observed in accordance with Hanai's theory, and the limiting 
       dielectric constants at high frequencies showed excellent agreements with the theory. In 

       our previous work on the dielectric relaxations of W/O emulsions, 5) the limiting dielectric 
        constants at low frequencies were also in good agreements with the theory as far as the 

       W/O emulsions are prepared by minimal use of emulsifiers. 
           The expression of this theory is of a functional form including a cubic root of complex 

       variable, and is impossible to be rearranged so that the relaxation frequency may be numer-

        ically calculated. Hence the comparison was not made between the theoretical and the 
        experimental values. 

Clausse6 ""8') performed computer analyses of this theoretical expression for the 

       purpose of discussing his data on emulsions. Nevertheless it is still necessary for the 
        discussion of our experimental data to estimate the results by using our measured values 

        on the constituent phases. 

          * It4=p {J , 'J\7c) — : Laboratory of Dielectrics, Institute for Chemical Research, Kyoto University, 
             Uji, Kyoto. 
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   In the present paper, the expression of Hanai's theory is calculated by means of  a 

programmable calculator, giving the frequency dependence of the dielectric constants, the 
electrical conductivities, and the loss factors. The limiting dielectric constants and the 
electrical conductivities at low and high frequencies and the relaxation frequencies are 
evaluated as well, and are compared with those from approximate formulas and experi-
mental values. 

                    II GLOSSARY OF SYMBOLS 

ea. dielectric constant of the continuous medium. 
Ka electrical conductivity of the continuous medium, S cm-1. 
ei dielectric constant of the disperse phase. 
Ki electrical conductivity of the disperse phase, S cm-1. 
e - dielectric constant of the disperse system. 

   K electrical conductivity of the disperse system, S cm-1. 
ea*, ei* and e* are complex dielectric constant of the continuous medium, the disperse 

   phase and the disperse system respectively, being given by 

Ea* = Ea —,  Ka ,(1)                        2
7rea 

es * = Ei —,  Ki  '(2)                      2
afea 

and 

            *_•K    EE — J------2
7rfea •(3) 

   f measuring frequency, Hz. 

   j unit imaginary, I-1. 
Et, dielectric constant of free space given by 

               1  =8.8542 x10-14 F cm-1. 4
ir9.1011 

0 volume fraction of the disperse phase. 

el limiting dielectric constant at low frequencies. 

Ki limiting conductivity at low frequencies, S cm-1. 

es limiting dielectric constant at high frequencies. 

Kh limiting conductivity at high frequencies, S cm-1. 

   fo relaxation frequency giving the maximum loss factor, Hz. 

             III COMPUTER EXPERIMENTS ON NUMERICAL 
                 CALCULATIONS OF HANAI'S EQUATION 

   For a complex dielectric constant of a disperse system in which spherical particles are 

dispersed in a continuous medium by a volume fraction 0, Hanai2,3) derived the following 

equation 

    1 e* —es*(----1 =1.(4)            1_~i~ea*—es*~/3E* 
(249 )



                              T. HANAI and N.  KoiZuM! 

By cubing the both sides of Eq. (4), we have the cubic equation with respect to e* as 

          e*9-3ei*e*2+{3ei*2+  [05-1)(ea*—si*)]3  1e*—et*g=0.(5) 
       lea* 

   Numerical evaluation of the solution was carried out by a calculator, Yokogawa-
Hewlett-Packard Model 10, with a programming of the following steps. 

(a) Substitution of numerical values of ea, Ka, Si, Ki, and an arbitrary value of f into 
Eqs. (1) and (2) gives values of so* and ai*. 

(b) The coefficients of the cubic Eq. (5) can be determined by substituting ea*, e;*, and 
an arbitrary value of 0. 

(c) By the use of a computer programme "Roots of Polynomial with Complex Numbers" 
(Model 10, MATH PAC III-3), we obtain three roots of Eq. (5) designated by ei*, e2*, 
and s3*. 

(d) Among the three roots e1*, 55*, and 53*, we have to choose only one solution satisfying 
Eq. (4) by means of the following criterion. Since Eq. (5) is derived by cubing Eq. (4), 
respective substitution of the three roots 51*, es*, and 53* into a function 

F(s*)=  1  e*—ei*ea*1/3(6)                   1-0 Ea* —Si*(e* 
is to give 

F(s1*)=1+0 j=ei.0(7) 

                                                     2rz     F(sz*)=—2~2j=e~~s)(8) 

and 

     F(53*)=—2—~2j=e',-3e(9) 

respectively. When each of the three roots is thus substituted into F(s*) given by Eq. 

