<table>
<thead>
<tr>
<th>Title</th>
<th>The Chemistry on Diterpenoids in 1977. Part-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujita, Eiichi; Fuji, Kaoru; Nagao, Yoshimitsu; Node, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1979), 56(6): 356-380</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1979-02-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/76799</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
I. INTRODUCTION

This is one of a series of our annual reviews on diterpenoids chemistry. The classification of the compounds is the same as that adopted in our reviews since 1969. This review covers the literatures published between July and December 1977 and also omissions in Part-I.

II. PODOCARPAANE DERIVATIVES

Podocarpane

The chirality of nucleophilic reactions of the 4β aldehyde and methyl ketone groups in the podocarpane derivatives (1 and 2) was investigated.2) Thermolysis of cyanobenzocyclobutene 3 gave four stereoisomeric products (4-7). Their structures were clarified by the chemical conversion of each octahydrophenanthrene into the known compounds.3)

A synthesis of a diterpene alkaloid intermediate 8 from cyanobenzocyclobutene 9 was reported.4) As an approach to the synthesis of podocarpic acid (10), an olefinic compound 11 was synthesized starting from 2-(2-phenylethyl)cyclohexane-1, 3-dione.5)
Syntheses of model systems for podocarpic acid and diterpene alkaloids were reported. The outline is illustrated in Chart 1.5) The structure and stereochemistry of tricyclic intermediates (16) and other related compounds were also discussed.7)

Treatment of ester 19 with lithium methanethiolate, CH₃SLi, at 25° for 2 hrs afforded the corresponding acid 20 in 98% yield. On treatment of compound 19 with CH₃SLi at 120° for 36 hrs, acid 10 was obtained in 95% yield.8) The generation of a reactive phenyl selenide anion and its application to S₈2-type ester cleavage (e.g. 19→20) were published.9) The chemical basis for feeding adaptation of pine sawflies, Neodiprion rugifrons and N. swainei, was discussed determining the content of a feeding deterrent chemical, 13-keto-8(14)-podocarpen-18-oic acid (21) in foliage.10)

III. LABDANE DERIVATIVES
E. Fujita, K. Fuji, Y. Nagao, and M. Node

Isoabienol (22) was isolated from needles of Pinus sylvestris.11) The absolute structure of andalusol (23), a new diterpene from a subspecies of Sideritis arborescens, was reported.12) New labdane type diterpenes isolated from southern pine (Pinus spp.) tall oil were characterized as 19-hydroxy-15,16-dinorlabd-8(17)-en-13-one (24) and 8,13β-epoxy-14-labden-6α-ol (25).13)

\[
(22) \quad (23) \quad (24) \quad (25)
\]

The structure 26 of coleonol, a diterpene possessing hypotensive and spasmolytic activities, isolated from the roots of Coleus forskohlii, was assigned on the basis of chemical and spectral evidence and X-ray crystallographic data.14) A novel marine diterpenoid, neoconiconindiol hydroperoxide (27), was isolated from extracts of the red seaweed Laurencia snyderiae and its structure was finally determined by a single-crystal X-ray diffraction method.15) A correction of the structure of bortjatriol to formula 28 was reported on the basis of 13C–NMR investigation.16)

\[
(26) \quad (27) \quad (28)
\]

The 13C–NMR spectra of some labdane diterpenes 29–36 were investigated and the signals assigned.17) The substituent shielding effects in these compounds were also discussed.

\[
(29) \quad (30) \quad (31) \quad (32) \quad (33) \quad (34) \quad (35) \quad (36)
\]

On peracid oxidation, (12Z)-abienol (37) afforded two major products 38 and 39, and also gave small amounts of 40 and 41, which were converted to compounds 42 and 43 by Jones' oxidation.18) Dehydration of sclareol (44) with perchloric acid yielded a complicated tetracyclic product 45.19) 15-Norlabdan-8-ol, labd-8(17)-en-15-ol, and 15-hydroxylabd-7-en-6-one were isolated from Cistus ladaniferus gum.20)
A new cis-clerodane diterpene was isolated from the aerial parts of *Macowania glandulosa* and its structure 46 was elucidated by spectroscopic methods and by chemical reactions. The structure and stereochemistry of crotocaudin, a new norditerpene occurring as a minor constituent in *Croton caudatus* were established as 47 by the detailed investigation of the NMR spectroscopic study. The congener, teucydin (48), was also isolated as a major component and its conversion to teucvin (49) was achieved.

