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   A systematic method is proposed to estimate the relative permittivity, the electrical conductivity 
and the volume fraction of the disperse phase from dielectric relaxation due to diphasic structure 
in spherical disperse systems. On the basis of Wagner's and Hanai's theory of interfacial polari-
zation, theoretical expressions of practical use are derived for i) a system with non-conducting 
disperse phase, ii) a system with non-conducting continuous phase, and iii) a general system. Since 
the relations derived for the general case are of a complicated nature on evaluating the roots, some 
remarks are given to perform computer-searching for numerical solutions of the equations. The 
relations derived were applied to dielectric data of an oil-in-water emulsion, a water-in-oil emulsion, 
and a suspension of Sephadex G-25 in water to estimate the permittivity, the conductivity and the 
concentration of the disperse phase for the respective systems. For the disperse systems considered, 
the dielectric relaxation profiles were represented satisfactorily by Hanai's theory. 

                         I. INTRODUCTION 

   It is known that a heterogeneous structure of disperse systems gives rise to a 

dielectric relaxation due to interfacial polarization.1-4> Such dielectric relaxations 

for suspensions of spherical particles were first pointed out by Maxwell," and after-

wards formulated by Wagner" in a form convenient for the comparison with experi-

ments. Since closer consideration revealed that Wagner's equation was in poor 

agreement with experiments at higher concentrations of the suspending particles, 

Hanai7,3' proposed an equation which is expected to be applicable to higher con-

centrations. 

   These theoretical formulas have so far been used to discuss experimental results 

of emulsions and suspensions2'3' with particular reference to the concentration 

dependence of the limiting relative permittivity and the electrical conductivity at 

low or high frequencies. Since the dielectric behavior of the disperse systems is 

characterized by the dielectric phase parameters such as relative permittivities, 

electrical conductivities and concentrations of the constituent phases, it is possible 

in principle to estimate the phase parameters of the inner phase from the dielectric 

data observed for the whole systems. No such attempt, however, has so far been 

made for disperse systems such as emulsions and suspensions. 

   On the basis of Wagner's and Hanai's theory of interfacial polarization, a sys-

tematic method is proposed, in the present paper, to calculate the relative permittivity, 

the electrical conductivity and the concentration of the disperse phase by use of data 
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  on dielectric relaxation caused by diphasic structure of spherical disperse systems. 

  Some examples are given to show the practice of application of the proposed method 
  to emulsions and suspensions. 

                      II. GLOSSARY OF SYMBOLS 

 Ca relative permittivity (dielectric constant) of the continuous medium. 
'ra electrical conductivity of the continuous medium, S cm.-1 
e, relative permittivity of the disperse phase. 

rr, electrical conductivity of the disperse phase, S cm.-1 
e relative permittivity of the disperse system. 

    r electrical conductivity of the disperse system, S cm.-1 
ea*, e;*, and e* are complex relative permittivity of the continuous medium, the 

       disperse phase and the disperse system respectively, being given by 

lra  
 S”(1)                                                  1    Jf

Ey() 

                 e+*=e+ —j--------(2) 
                      27E1 E, 

  and 

s* =e —J-------2
7rfEv•(3) 

   f measuring frequency, Hz. 

.j unit imaginary, V-1 . 
Ev permittivity of a vacuum given by 

              1 
Et,—-----------------4

7r•9.1011=8.85418x 10-14 F cm.-1 

q) volume fraction of the disperse phase. 

er limiting relative permittivity at low frequencies. 
eh limiting relative permittivity at high frequencies. 
lCr limiting conductivity at low frequencies, S cm.-1 
irh limiting conductivity at high frequencies, S cm.-1 

   fo relaxation frequency corresponding to a half-value point of the entire dielectric 
        relaxation, Hz. 

   4e" imaginary part of the relative permittivity or loss factor associated with the 
       dielectric relaxation, being expressed as 

27tfE,, 

III. GENERAL EXPRESSIONS OF THE THEORIES 
                     OF INTERFACIAL POLARIZATION 

  1. Wagner Equationz'o' 
     According to Wagner's theory of interfacial polarization, the complex relative 
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permittivity E* for a disperse system of spherical particles is given by 

         2(1-0) Ea*+(1 +20) Et*(4) 
                =Ea* 

(2+0) Ea*+(1-0) E,* • 

The limiting relative permittivities and conductivities at high and low frequencies 
are expressed as 

2(1-0) Ea + (1 4-20) E,(5) 
Eq—Ea(2

+4))Ea+(l-0)Ei' 