(6), the roots which lead to either Eq. (8) or Eq. (9) should be ruled out, and only one root 

giving Eq. (7) adopted as the solution of Eq. (4). 
(e) The root is regarded as e* of Eq. (3), giving the values of e, K, and s" for the 
disperse system. 

                          IV RESULTS 

   In our previous measurements on W/O emulsions,5) remarkable dielectric relaxations 
were observed, and the relaxation frequencies were reported without comparison with 
those by Eq. (4). Hence, in the present work, the frequency profile of the complex dielectric 
constant was calculated by using numerical values of ea, Ka, si, and Ki reported in the 

previous paper.5) 
   The results calculated for 0=0.8 are shown in Figs. 1 and 2. For comparison, 

theoretical curves of a single relaxation system, the so-called dielectric relaxation in the 
Debye type, are shown with dashed curves in Figs. 1 and 2. The decrease in s and the 
increase in K with increasing frequency for Eq. (4) are seen to extend over an apparently 
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            Fig. 1. Comparison of the frequency dependence of dielectric constant e, 

                electrical conductivity K, and loss factor s". The solid curves are 
               calculated from Equation (4) with volume fraction 0=0.8 and values 

               of phase parameters shown in Table I. The dashed curves indicate a 
                single relaxation system with the same values of e1, eh, Kt, and Kh as 
               those calculated from Equation (4). As regards the loss factor, curves 

               of a"=(K—K1)/2irfet, are depicted in the figure. 
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           Fig. 2. Complex plane plots of the dielectric constants and the loss factors. 
              The solid curve is given by Equation (4), the dashed curve (semicircle) 

                by a single relaxation system. The same data as shown in Fig. 1. 

broader range of frequency in comparison with a single relaxation system, being simulated 
by system with some distribution of relaxation times. The frequency profile of the loss 
factor e" (=(K—K1)/21rfEv) for Eq. (4) seems to be asymmetric with respect to log (f/fo). 

   In Table I are summarized the values of et, eh, Kt, Kh, and fo thus calculated from 
Eq. (4) for various values of 0. Since fo cannot be evluated at 0=0 owing to no dielectric 
relaxation, the value of fo at 0=0.0001 is calculated instead. 
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    Table I. Values of Limiting Dielectric Constants el, eh, and Limiting Conductivities Kl, Kh at 
        Low and High Frequencies, and Relaxation Frequencies fo at Various Volume Fractions 0 

K!Kh J0Klfo  
0 El ehp.Scm-1p,Scm1kHzeltiScm-1 kHz 

                    by Eq. (4)by Eq. (18) by Eq. (19) by Eq. (20) 

0.0 2.1000 2.1000 0.0000655 0.0000655 • • • 2.1000 0.0000655 539.0 
0.0001 2.1006 2.1006 0.000065519 0.0000942 539.02.1006 0.000065519 539.0 
0.1 2.8806 2.8010 0.000089849 0.023125 519.92.8806 0.000089848 534.4 
0.2 4.1014 3.8262 0.00012792 0.075735 493.04.1015 0.00012793 528.8 
0.3 6.1222 5.3617 0.00019096 0.19339 454.96.1224 0.00019096 521.8 
0.4 9.7216 7.7096 0.00030323 0.45394 401.79.7222 0.00030324 512.7 
0.5 16.798 11.346 0.00052397 1.0210 329.316.800 0.00052400 500.5 
0.6 32.804 16.973 0.0010233 2.2085 237.532.812 0.0010234 483.2 
0.7 77.732 25.505 0.0024252 4.5285 136.877.777 0.0024259 456.9 
0.8 261.97 37.932 0.0081794 8.6398 50.98262.50 0.0081875 412.0 
0.9 2066.8 55.095 0.064981 15.164 7.1932100.0 0.065500 318.3 
0.98 85872 72.587 4.4724 22.398 0.1633 2625008.1875 113.0 
1.0 77.5 77.5 24.524.500 co0.0561 

   Values of the phase parameters used for the calculation are cited from the previous work.5) 
   Outer oil phase : Dielectric constant sa=2.10, conductivity Ka=6.55 x 10-11S cm-1 

   Inner aqueous phase: Dielectric constant ei=77.5, conductivity Ki=24.5X10-sS cm-1 

                         V DISCUSSION 

Comparison of the Present Values with Those Obtained from Approximate 
Equations. 