The X-ray analysis of 3-bromo-2-oxo-tetrahydrodiosbulbin-A (50) was performed using heavy-atom method. Thus the absolute structures of tetrahydrodiosbulbin-A (51), diosbulbin-A (52), -B (53), and -C (54), which could not be determined by chemicophysical methods, were clarified.
The isolation of three new trans-clerodane type diterpenoids, 55, 56, and 57, from the medicinal plant Baccharis trimera was reported. Proof for the proposed structure and definite evidence for the stereochemistry were provided by X-ray analysis of 57. The structures of bacchotricuneatin A (58) and B (59), two new diterpenes from Baccharis tricuneata var. tricuneata, were described.

The isolation and structure elucidation of diterpenoids from Teucrium polium and T. hyacanicum were reported. Compound 60, a valuable intermediate in the synthesis of various clerodane type diterpenes, was effectively prepared from 61. Kolavenic acid (62) was isolated from the roots of Solidago altissima. It showed the antibacterial activity. The antibacterial properties of the several compounds derived from 62 were also investigated.

V. PIMARANE AND ISOPIMARANE DERIVATIVES

A new diterpene, 8(14),15-pimaradiene-3β,18-diol (63) was isolated from southern pine (Pinus spp.) tall oil with some other type diterpenes. A biosynthetic study on rosenolactone (64) using Deuterium Magnetic Resonance was published. This investigation established that the 5-pro-R hydrogen of mevalonate becomes the 16Z hydrogen (Hₐ) of rosenolactone. Conversely the 16E hydrogen (Hb) of 64 is derived from the 3-pro-S hydrogen of mevalonate. The outline is shown in Chart 2.
Acid-catalyzed dehydration of each of the 8\(\beta\)-hydroxy compounds 65a and 65b gave initially the olefinic isomers 66, 67, and 68. After extended reaction times the rearranged olefinic compounds 69 and 70 were major products.31)

The compound 71 was synthesized as an intermediate for pimarane derivatives.32) The synthesis of the fundamental skeleton 72 of erythroxydiol X (73) isolated from Erythroxylon monogynum was investigated. The cyclopropyl ketones 74 and 75 were synthesized from the tricyclic oxo-acid 76 and the monomethylated \(\alpha\beta\)-unsaturated ketone 77, respectively. Reduction of either compound 74 and 75 with lithium aluminum hydride in dioxane did not give the desired compound 72, but the seven-membered ring compound 78, presumably by hydrogenolytic cleavage of the cyclopropane ring.33) The chemical conversion of virescenol A (79) into virescenol B (80) was published.34) Oxidations of methyl sandaracomimarate, pimarate, isopimarate, \(\Delta^{9,9}\)-pimarate, and \(\Delta^{8,9}\)-isopimarate by \(\beta\)-nitroperbenzoic acid gave epoxides having both the \(\alpha\) and \(\beta\) configurations, e.g. 81 and 82. The compound 81 was isomerized in acidic chloroform to give 83.35)
A new diterpene-quinol, hyptol (84), was isolated from *Hyptis fructicosa* which also contained horminone (85) and 14-methoxytaxodione (86). Arguments based on 13C and 1H NMR spectroscopy were presented to elucidate the structures of 12- and 14-monochlorodehydroabietic acid and 12,14-dichlorodehydroabietic acid, which were major toxic components to fish in kraft mill caustic extraction effluents.

Two new abietane type diterpenes, 8,11,13-abietatriene-15,18-diol (87) and 9,10-secoabieta-8,11,13-trien-18,10-olide (88) were obtained with some other new diterpene companions from southern pine (*Pinus* spp.) tall oil.

A new diterpene, caudicifolin (89) was isolated from *Euphorbia caudicifolia*.