9 (e ic —Eaic,) raO 
—Ea---- + [(2

+0)rra+(l-0)~r,]2(6) 

                  Eh

+o9 (icc,Ea—xaEt) 6.0.  rch—Ka(7)               Ea+(2)Ea+(1—o)E,]2 

       2(1-0)r.+(1+20)ri(8) 
          ~r=~a(2 -1-0)lca+(1-0)rc1 

                                                                ' and 

{{'~ (2+0)rc+(1-0)rci 1(9) /0= 
(2+0)Ea+(1-0)s, 27re, • 

2. Hanai Equation2•7 
   For a concentrated suspension of sphericaI particles, Hanai proposed'," the 

following equation for a complex relative permittivity of the system. 

e* —sr*---------------1/\/Ea*y/3 ----- =1-0.(10) 
            Ea*—Er*E* 

The limiting values at high and low frequencies are given by 
     Eh—Et Ea-----11/3=1—W ,(11) 

             ea—el8hJ 
3  1Ea—E,EiEa                                           (12) (---------------lrr-----------

rc------------l E`
\r,-1r1rr,/3\Ka-1C,,—re,/- Ka 

        (3  1_Ka—K1 rci  Ka   l(-----------l,(l3)             1Lh
\Eh—E, Eh/3\Ea—Ei+Eh—Ei/—Ea 

and 

Ica 1/3 
----- =1-0 .(14) 

Ka—Kt rct 

A theoretical expression offo in Hanai's theory is not derived yet in an analytical form. 
   According to Wagnet's theory so far used, the frequency giving the maximum 

loss factor is just the same as that giving a half value of the entire dielectric relaxation. 
In a previous consideration by numerical calculation of Hanai's theory on the 
frequency dependence of relative permittivity and loss factor,13' the loss maximum 
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frequency was found to be distinctly lower than the frequency giving the half value 

of the dielectric relaxation. From an experimental point of view, it is difficult to 
determine accurately the loss maximum frequency as against the  half-value frequency 
of the dielectric relaxation. In the present paper, therefore, the symbol fo is used 
as the relaxation frequency at which the relative permittivity shows a half value of 
the entire dielectric relaxation experimentally as well as theoretically. 

         IV. EXPRESSIONS TO CALCULATE PHASE PARAMETERS 
            FROM DIELECTRIC RELAXATION PARAMETERS 

   In this Section, expressions are derived to calculate phase parameters such as 
E„ x,, ia, and 0 from dielectric parameters such as e,, Eh, icr, and YCh• 

1. 0/W-like System where ica>xi 

1-A. Wagner Equation 
   From Eq. 5 we have 

(2+0) sh-2(1 —0) Ea(15) 
               Et=Ea 

(1+20)sa—(1-0)sh • 

From Eq. 8 we have 

~— 2(~ea—,rl)(16) 
2!Ca±rc, 

Substituting Eq. 16 for Eq. 6 to eliminate xi/Ka, we have 

E,=------29~0[(2+0)EI-2(1-0)ea] .(17) 
Equation 7 is rearranged as 

1 h Eh 
/9Eae,08 

----— xa Ea [(2+0)Ea+(1-0)e,]2.(10) 

Equation 9 is simplified as 

               (2-1-0)x„  1        f o_ (2±0)
Ea+(1-0)e, 27-re„ •(19) 

1-B. Hanai Equation 
   Here a condition iC,>>rct is adopted in addition to xa>>x, for simplification. 

Equation 11 is rearranged as 

Ea—Eh 

E,= Ea—---------------------(2O)                        gh11/3               1-(1-0)
\/                                        Ea 

Under the condition ,rl>,e,, Eq. 14 is reduced to 

xi=xa (1 —0)3/2 .(21) 

Substituting Eq. 21 for Eq. 12 to eliminate ,r,lrca, we have 
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         2 2  ea—e, 
ei=e(22) 33 1—(1-0)3/2 

Equation 13 is simplified as  

 /ch 
— eh (eh —e,)(/         2ea-I-ei)(23) 

           Ka ea(ea—ei) (2eh+e,) • 

2. W/O-like System where Ka <x; 

   In this instance, 0, e1, rc,, and fo can be calculated from er, eh, lCh, and ea by 
using expressions which are derived below. 