   In our previous papers4,51 only the limiting cases at high and low frequencies for 
Eq. (4) were discussed owing to the difficulty of numerical calculations at arbitrary 

frequencies, and the following relations were derived from Eq. (4). 
   Irrespective of the emulsion type, we have, at high frequencies (f--)-oo), 

    eh-Ei Ea1/3 _1-0,(10)          Ea-Si \Eh) 
and 

       1
ehKa-Ki +Ki Kea() 

-=3( Kh(--------eh-3-11                            fa-EiEh--EiK 

and, at low frequencies (f-4-0). 

31 _ 1/  Ea-Ei_L Ei 1Ea(12)            el(Kl-Ki Kl )-3\ Ka-Ki-rKl-Ki) Ka' 
                                      and 

    K[-Ki Ka1/3=1 -0. .(13) 
            Ka-Ki           (Ka)113       ) 

For the W/O type emulsions (Ki>>Ka),Eqs. (10), (11), (12), and (13) reduce to 

            et-Eh(ea1/3     =1-0(14)            Ei-Ea \ eh) 
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 3eh(eh—ea)(15) Kh=Ki (ei+2eh)(ei—ea) ' 

    e1°ea Kt(Ki—"Kt)  '(16). 
Ka(Kj + 2K1) 

and 

Ki—K! Ka113~     =1 _ ,(17) Ki~K1 
If it is allowed, further, to put Ki»K1, Eqs. (16) and (17) reduce to 

1     et =So(18), (1—Or 

and 

  1(19) 
K1=Ka 

              (1-0)3 • 

In our previous papers,4,5) Eqs. (14), (15), (18), and (19) were eventually used for compari-
son between theories and experiments. 

   In order to examine the accuracy of the approximation, the values of eh, K5, e1, 

and Ki are calculated from the equations shown above. It is found that the values of eh, 
Kb, el, and K! calculated from Eqs. (10), (11), (12), and (13) are in perfect agreements 
with those from Eq. (4) listed in Table I. 

   As regards the approximate equations forK;»Ka, the values of Kb from Eq. (15) are 
in good agreements with those from Eq. (4) at higher values of 0, and show smaller values 
by about 0.1% than those of Eq. (4) at less than 0=0.3, such differences being insignificant 
in practice. The values of e! from Eq. (16) are in good agreements with those from 
Eq. (4) in a whole range of 0. 

   The approximate equations (18) and (19) simplified by the condition Ki»K! show 
appreciable deviation from Eq. (4), the calculated values being listed in Table I. The 
values of e1 and K1 by Eqs. (18) and (19) show the differences of more than 1% from those 
by Eq. (4) at 0=0.9. 

Comparison of the Relaxation Frequency 
   Most interesting is the profile of the concentration dependence of fo values, which are 

shown in Table I. For comparison, the values from Wagner's expression given by 

  fo—Ki+2Ka—ct(Ki—Ka) 1(20)            l ei+2s.-0(si—ea) 2ire„ 

are also shown in Table I. 
   Figure 3 shows theoretical curves for the concentration dependence of fo. At lower 

concentrations, the curve by Eq. (4) is very close to that by Wagner's theory, whereas at 
higher concentrations the curve by Eq. (4) shows much lower values than that by Wagner's 
theory. In Fig. 3 are shown the observed data,5) which showed the remarkable dependence 
on the concentration similar to the tendency shown by Eq. (4). It is thus concluded that 
the concentration dependence of fo by Eq. (4) explains the experimental results fairly well. 
It is desired that values of Ki is controlled experimentally by the use of salt solutions in 
definite concentrations to obtain more reliable values of fo. 
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         Fig. 3. Concentration dependence of relaxation frequency fo calculated 
           from Equation (4) (Curve A) and from Wagner's Equation (20) (Curve 

            B). Values of the phase parameters used for the calculation are shown 
           in Table I. The circles in the figure are the experimental data cited 

            from the previous paper.5) 
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