VI. ABietetane DERivatives
The structures of seven minor constituents "Syl-A (90), B (91), C (92), and D (93)" from *Solenostemon sylvaticus* and "Mon-A (94), B (95), and C (96)" from *S. monostachys* were reported.19)

From leaf-glands of *Plectrauthus myrianthus*, the following diterpenoids were isolated: coleon U (97), V (98), W (99), 14-O-formyl-coleon-V (100), 7α-formyloxy-6β-hydroxyleanone (101) and the already known 6β,7α-dihydroxyleanone (102).20)

Deeply colored quino-methane derivatives, 3β-acetoxy-fuerstione (103), nilgherron A (104, I or II), and nilgherron B (105, I or II) were isolated from *Plectranthus nilgherricus*.21)

Ferruginol (106), a precursor for taxodione (107) synthesis, was prepared according to the sequence illustrated in Chart 3.22)
Abietic acid was recovered from fluorosulfonic acid below -40°. At higher temperatures an irreversible rearrangement took place to give stable carbocations 108 and 109. Quenching the cations in aqueous sodium carbonate afforded a 1:2 mixture of trienes 110 and 111.

A new stereoselective synthesis of dehydroabietic acid (113) from the dinorketone (112) was efficiently achieved. The outline is shown in Chart 4.

In a synthetic study of triptolide (116), a compound 115 was prepared from 6-methoxy-1-tetralone (114) via several steps.

A total synthesis of methyl rac-dehydroabietate (117) was successfully performed. The synthetic route is shown in Chart 5.
The α-epoxide 118 derived from 1-abiatic acid was treated with BF₃•Et₂O in benzene to give the methyl ketone 119, whereas the corresponding β-epoxide underwent a methylene migration (ring expansion) to give the cycloheptanone derivative 120 or 121. The compound 119 was converted to 13α-beyerane.

Isolation of cryptotansinone (122) from tansinone III [a mixture of tansinone II (consisting of II–A (123) and II–B (124)) and cryptotansinone (122)] as a Fe (III) complex was reported.

VII. TOTARANE DERIVATIVES

The structures of five new cytotoxic nor-diterpenoids, 125–129, separated from Podocarpus nagi seed extract were elucidated. Furthermore, three new nor-diterpenoids, 130–132, were isolated from fresh root bark of the same plant.
From the seed of *Podocarpus macrophyllus*, inumakilactone D was isolated as a new minor norditerpene lactone, and the structure 133 was determined by X-ray analysis.51)

Chemical modifications of the ring A functional groups on the norditerpene dilactones, 134–136, were investigated.52)

VIII. CASSANE DERIVATIVES

No papers have been published on the title topics in this period.

IX. KAURANE DERIVATIVES
The Chemistry on Diterpenoids in 1977. Part-II

Two new diterpenes, eubotriol (137) and eubol (138), were isolated from Sideritis euboea. From Viguiera stenoloba var. chihuahuense roots, five diterpenoids, 139–143, were isolated. Kaurenoic acid (139) was also isolated together with beyerane type diterpenoids from V. grammatoglossa roots and V. cordifolia (roots and aerial part).

Investigation of seven Arthrixia species afforded besides known compounds four new norkaurene derivatives, 144–147. The occurrence of atractyloside and atractylogenin (148) in Callilepis laureola was reported. A new antitumor and antibacterial diterpenoid, kamebanin, was isolated from Isodon kameba and the structure was determined as 149. The isolation and characterization of a new ent-kaurenoid diterpene, isodomedin (150), from Isodon shikokianus var. intermedius was published. This compound exhibits antibacterial and cytotoxic activities as well as antifeedant activity against the African army worm.

An X-ray crystal structure determination of veatchine revealed the coexistence of molecules which differ in configuration at C-20 atom, that is, 151 and 152. The crystal and molecular structure of mascaroside (153) isolated from coffee beans was determined by direct methods and X-ray analysis. New diterpene glycosides, dulcosides A and B were isolated from Stevia rebaudiana and their structures were established as 154a and 154b, respectively. They showed moderate sweetness, ca 30 times more than that of sucrose.

From the aerial part of Stevia paniculata, five new diterpene glucosides, paniculosides I–V were isolated and their structures, 155–159, were formulated on comparison of 13C NMR spectra of these glucosides with those of the aglycones, 160–163.
From the leaves of *Stevia rebaudiana*, additional two sweet glucosides, rebaudiosides-D (164) and -E (165), were isolated. Their structures were assigned on the basis of 13C NMR evidences as well as the results of chemical and enzymatic hydrolysis and were substantiated by their preparation from the known compounds.63)

By means of enzymatic and chemical procedures, stevioside (166) was converted efficiently into rebaudioside-A (167) which tastes sweeter and more pleasant than 16664) (see Chart 6).