2-A. Wagner Equation 
   Equation 8 is reduced to 

                  Kr—Ka 
0=(24) 

K1 +2Ka • 

Substituting Eq. 24 for Eq. 6 to eliminate /Crl/ca, we have 

  m—e/—ea(25)             5(i
ee+2ea 

Substitution of Eq. 25 for Eq. 5 to eliminate 0 gives 

    et=eh(e1+ea)-2ea2(26) 
e,—ah 

Substituting Eqs. 25 and 26 for Eq. 7 to eliminate 0 and e,, we have 

(ei—ea) (er+2ea)(27). 
             =Xh 

(e,—eh)2 

Substitution of Eqs. 25, 26, and 27 for Eq. 9 to eliminate 0, e,, and i, gives 

  Kh  128    f
o=•                                       () el—eh 2irE 

2-B. Hanai Equation 
   Here a condition ,c,<</%, is adopted in addition to /Ca` /ci for simplification. 

Equation 14 is reduced to 

        0=1—(~a      1/3) .(29) 
rV, 

This Eq. 29 is substituted for Eq. 12 to eliminate rrl/ca, leading to 

         0=1—(----ea1/3    ) .(30) 
                      e, 

Substituting Eq. 30 for Eq. 11 to eliminate 0, we have 

   eh—ea() 
ei=ea+31 

eh 1/3            1—(E,I 
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Substitution of Eq. 31 for Eq. 13 to eliminate  el gives 

-----)(ehl 1-1(2+ ea1/3          ) 
              X/ —          ~h3

(eh )7  

3. (32) 

               [1—\er/ 
3. General System 

   This is general cases without any restriction between Ira and Ic;. 
3-A. Scheme A on which 0, e; , xi, xa , and fo can be calculated from EI, eh, xi, .h , 

     and ea 
3-A-a. Wagner Equation 

   Cumbersome calculations by use of Eqs. 5 to 8 lead to 

        H(ica~)_1/ IGrea—ICeiIca eI-5h=0. (33) 
Ichea—Icaeh ea Ich—Ic1 

The derivation of this equation is given in Appendix I. Numerical values of x 
satisfying Eq. 33 can be obtained by means of computer-searching provided  that 
values of eJ, Eh, Ic,, Ich, and ea are given from observed data. Some remarks for 
the computer-searching are given in Appendix II. 

   Next, Eqs. 5 and 8 are substituted for Eq. 6 to eliminate e; and rc;, the resulting 
relation being solved for 0. After tedious calculations, we have 

(eaeh+ehel—sae') 1ca2`2eashxcllcca+ea2x1234 

                (2eae,+ she/ —2eaeh)ca2—2eaehcIh%a-I-e2i/2 •() 

Alternatively, we have

I_(                  ea"(x~/—'~)2+(ea—eh) (eaicc,2_ ,ca2)(35)
•             (eax/—ehxa)2+(e/—sh) (2ea+eh) /ca2 

An outline of the derivation is shown in Appendix III. 
    Equations 5 and 8 are rearranged respectively as 

        rh(2ea+ eh) —2(ea—eh)
(36) ei=ea, 

                 0(26„+eh)+ea—eh 

and 

0(2ra+Ic,)+2(r,—Ic0(37) 
            xei—Xa0(2

1ca+/i),(~!—Ica). 

These Eqs. 35, 36, and 37 can be used for calculating 0, e,, and xi. 
    Relaxation frequency fo can be calculated from 

          _ (2+0)ICa+(1-0)1j1  f38                                             () 
(2+0)ea+(1-0)e, 27rEv • 

3-A-b. Hanai Equation 
    For simplicity, we put 
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         Ceh\11/3• (1-0) .(39)                     —( ea / 
          From Eqs. 11, 12, and 14, we have 

       C=  —Q- IQ2---------4PR(40)              2P' 

           where 

                 P=(—J-I-2)erD-3[ehD—ea(D-1)]D;-(—1)eaD, (41) 

Q=3[24D—ea(D-1)]—[(-----/Ca +2)D+3]er—(----~r —1)eaD, (42) 
R=3(er—sh) ,(43) 

          and 

D=(  eoxr  \ 1/3(44) 
          Eventually the function C given by Eq. 40 is a complicated function of /ca. Details 

          of the derivation are given in Appendix IV. 

