<table>
<thead>
<tr>
<th>Title</th>
<th>Extraction Behavior of Metal Benzoyltrifluoroacetates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Honjo, Takaharu; Matsui, Masakazu; Shigematsu, Tsunenobu</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1978), 55(5): 415-422</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978-01-17</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/76753</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Extraction Behavior of Metal Benzoyl trifluoroacetonates

Takaharu Honjo†, Masakazu Matsui, and Tsunenobu Shigematsu*

Received June 23, 1977

The behavior of trace amounts of iron, cobalt, copper, zinc, indium, uranium, zirconium, scandium, lanthanum, cerium, neodymium, samarium, europium, terbi um, ytterbium, and lutetium in solvent extraction has been reviewed in order to ascertain the basic conditions for the separation of metals as their benzoyl trifluoroacetonates by solvent extraction. The pH of the half extraction decreases in the following order: Co(II)—Zn(II)—La(III)—Nd(III)—Ce(III)—Eu(III)—Tb(III)—Sm(III)—Yb(III)—Lu(III)—In(III)—UO₂(II)—Fe(III)—Sc(III)—Cu(II)—Zr(IV). The extraction constants for the benzoyl trifluoroacetonate chelates tend to increase with an increase in the ionic potential of the metals. The variation of the extraction constants of rare earth chelates with atomic number of rare earth elements shows interesting tetrad effects.

INTRODUCTION

In recent years, the liquid-liquid extraction of metals with various β-diketones has been reported and reviewed, however, benzoyl trifluoroacetone has scarcely yet been used for the extraction separation of various metals. In this article, the behavior of trace amounts of iron (III), cobalt (II), copper (II), zinc (II), indium (III), uranium (VI), zirconium (IV), scandium (III), lanthanum (III), cerium (III), neodymium (III), samarium (III), europium (III), terbium (III), ytterbium (III), and lutetium (III), in solvent extraction has been reviewed in order to ascertain the basic conditions for the separation of metals as their benzoyl trifluoroacetonates by solvent extraction.

EXPERIMENTAL

The benzoyl trifluoroacetone (white needle crystal, m.p. 39–41°C, b.p. 224°C) was supplied from the Dojindo Co., Ltd., Research Laboratories. Reagent-grade benzene was used without further purification. The experimental procedures were already described in the previous papers. In general, the extractions were carried out between 10 ml of a buffered solution containing trace amounts of metal ions and the same volume of an organic solution containing 0.05 M benzoyl trifluoroacetone in benzene. The aqueous solution was made to have 0.01–0.1 M acetic acid (in the acidic region) or 0.01–0.1 M boric acid (in the basic region), and its pH was adjusted to an appropriate value. The two phases were shaken by means of a mechanical shaker for 30 min to one hour at room temperature (20–25°C). After centrifugation, the distribution of the metals was determined radiometrically.
T. Honjo, M. Matsui, and T. Shigematsu

cally for cobalt (Co–60), zinc (Zn–65), zirconium (Zr–95), scandium (Sc–46), lanthanum
(La–140), cerium (Ce–144), neodymium (Nd–147), samarium (Sm–145), europium (Eu–152,
154), terbium (Tb–160), ytterbium (Yb–169), and lutetium (Lu–177), spectrophotometrical-
ly for iron and uranium as their benzoyltrifluoroacetonates,3) polarographically for copper
as well as fluorometrically for indium as its 2-methyloxinate,4) respectively. The pH of
the aqueous phase was checked again after extraction with use of the pH meter.

THEORETICAL

The percentage of extraction, %E, the extraction constant of a metal chelate, K, and
the pH of the half extraction, pH1/2, can be calculated from the data obtained by the follow-
ing equations:

\[D = \frac{(MR_n)_0}{(M^{n+})(1 + D)} \] (1)
\[%E = \frac{100D}{1 + D} \] (2)
\[K = \frac{(MR_n)_0(H^+)^n}{(M^{n+})(HR)_0^n} \] (3)
\[\log K = \log D - n \log (HR)_0 - n \log pH \] (4)
\[pH_{1/2} = -\log K/n - \log (HR)_0 \] (5)

where \(D \) is the net distribution ratios of a metal in the extraction; \(M \) stands for metal, and
\(HR \) for benzoyltrifluoroacetone; the parentheses designate the concentration of the chemical
species in the aqueous phase and in the organic phase with the suffix O.

RESULTS AND DISCUSSION

The extraction of trace amounts of 16 metals with 0.05 M benzoyltrifluoroacetone in
benzene was investigated for various acidic and basic aqueous solutions. The results are
shown in Figs. 1–2 as a function of the pH or H2SO4(M) of the aqueous phase. The data
on the logarithm of the extraction constant, \(\log K \), and the pH1/2 values of metal benzoyl-
trifluoroacetanates obtained in the present extraction system are summarized in Table I.
The values in pH1/2 decrease in the following order: Co(II)–Zn(II)–La(III)–Nd(III)–
Ce(III)–Eu(III)–Tb(III)–Sm(III)–Yb(III)–Lu(III)–UO2(II)–Fe(II)–Sc(III)–
Cu(II)–Zr(IV). The free energy of the formation of a complex between a metal ion and an