Reactions of *ent*-kaurenes and 13β-kaurenes with thallium(III) nitrate in glyme were investigated. Namely, the reaction of *ent*-kaur-16-ene (168) or 13β-kaur-16-ene (169) gave only allylic nitrate products in high yield. The reactions of *ent*-kaur-15-ene (170) and 13β-kaur-15-ene (171) with the same reagent were also investigated. Furthermore, a mutual allylic rearrangement of the allylic nitrate products was reported.65)

By the two successive oxidative rearrangements using thallium trinitrate, *ent*-kaur-16-ene (168) and kaurenoic acid (139) were stereoselectively converted into *ent*-16α-
kauran-17-oic acid (172) and *ent*-16α-kaurane-17,19-dioic acid (173), respectively.66)

Reduction of 2,3-epoxides, 174, 175, and 176, with hydride afforded equatorial alcohols, 177, 178, and 179, respectively. Analogously, acidic hydrolysis of 180 and 181 afforded the diequatorial 2,3-diols 182 and 183. The abnormal equatorial opening of these epoxides is attributed to the participation of the 19-hydroxy group (for the *ent*-2α,3α-epoxides) or to the steric effect of 18-methyl group (for the *ent*-2β,3β-epoxides).67)

A model reaction for a biosynthetic conversion of *ent*-kaurene into the grayanane skeleton was carried out using cholestane derivatives68) (see Chart 7).

The reactivity of three secondary hydroxyl groups of grayanotoxin-(II) (184) toward acetylation and alkaline hydrolysis was investigated and on the basis of its evidence, chemical transformation of 184 into 3-dehydro grayanotoxin-II (185) was achieved69) (see Chart 8). Furthermore, this transformation was also achieved by microbial oxidation with *Pseudomonas pseudomallei*.70)
The microbiological transformations of three 19-oxygenated \textit{ent}-kaurenes 139, 186, and 187 with \textit{Rhizopus nigricans}, \textit{Aspergillus ochraceous}, and \textit{Calonectria decora} were investigated. The most common transformation observed is hydroxylation at the C-1 and C-7 positions. For \textit{ent}-kaur-16-en-19-oic acid (139), allylic hydroxylation and hydration of the double bond also occurred.\(^{71}\)

The plant growth retardant, compound 188, was shown to block gibberellin biosynthesis in \textit{Gibberella fujikuroi} between mevalonate and \textit{ent}-kaur-16-ene. In the presence of the plant growth retardant, cultures of the fungus incorporate added \textit{ent}-[14C]-kaur-16-ene into gibberellin A\textsubscript{3}, but kaur-16-ene, 13\textbeta-kaur-16-ene, and \textit{ent}-kaur-15-ene are not metabolized to gibberellin analogs.\(^{72}\)

\begin{align*}
\text{ent-Kaurene derivatives, } & 190 \text{ and } 191, \text{ were prepared from } 189, \text{ and their metabolites from cultures of the mutant B1-41a of } \textit{Gibberella fujikuroi} \text{ were analyzed by g.l.c.-mass spectrometry. The metabolism of } 192, 193, \text{ and } 194 \text{ was similarly investigated in cultures of the parent wild-type strain, GF-1a, in which gibberellin biosynthesis was blocked by a synthetic plant growth retardant}\(^{73}\) \text{ (see also Section XI).}

\text{Inhibitory effect of the } \textit{Isodon} \text{ species diterpenoids on oxidative phosphorylation in rat liver mitochondria was investigated. Among them, isodonal (195) had the strongest effect.}\(^{74}\)

In a report on the circular dichroism of strained, bridged-ring, and other ketones, several ketones of kaurane were described.\(^{75}\) The mass spectra of grayanotoxin III and some acetate and propionate esters were discussed.\(^{76}\)

\textbf{X. BEYERANE DERIVATIVES}
Isolation of beyerane type compounds, 196, 197, and 198, from methylated extracts of Dimorphotheca aurantiaca, 199, 200, and 201 from D. pseudoaurantiaca, 199, 201, and 202 from Viguiera grammatoglossa, and 199 from V. cordifolia was reported.54)

Isohibane (203) was synthesized from l-abietic acid via epoxide 118 and ketone 119.46) In a foregoing report on the circular dichroism of strained, bridged-ring, and other ketones, ketones of beyerane group were included.75)