             Next, Eqs. 11 and 14 are substituted for Eq. 13 to eliminate e, and rc,. Thus 

          we have 

J(rca)=reh[3—(2+----ea )C] (1—DC) 
                                       eh/ 

—3{kr—[ria(D-1)+P]C} (1—C)-Fica(1—-----eh )C(1—DC)-0. (45) 
Ea 

         The left side of Eq. 45, which is a formula abbreviated as J(' a), is a function of iCa 

          provided that er, eh, rc1, Ih, and ea are given through Eqs. 40 and 44. Equation 
          45 can not be solved for /ca owing to the complicated functional form. Computers 

          have made it possible to search out a root for J(Ia)=0 numerically. Remarks on 

          the computer-searching for J(Ga)=0 are given in Appendix V. 
             By use of numerical values of Ka thus obtained, values of D can be calculated 

         from Eq. 44. Values of C may be calculated from Eqs. 40, 41, 42, and 43 by use 
          of the values of Ia and D obtained above. 

             The rearrangement of Eq. 39 gives 

       ea 1113(46) 

         from which 0 can be calculated. Equations 11 and 14 are rearranged as 

eh—eaC 
   e,_(47) 1—C 

         and 

      _ rvr—KaDC(48)                  r~,
1—DC' 
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which may be used for calculating  e; and rc, respectively. 

3-B. Scheme B on which 0, e;, k;, Irh, and fa can be calculated from el, eh, ei, ICa, 
     and ea. 

   It is sometimes difficult to obtain observed values of ich with required accuracy 
owing to shift of the dielectric relaxation to somewhat higher frequencies. In such 
instances, the phase parameters may be determined provided ica can be measured 
instead of Ich. 
3-B-a. Wagner Equation 

   In this case, Eq. 34 or 35 is used to calculate O. Equations 36 and 37 can be 
used for calculating e, and ice. Next, ICh may be calculated from 

eh 9(YC;ea—icaat)sag)  
ich = rc a/ ea+[(2+0)ea+(l—O)ei]2•(49) 

Relaxation frequency fo can be calculated from Eq. 38. The frequency dependence 
of e and is may be calculated from Eq. 4. 
3-B-b. Hanai Equation 

   In this case, unlike the previous case of xi, given, the function C given by Eq. 40 
is calculated by use of Eqs. 41, 42, 43, and 44 provided that ica is given. Values 
of 0, e;, and ic; are calculated from Eqs. 46, 47, and 48 respectively. Values of 
ich can be calculated. from 

ICh 
\ Eh—el eh/3\ea—et Eh—e;/Ea50 

The frequency dependence of s and k may be calculated from Eq. 10.1' 

                  V. APPLICATION AND DISCUSSION 

1. Example for an 0/W-like System 
   In this case relevant to usual emulsions of 0/W type, the dielectric relaxation is 

expected to be too small to be observed. For example, we consider a case where 
ea=80, e,=2, and 0=0.8. Calculations by means of Wagner's Eqs. 17 and 15 

give values of er=13.2653 and eh=13.2620, resulting in a very small dielectric 
relaxation de-ar—eh=0.0033. Likewise Hanai's Eqs. 22 and 20 give values of 
ar=9.8871 and eh=9.7288, leading also to a small value de=0.158. In view of 
the measuring accuracy, therefore, it is very difficult to assess the respective values 
of et and eh from observed date. For estimation of the phase parameters in the 
present case, it is essential to obtain a value of P from separate experiments. 

    In our previous dielectric study of 0/W emulsions,°'°" no appreciable dielectric 
relaxation was observed in conformity with the theoretical prediction, and the 
following values were obtained for the 0/W emulsion in 0=0.8: er- ,.eh=9.78 and 
as=76.8. By use of these values, the phase parameters were calculated from 
Wagner's and Hanai's Equations, the results being summarized in Table I. Wagner's 
Equations seem to give unrealistic values with a negative sign for s,, whereas Hanai's 
Equations give reasonable values for a; which can be compared with a directly 
measured value st=2.50. 
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            Table I. Evaluation of Phase Parameters for an 0/W Emulsion 

            Dielectric Parameters Phase Parameters 
Observed" Calculated from the Equations 

0 = 0.8 Wagner Equations 

si=ish = 9.78 ei = —1.2973 from Eq. 17 

Ea = 76.8 ei = —1.2957 from Eq. 15 

ei = 2.50 (oil phase) 
                                     Hanai Equations 

                                       ei = 2.1311 from Eq. 22 

ei = 2.2818 from Eq. 20 

2. Example for a W/O-like System 

   In this case associated with emulsions of W/O type, the marked dielectric 
relaxation is theoretically expected to be observed. In our previous dielectric 
measurements of W/O emulsions,",") remarkable dielectric relaxations were 
observed in accordance with the theoretical prediction. The dielectric data for the 
emulsion in 0=0.7 were subjected to the analysis by means of Eqs. 25 to 32 for 
estimating the values of 0, e;, ic;, and fo, the results being listed in Table II together 
with the dielectric parameters observed. The value of 0 obtained on the preparation 
of the emulsion is very close to that estimated by Hanai's Eq. 30. 