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>log K</th>
<th>pH1/2</th>
<th>Metal ion</th>
<th>log K</th>
<th>pH1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(III)</td>
<td>-2.31</td>
<td>2.07</td>
<td>La(III)</td>
<td>-11.6</td>
<td>5.17</td>
</tr>
<tr>
<td>Co(II)</td>
<td>-8.60</td>
<td>5.60</td>
<td>Ce(III)</td>
<td>-9.5</td>
<td>4.47</td>
</tr>
<tr>
<td>Cu(II)</td>
<td>-1.26</td>
<td>1.93</td>
<td>Nd(III)</td>
<td>-9.9</td>
<td>4.60</td>
</tr>
<tr>
<td>Zn(II)</td>
<td>-8.56</td>
<td>5.58</td>
<td>Sm(III)</td>
<td>-8.1</td>
<td>4.00</td>
</tr>
<tr>
<td>In(III)</td>
<td>-6.36</td>
<td>3.42</td>
<td>Eu(III)</td>
<td>-8.9</td>
<td>4.27</td>
</tr>
<tr>
<td>UO2(II)</td>
<td>-3.40</td>
<td>3.00</td>
<td>Tb(III)</td>
<td>-8.8</td>
<td>4.23</td>
</tr>
<tr>
<td>Zr(IV)</td>
<td></td>
<td>1M H2SO4</td>
<td>Yb(III)</td>
<td>-7.8</td>
<td>3.90</td>
</tr>
<tr>
<td>Sc(III)</td>
<td>-1.40</td>
<td>1.77</td>
<td>Lu(III)</td>
<td>-7.7</td>
<td>3.87</td>
</tr>
</tbody>
</table>

(416)
Fig. 1. The effect of pH or H$_2$SO$_4$ (M) on the extraction of trace amounts of Co(II), Cu(II), Fe(III), In(III), UO$_2$(II), Zn(II), and Zr(IV)-0.05 M benzoyltrifluoroacetone-benzene system.

Fig. 2. The effect of pH on the extraction of trace amounts of Sc(III), La(III), Ce(III), Nd(III), Sm(III), Eu(III), Tb(III), Yb(III), and Lu(III)-0.05 M benzoyltrifluoroacetone-benzene system.
organic reagent may be expressed as:

\[-\Delta G = RT \log K = \text{const.} \times pH_{1/2} = \text{const.} \times n/r,^9\]

where \(n\) is the charge and \(r\) is the crystal radius of the metal ion. In Fig. 3, the extraction constants, \(K\), of the extractable chelates are plotted as a function of the ionic potentials.

Fig. 3. The apparent extraction constant, \(\log K\), in the metal-benzoyltrifluoroacetone–benzene systems as a function of the ionic potential.

Fig. 4. The variation of the extraction constants of rare earth benzoyltrifluoroacetates with atomic number of rare earth elements.

(418)
Extraction Behavior of Metal BFA Chelates

The results show that the apparent extraction constants for the benzoyltrifluoroacetonate chelates tend to increase with an increase in the ionic potential of the metals. Similar results have been obtained in acetylacetone⁶) and benzoylacetonetr₇) chelate system; that is, in all the pH₁,₂ decreases in the ionic radii or the ionic potential. The high stability of copper chelates is attributed to its high ionization potential. However, it should be noticed that the apparent extraction constants for the monothiothenoyltrifluoroacetone chelates tend to decrease with an increase in the ionic potential of the metals,⁸) because the oxygen—sulfur-donating ligand has a marked tendency to form covalent bond due to dπ—dπ inter-

![Fig. 5. Extraction of copper(II) and iron(III) with 0.05 M benzoyltrifluoroacetone in butylacetate, benzene, and chloroform as a function of pH.](image)

![Fig. 6. Extraction of indium(III) with 0.05 M benzoyltrifluoroacetone in butylacetate, benzene, and chloroform as a function of pH.](image)
actions. The stability of the complex of the first-transition elements follows Irving and Williams' order of stability, that is, Ni(Cu)Zn, regardless of the nature of the coordination ligand. In the solvent extractions of the benzoyltrifluoroacetone chelates of these metals, a similar sequence is observed. In rare earth elements-benzoyltrifluoroacetone-benzene extraction system, the value of pH1/2 rises as the ionic radius of the central rare earth metal increases, while the variation of the extraction constants of rare earth chelates, $-\log K$, with atomic number of rare earth elements, Z, showed interesting tetrad effects as shown in Fig. 4. The extraction curves for copper-, iron-, indium-, scandium-, uranium-, ne-

Fig. 7. Extraction of scandium(III) with 0.05 M benzoyltrifluoroacetone in butylacetate benzene, and chloroform as a function of pH.

Fig. 8. Extraction of uranium(VI) with 0.05 M benzoyltrifluoroacetone in butylacetate, benzene, and chloroform as a function of pH.
Extraction Behavior of Metal BFA Chelates

dymium-, europium- and lutetium-benzoyl trifluoroacetanotes with butylacetate, chloroform, and benzene are shown in Figs. 5-11. From the figures, it is clear that the extraction of rare earth and uranyl benzoyl trifluoroacetanotes proceeds better with butylacetate than with chloroform or benzene. This phenomenon, the synergistic enhancement of metal chelate extraction, may be caused by the formation of rare earth and uranyl chelate adducts with butylacetate having active oxygen atom, as have already been pointed out in the previous paper. In conclusion, quantitative extraction of metals using benzoyl trifluoroacetone could be achieved at a lower pH region from the lower pKₐ value like 9.20 in 75%

Fig. 9. Extraction of neodymium(III) with 0.05 M benzoyl trifluoroacetone in butylacetate, benzene, and chloroform as a function of pH.

Fig. 10. Extraction of europium(III) with 0.05 M benzoyl trifluoroacetone in butylacetate, benzene, and chloroform as a function of pH.
Fig. 11. Extraction of lutetium(III) with 0.05 M benzoyltrifluoroacetone in butylacetate, benzene, and chloroform as a function of pH.

This may be due to the electron-withdrawing fluoromethyl group. Moreover, high extractability was found to be achieved from its low solubility in water, and the extraction may be facilitated by the shielding effect of the phenyl group against hydration to the central metal. This phenomenon may be attributed to the high distribution coefficient between water and benzene like log \(Pr = 2.61 \).

REFERENCES