XI. GIBBERELLANE DERIVATIVES

Reduction of 3-dehydrogibberellin A₃ (204) with NaBH₄ and LiAlH(O−tBu)₃, and of the ester 205 with LiBH₄, NaBH₄, or Zn(BH₄)₂ was investigated.77) Acid-catalyzed hydrolysis of gibberellin A₃ derivative 206 gave the major product, monolactone acid 207, as well as the minor products, 208 and 209, without decarboxylation.78)

Photochemical cycloaddition of acetylene to 3-dehydrogibberellin A₃ (204) and its methyl ester (205) gave adducts 210 and 211, respectively. The reaction proceeded slowly, but more stereospecifically than the corresponding addition of ethylene. The adducts were converted to the corresponding 1β,2β-isomers via 1,3-acyl shift under continued photolysis.79) Acidic hydrolysis of the ent-2β,3β-epoxides 212 and 213 afforded the diequatorial 2,3-diols 214 and 215, respectively. The abnormal opening of these epoxides is attributed to the steric effect of the adjacent ent-4α-methyl group.67)
An efficient synthetic route to a lactone model for the gibberellin A ring was reported. The sequence is shown in Chart 9

Gibberellin A₁₃ (216) and A₁₄ 7-aldehyde (217) were tentatively identified as metabolites of gibberellin A₁₂ aldehyde (218) in a cell-free system derived from Gibberella fujikuroi; gibberellin A₁₃ 7-aldehyde (219) is incorporated into gibberellin A₃ (220), and the C₂₀ carbon atom which is removed at this stage was isolated as carbon dioxide. A possible mechanism of C₂₀ removal in gibberellin biosynthesis is thought to involve a C₂₀ per-acid as shown in Chart 10

The endogenous free gibberellins in two different stages of immature Phaseolus vulgaris seeds were investigated. In the early immature stage, feeding experiment of labeled GA₁₃, GA₄, GA₅, and GA₂₀ indicated that GA₄ and GA₂₀ were converted to GA₈ via GA₁ as shown in Chart 11. The interconversion of GA₅ to known gibberellins was not observed. Gibberellin glucosylating enzymes were not present in the early immature stage of the bean seeds but they appeared in the maturing process. The conversion of GA₄ to GA₄ glucosyl ester and GA₂₀ to GA₂₉ were shown in the maturing bean seeds.
A report on metabolism of kaurenoids by Gibberella fujikuroi in the presence of the plant growth retardant was published72 (see Section IX).

Transformations of 2- and 3-hydroxylated kaurenoids by Gibberella fujikuroi were investigated. The results show that the ent-3α-hydroxylated analogs of the normal gibberellin intermediates (139 and 221) are efficiently converted into 3-hydroxylated gibberellins. They indicated that the ent-2β-hydroxy-analog is converted into gibberellin A₃ (220) by dehydration and that the conversion of ent-kaurenoids into gibberellins is reduced by the presence of ent-2α- and ent-2β-hydroxyl groups.73

XII. ATISANE DERIVATIVES

No papers have been published on the title topics in this period.

XIII. ACONANE DERIVATIVES

Sachaconitine (222) and isodelphinine (223) were isolated from Aconitum miyabei.83 The 13C–NMR spectra of the aconitine-type diterpenoid alkaloids were determined and applied in the structural determination of mithaconitine (224).84
The alkaloid "delsemine" isolated from Delphinium tricorne was proved to be an inseparable mixture of 225 and 226.85 The structures of gigactonine (227) isolated from Aconitum gigas,86 tricornine (228) isolated from D. tricorne,87 and 0-acetyl-delectine (229) isolated from D. dictyocarpum88 were determined mainly by spectroscopic method. N-Oxyzongorine was isolated from A. monticola.89 An excellent review describing the synthesis of aconite alkaloids was published.90 A stereospecific total synthesis of chasmanine (233) was performed from the aromatic intermediate 230 by a photochemical route to the nordenudatine intermediate 231, which was rearranged to 232 followed by functionalization.91

XIV. TAXANE DERIVATIVES

No reports have been published on the title topics in this period.