   By use of the values of ea, ica, e;, xi, and 0 shown in Table II, the frequency 
dependence of e, ir, and the loss factor de" is calculated from Eqs. 4 and 10, the 
resulting theoretical curves being compared with the observed data in Fig. 1. Complex 

plane plots of the theoretical values are shown in Fig. 2, together with the observed 
data. The observed data seem to be close to the theoretical curves by Hanai's Eq. 10. 

3. Example for a General System 
   In the case that Ka x, and ea <e;, marked dielectric relaxations are theore-

tically expected to be found. Such examples were observed for suspensions of 

            Table II. Evaluation of Phase Parameters for a W/0 Emulsion 

        Dielectric ParametersPhase Parameters 
Observed12'Calculated from the Equations 

0 = 0.7Wagner Equations 
    ea = 94.00 = 0.9353 from Eq. 25 

en = 23.4Si = 31.73from Eq. 26 
        n a = 9.256 x 10-5 pS cm-' ri = 7.369 pS cm-' from Eq. 27 
      Kn = 4.069 pS cm-' fo = 103.6 kHz from Eq. 28 

Ea = 2.12 
xa = 6.178 x 10-5 pS cm-/ Hanai Equations 

fo = 88.0kHz0 = 0.7175from Eq. 30 
El = 59.49from Eq. 31 

                                    = 16.61 pS cm-' from Eq. 32 

fo = 88.52 kHz read graphically 
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                    FREQUENCY S/ Hz 

    Fig. 1. Frequency dependence of the relative permittivity s, the electrical conductivity 
x and the loss factor As"=(r—,ci)/(2icfsv) for a W/O emulsion. 

           The observed values of s and As" (0), and c(,) were cited from Reference 12. 
           The theoretical curves W were calculated from Wagner's Eq. 4, and the 
            curves H from Hanai's Eq. 10. 

50------------------------------------------------------------------------------- 

40-- 

`h30- o o W 
 kNo0100k 

                                     H 

II 20-30kHz -                            300
.k W 

10- 1M10k• 

                                             • 

    DO 10 20 30 40 50 60 70 80 90 100 

    Fig. 2. Complex plane plots of s and As" for the W/O emulsion. 
           The same data as shown in Fig. 1. Curve W was calculated from Wagner's 

           Eq. 4, and curve H from Hanai's Eq. 10. Numbers beside the observed points 
            are the measuring frequency. 

Sephadex G-25 in water. Sephadex G-25 is spherical beads composed of dextran 

gel, and possesses the permittivity and the conductivity characteristic of its swollen 
state in an aqueous phase. Details of the preparation of the suspensions will be 

reported elsewhere together with the systematic consideration of the dielectric data. 

Frequency dependence of e, r, and As" and the complex plane plots observed for 

a suspension of Sephadex G-25 in distilled water are shown in Figs. 3 and 4. The 
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O 

140 ° °16 

                                          • o 0 

120 W W14 • 
H 

E 

100 /12           • \ 
8010 

•  
=30 

--- W 

H N-20 

                                         0 
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               FREQUENCY f/ Hz 
Fig. 3. Frequency dependence of the relative permittivity s, the electrical conductivity 

IC and the loss factor ds"=(rc—iet)/(2lrfrv) for a Sephadex G-25 suspension. 
      The theoretical curves W were calculated from Wagner's Eq. 4, and the curves 

      H from Hanai's Eq. 10. 

40--------------------------------------------------------------- 

K 300k 100k • 
KN 20- 

a 1 M .• 30 kHz 

  60 80 100 120 140 

E 

Fig. 4. Complex plane plots of e and de" for the Sephadex G-25 suspension. 
      The same data as shown in Fig. 3. Curve W was calculated from Wagner's 

      Eq. 4, and curve H from Hanai's Eq. 10. Numbers beside the observed points 
       are the measuring frequency. 
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        Table III. Evaluation of Phase Parameters for a Suspension of Sephadex G-25 

        Dielectric ParametersPhase Parameters 
            ObservedCalculated from the Equations 

 ea = 131.0Wagner Equations 
      eh = 73.4,ra = 3.816 pS cm-' from Eq. 33 

tic = 10.31 pS cm ' 0 = 0.5873from Eq. 35 
     n,L = 15.0 iS cm-' Ei = 69.43from Eq. 36 