XV. THE OTHERS

A novel ether lipid, (−)-(R)-1-O-geranylgeranylgeranylglycerol (234) has been isolated (374)
The Chemistry on Diterpenoids in 1977. Part-II

from the brown alga *Dilophus fasciola*.\(^{92}\) From the lipid-soluble extract of the brown alga *Cystophora torulosa* two polypropenyl chromans 235 and 236 were isolated.\(^{93}\) Caulerpol (237) and crinitol (238) isolated from marine algae were synthesized by the alkylation of lithium salt of benzenesulfonyl derivatives 239 and 240 followed by reductive cleavage of SO\(_2\)Ph and the protecting group.\(^{94}\)

An X-ray crystallographic analysis of 15,16-dehydroepimukulol acetate (241) confirmed the modified diamond lattice conformation of the molecule.\(^{95}\) The structure of a triol isolated from *Eremophila clarkei* was elucidated to be formulated as 242.\(^{96}\) A new epoxycembradienol was isolated from *E. georgei* and the structure 243 was advanced for the diterpene by spectroscopic and chemical means.\(^{97}\) The structure 243 was further confirmed by an X-ray analysis.\(^{98}\)

The structures of ovatodiolide (244) and isovatodiolide (245), isolated from *Anisomeles indica*, have been established by X-ray crystallographic analyses.\(^{99}\) Several cembranolide diterpenes, 246\(^{100}\), 247\(^{100}\), 248 (lobophytolide), and 249 (sinulariolide) were isolated from soft corals. The structures of the latter two were unambiguously determined by X-ray analyses.\(^{102-104}\)

(375)
Synthetic approach to cembrene and thunbergol derivatives via the sulfoxide has been published. Two new and two known diterpenes were isolated from Dictyota dichotoma. The structures of the new diterpenes, dictyol B acetate (251) and dictyotadiol (252), were elucidated from spectral and X-ray crystallographic evidence. Pachydictyol-A epoxide (253) was isolated from D. flabellata. Highly irritant diterpenoids 254–257 were isolated from several species of Thymelaeaceae plants. Euphorbia tirucalli was also found to contain highly irritant factors 258–262. Five diterpenoids 263–267 were isolated from Pimelea species. Candletoxin A (268) and B (269) were isolated from E. poisonii. Phorbol was epimerized to 4α-phorbol (270) which was converted into a number of 9- and 9α-esters.

The structure of xenicin (271), isolated from a soft coral, Xenia elongata, was determined by an X-ray analysis. Acetoxycladiellin (272) and cladiellin (273) were isolated from a soft coral (Cladiella species), and the structure of the former was established by a single crystal X-ray analysis. Fourteen diterpenes 274–287 have been isolated from the digestive gland of the opisthobranch mollusc Dolabella californica.
The Chemistry on Diterpenoids in 1977. Part-II

Neoconcinndiol hydroperoxide (27), a novel marine diterpenoid, was isolated from Laurencia snyderiae and its structure was determined by an X-ray diffraction experiment.15) The structure of bromosphaerodiol (288), a minor bromoditerpene isolated from the red alga, Sphaerococcus coronopifolius has been established by chemical and spectroscopic methods.116) Unusual tetracyclic diterpenes kempene-1 (289) and -2 (290) were isolated from Nasutitermes termite soldiers.117) The structures of two new insecticidal substances, cinnzeylanin (291) and cinnzeylanol (292) isolated from barks of Cinnamomum zeylanicum were determined by the X-ray analysis and chemical reactions.118)

Bicyclic intermediates 293, 294, and several derivatives of 295 for the synthesis of resin acids and alkaloids were synthesized.119) An intermediate 296 for the synthesis of complex diterpenoids was synthesized from 297.120)

A review on diterpenoid irritants and cocarcinogens in Euphorbiaceae and Thymelaeaceae was published.121) A review under the title of "Synthesis of biologically active sesqui- and diterpenoids" was also published in Japanese.122)

REFERENCES

(9) D. Liotta, W. Markiewicz, and H. Sántesteban, ibid., 4365 (1977).

(377)
E. Fujita, K. Fuji, Y. Nagao, and M. Node

(54) P. Venturella and A. Bellino, Experientia, 33, 1270 (1977).

The Chemistry on Diterpenoids in 1977. Part-II

(87) S. W. Pelletier and J. Bhattacharyya, Phytochemistry, 16, 1464 (1977).