Ea = 79.29Xi = 22.21 pS cm-' from Eq. 37 
ka = 2.916 pS cm-' fo = 146 kHz from Eq. 38 
fo = 127 kHz 

                                Hanai Equations 
Ka = 3.090 pS cm-' from Eq. 45 
ih 0.5720from Eq. 46 
Ei = 69.18from Eq. 47 
'ci = 23.13 pS cm-' from Eq. 48 

fo = 135 kHz read graphically 

values of dielectric parameters e,, e,,, ICI, IC,, and fo can be determined from these 
results. Values of ea and ' a of the suspending medium being in equilibrium with 
the Sephadex granules were also measured. 

    Following the analysis shown in the preceding section, values of Pa, 0, e„ 
and fo were calculated from Eqs. 33, 35, 36, 37, and 38 for Wagner's theory, and 

from Eqs. 45, 40, 46, 47, and 48 for Hanai's theory in due course. The values thus 
obtained are summarized in Table III together with the dielectric parameters used. 
The observed values of sa and fo seem to be close to the values by Hanai's Equations. 
As regards the calculated values for 0, e„ and rc,, no significant differences are 
found between the two theories. 

   The frequency dependence of e, IC, and As" and their complex plane plots were 
calculated from Eqs. 4 and 10,13) the theoretical curves being shown in Figs. 3 and 4. 

The curves calculated from Eq. 10 are satisfactory for representing observed data. 

                         VI. CONCLUSIONS 

   On the basis of Wagner's and Hanai's theories of interfacial polarization, 

theoretical expressions of practical use were derived to evaluate the phase parameters 
from the dielectric parameters characteristic of the dielectric relaxations observed. 

   i) 01W-like system where xa>x,. Values of e, and ic, can be calculated by 
use of 0 which are obtained from separate experiments. 

   ii) W/0-like system where ka<<ic,. Values of phase parameters 0, s,, ti„ 
and fo can be calculated from the dielectric parameters e,, e,,, ,eh, and ea which are 
obtained from dielectric relaxation data observed. 

   iii) General system. (A) Values of the phase parameters 0, e,, r„ xa, and 

fo can be calculated from the dielectric parameters C,, r,,, I%,, i„, and C. (B) 
Values of the phase parameters 0, e,, Ic„ IC,,, and ,fo can be calculated from the 
dielectric parameters e,, eh, x,, ICa, and ea. 
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   For the examples shown in Application, Hanai's Equations were seen to represent 
satisfactorily the frequency dependence of the data as well as the phase parameters 
observed. 
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                          APPENDICES 

I. Derivation of Eq. 33 
   Equations 6 and 7 are rearranged respectively as 

Ktea—lvael9(/Ciea—C161) 0(Al) 
/C 2[(2+0)ra+(1-0)rr,]2 

and 

/Chea—IGaEh9(/C1ea /Gaa,)o(A2) 
            E2------------[(2+0) ea+(1 —0) e/]2 

Equation Al divided by Eq. A2 leads to 

IClea—/CCaCI 6.2 r (2+ 0)6.4-(1-0)61 12(A3) 
lchea—KaeltKa2—L(2+0)ia+(1-0)KiJ 

Equation 8 is substituted for Eq. 6 to eliminate ,v,. The Eq. 6 subtracted by Eq. 5 is 

9(ea/C1—Et/ca)2 0(l-0) (A4) 
             E1`Eh= 

                [(2+0) Ea+(1 —0) e,] [(2+0)1ca+ (1 —0)/C1]2•. 

Equation 5 is substituted for Eq. 7 to eliminate eh. The Eq. 7 subtracted by Eq. 8 is 

9(Ea/c1—E1/Ca)2 0(1-0) (A5) 
           /Ch—/C/ 

[(2+0) /ca+(1-0)c] [(2+0) ea+(1-0) E112. 

Division of Eq. A4 by Eq. A5 gives 

el-eh (2+0)ea+(1-0)e;  
       /Ch—K'1 (2+0)/ca+(1-0)/c, •(A6) 

Substituting this Eq. A6 for Eq. A3, we have 

/ClCa—/Cae!  _ (Ka  • E/—Eh 12 
      /CChCa—/aehea/Ch—/C/II(A7) 

Thus we have, from Eq. A7, 

/Clea—/Cael =  Ka Et—eh(A8) 

                                                                         , 

                   /ChCa—/CaCh ea Ph—'C/ 
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which leads to Eq. 33 in the text. From the physical point of view, each factor of 
the right side of Eq. A8 is all positive. Thus a negative sign in front of the radical 
sign of the left side of Eq. A8 must be ruled out on the evaluation of Eq. A7 

II. Some Remarks on the Numerical Searching for  Ka-Values Regarding Eq. 33 
   The function H(Ica) given by Eq. 33 is composed of two terms as 

H(ra)=Hi(ra)—H2(ra) ,(A9) 

where 

Ka er—eh 
   Heeca)=—. —(A10) ea1hr, 

and 

ea ea 

                                 rh—r, 

        Hl(ra)= V rlea—rae, _ el 1+ ehe,  (All) 
           rhea—raeh  ehea 

ra—rh---- 

Eh 

From this functional form of Hi(ra) expressed as Eq. All, it can readily be seen that 
H&(ra) is a modified form of a rectangular hyperbola with two asymptotes 

Hi(ordinate)=Ve'and ra(abscissa)=rh----ea, 
eheh 

and with two intercepts at 

      r,ea         H1=-1/----and,a=r,----- . 
       rhe, 

The graphs of Hi(ra), H2(ra), and their composite H(ra) in brief outline are illustrated 
in Fig. Al. 

   The existing domains of H(ra) of physical significance are 

      O<ra<r,----ea termed domain X,(Al2) 
of 

and 

                  ea 
     rh-----<Ka termed domain Y.(A13) 

               eh 

   Taking into consideration these limitations, still we find two points Xo and Yo 
of intersection between the curves H&(ra) and H2(ra), the corresponding roots being 
denoted by ra=rax and Ica=ray. Further exclusion of the false root for as must be 
made as the following. 

   From Eq. 6 we have 

rr9(e,ra—eair,)ica0
(A14) e,—eaIca—[(2+0)ra+(1-0)rd2 • 

The sign of the left side of this Eq. A14 is determined according as a factor 
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H (Ka) 
H1(xa) I H1             H
2(a) 

NYo 
N• 

\ EL 

   -...1 

   '~'~Li'rH1H2IH=H-H    7Ch`Xo21H2 
                               Ea 

&MI6. ̂xL El 
     7Gi\x 

  /~iDaX: \\~hhaY 

i 

                       ` 
H=H1 -H2 \

\1 

Domain X " \ Domain Y is \ 1 ( 

for )Ca P' \ 11forna->xi 
       ca<_EiEa EZ 

T>1T< 1 

    Fig. Al. The brief profiles of functions H1(Eq. All), H2(Eq. Al0), and H(Eq. A9) 
              against xa. 

            The chain lines are the asymptotes. The solid curves are the part of physical 
             significance. The dashed curves bear no physical meaning. 

(E;Yca—Eai;) is positive or negative. Thus we have 

      ,c -----n 
ea

< IC,forE`----->-----~`(A15) 
E/Ea IC, 

and 

      EaE;Ic, 
    Xi------> Ica for -----< ----.(A16) 

SiEa lc, 

Similarly, from Eq. 7 we have 

Ea----- 
<~ca forE`----->IC,` Ich----- , - (A17) 

EhEa /ca 

and 

Ea
> Ka forE`-----<-----~`  ih-----(A18) 

EhEa /ca 

For all the cases, we have 

a,>Eh>0 and /ch>K1>0, 
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which lead to 

---->  r`----> 0 .(A19) 
E1, el 

On account of this inequality A19, the relations A15-A18 can be simplified as 

      rr        a <,---Ea(domain X) forIL°-----< ----r`(A20) 
Erea e, 

and 

             Ea-< r e, Y) for~°----->-----~`   rh-----.(A21) 
ehea E, 

In view of these relations A20 and A21, either domain X or Y should be adopted 
according as ra/e<r,/E, or ra/ea>r,iE,. 

   Now E, and r, must be eliminated in the relations A20 and A21, since these 

phase parameters cannot be known before the calculation. By use of Eq. A30 shown 
later on, l is eliminated from Eqs. 36 and 37. The resulting relations are used for 
representing rile,. After tedious rearrangement of the formulas, we have 

IC, /La                                  ° 
----=----(A22) 

Cl ea 

where 

             eaV[(V—W)ea(rr+2ra)(rr—ra)+VWrr]           T-=(A23)                      '(A23) 

   V=Ear,—Ehra ,(A24) 

and 

W=Ear,—E,ra .(A25) 

Instead of the relations A20 and A21, discrimination between domains X and Y is 
expressed as 

        domain X (0<ra<r, E°)when----—T>1,(A26) 
                      E,/8,ra 

and 

        domain Y(rhE<ica) whenr'E° T <1(A27) 
Eh E,ra 

In this instance, an approximate value of ra must be measured for estimating a value 

of T. By use of Eqs. A25, A24, and A23, a value of T can be calculated. Eventually 

it is concluded in Fig. Al that a solution ra=Ka, for the point Xo in domain X 

should be adopted when T>l, and the other solution ra=ra,, for Yo in domain Y 

when T<1. 

III. Derivation of Eq. 34 

   The expressions of e, and r; derived from Eqs. 5 and 8 are substituted for two 
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factors (e,rca—e,x,) and [(2+0)rca+(1-0)rc,] to give 

9(ehra—earc1)eara0 (A28) 
           El ~a—EaYi— [0(2

ea+Eh)+(Ea—E,)] [0(2rca+r,)—(rc,—ra)] ' 

and 

      (2{0)ica+(l-0)K,= 90Ka2 (A29)                              0(2rca+p)—(Kir—ica) 

These two factors expressed by Eqs. A28 and A29 are substituted for Eq. 6. Solving 
the resulting relation for 0, we have 

               Ea(eaKr—Ehla)(Ki—/a)+(ea—Eh)(ea,c,—Ejica)' a)  0 _
///—.(A30)                ea(earn,—ehli;a)(2k'a+IC,) — (2ea+eh)(Eac!—Elra)~a 

This Eq. A30 leads to Eq. 34 in the text. 

IV. Derivation of Eq. 40 
   Substitution of Eqs. 47 and 48 for Eq. 12 to eliminate e, and ic,, and rearrange-

ment give 

i(----K~ +2)>,D-3[EhD—ea(D-1)]D+(----IC„-1)eaD}C2 
+{3[2ehD—ea(D-1)]—[(----+2)D+3] el— ----—1)e,,D}C 

                                                                          Ka 

+3(E,—Eh)=0 .(A31) 

This quadratic equation for C can be solved as 

C= —Q ±VQ2-4PR(A32)         2P' 

where P, Q, and R are given by Eqs. 41, 42, and 43 respectively. 
   Numerical calculations by use of plausible sets of e,,eh,'c1,Ea, and Ka revealed 

that the positive sign in front of the radical sign in Eq. A32 always results in un-
realistic negative values for e„ ,c,, and 0. Thus the positive sign was ruled out, and 
Eq. 40 was adopted. 

V. Some Remarks on the Numerical Searching for is Values Regarding Eq. 45 
   Prior to the evaluation of roots for J(ia)=0, the substantial behavior of J(Ka) 

must be made clear. After numerical examination of J(ra)-ra diagrams for various 
sets of phase parameters ea, e,, ,ea, and rc,, two types of J(rca) profiles were found 
in respect of the relative magnitude among rc,, icy, and re, provided that rca r, and 
ear,+e,rca, the typical diagrams for both types being depicted in Fig. A2. The 

general profile of J(rca) against rca in a range of Ka>0 was simulated approximately 
by a trinomial for rce, and possesses three intersections with the axis of abscissas 
termed L, M, and N in Fig. A2. In the case of ra<rcl<rc, (W/O-like) shown in 
Fig. A2(A), the value of re, of physical significance was given by the only one point 
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           CASE  we:, < xZ < aCASE a < Kt < a 

,J( a)W/O - like,J(a)0/W - like 

     correct xa correct Ka 

0M_N 0 L M 4N x 0L~a0KZ'Ka 

       Searching:'Searching  •directiondirection 

(A)(B ) 

        Fig. A2. The brief profiles of the function J(ra) given by Eq. 45 in a range 
ra>0. (A) the case Ka<ra<ri, (B) the case irz<ra<s'a• Three 

                points L, M, and N represent the roots of J(ra)=0. 

L located solely lower than the value of lcr, and other two points M and N had to be 
ruled out. In the case of ici<xr<rea (O/W-like) shown in Fig. A2(B), the only one 

point N located solely higher than the value of showed the value of /ca of physical 
significance, and other two points M and L had to be ruled out. Numerical searching 
for J(ICa)=0, therefore, can be stated as follows provided that an approximate value 
of ica is known by experiment: The computer-searching should be proceeded from 
ic, and towards the lower values of rca when Ka<xl. If icr<ica, then the searching 

should be proceeded from ,v, and towards the higher values of rca. 
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