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   A theoretical formula for interfacial polarization is presented with which to express the dielectric 
behavior of concentrated suspensions of spherical particles covered with a shell phase. The formula 
is of a compound form of Wagner's and Bruggeman's equations. A computing scheme is given to 
carry out numerical calculations of the formula as a function of complex variables. By the use of the 
computing scheme, numerical calculations of the formula were performed with a set of phase param-
eters which are in conformity with biological suspensions of conducting spheres covered with a very 
thin and nonconducting membrane. The resulting complex plane plots of the complex permittivity 
showed characteristic profiles different from circular arcs as well as from semicircles, especially at higher 
concentrations. The procedure of fitting the theoretical curve to the observed relative permittivities 
is proposed so that the membrane capacitance and the relative permittivity and the conductivity of 
the inner phase may be evaluated. An example of the curve-fitting is shown with the dielectric data 
observed for an erythrocyte suspension. 
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                           I. INTRODUCTION 

   It is known that biological suspensions of erythrocytes, bacterial cells, and yeasts 
show a dielectric relaxation due to the interfacial polarization.1`9) From a dielectric 

point of view, such suspensions are in a triphasic structure: the conducting cytoplasms 
covered with the poorly conducting shell phase of lipidic membranes are dispersed 
in a conducting continuous medium. An elaborate dielectric theory of interfacial 

polarization for such triphasic systems in concentric structure was proposed by Pauly 
and Schwan,10> and made it possible to evaluate membrane capacitance, relative 

permittivity (dielectric constant) and conductivity of the inner plasma-phase from 
the observed data on dielectric relaxations of biological cell suspensions. The general 
equation of this theory was derived from an analysis of quasi-electrostatic field, and 
has a functional form which is also expressed with repeated application of Wagner's 
equation proposed for diphasic suspensions: the first is for a sphere composed of the 
spherical inner phase and the concentric shell phase, and the second for the sphere 
and the outer medium. 

    For diphasic systems such as oil-in-water and water-in-oil emulsions, it was 

* Th#1#- , aupl, J.AA-: Laboratory of Dielectrics, Institute for Chemical Research, Kyoto 
 University, Uji, Kyoto. 
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 reported by many workers11-13) that Wagner's equation is in poor agreement with 
 experiments especially at higher concentrations of the suspending particles, and that 
 Bruggeman's equation is satisfactory for representing observed data. The expressions 

 in Wagner's type, therefore, might be insufficient quantitatively also for the theoretical 
 treatment of the triphasic system proposed by Pauly and Schwan especially at higher 

 concentrations of the suspending particles. 

    In this paper a dielectric theory of interfacial polarization is proposed to express 
 the dielectric behavior of concentrated suspensions of spherical particles covered 

 with a shell phase. Since the theoretical expression derived is of a complicated form 
 including complex variables, a computing scheme is presented to obtain the numerical 

 solutions. Some features of the theory are pointed out regarding the type of dielectric 
 relaxation. Finally the procedure of curve-fitting is described with which to evaluate 
 the membrane capacitance of the shell phase, the relative permittivity and the conduc-
 tivity of the inner phase from observed data. 

                                 II. SYMBOLS 

s relative permittivity or dielectric constant 

          electrical conductivity 
Ev permittivity of free space 

     s* complex relative permittivity or complex dielectric constant 
Es* equivalent complex relative permittivity for a shell-sphere 

    f measuring frequency 
    fo characteristic frequency at which the loss factor shows the maximum 

D diameter of inner phase 
d thickness of shell phase 

    O volume fraction of spheres with a shell in suspension 
CM specific membrane capacitance for shell phase. 

 Subscripts 
    a outer phase 

s shell phase 
i inner phase 
1 limiting value at low frequencies 

    h limiting value at high frequencies 

      III. THEORY OF INTERFACIAL POLARIZATION FOR CONCENTRATED 
          SUSPENSION OF SPHERES COVERED WITH A SHELL PHASE 

    A problem considered here is to derive a complex relative permittivity s* of a 
 concentrated suspension that spheres (the complex relative permittivity si*, the diam-

 eter D) covered with a shell phase (es*, the thickness d) are dispersed in a continuous 
 medium (sa*) with a high volume fraction 0, as shown in Fig. 1-A. According to a 

 consideration carried out first by Maxwel114> for quasi-electrostatic field, the equiva-
 lent complex relative permittivity ES* (Fig. 1-C) of a diphasic system in concentric 

 structure shown in Fig. 1-B is given by 
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      (A)(B)(C)(D) 
        Fig. 1. Schematic diagram for a theoretical model of a concentrated suspension 

               of shell-spheres. (A) Concentrated suspension of spheres  (se) covered with 
              a shell phase (s,*) dispersed in a continuous medium (Ea*). (B) Shell 
               structure of a suspending particle. (C) A homogeneous sphere (@s*) as an 

               equivalent of the shell sphere shown in (B). (D) Concentrated suspension 
               of particles (ss*) dispersed in a continuous medium (s.,*) as an equivalent 
               of the suspension shown in (A). 

         =Es* 2es*+ei*-2(es*—ei*)[DI(D+2d)]3(1)                2
Es*+si*+(s,*—si*)[DI (D+2d)]3 

 irrespective of ea of the outer phase. 
    Next an expression must be derived for the relative permittivity (E*) of a disperse 

 system shown in Fig. 1-D, where the spheres (Es*) are suspended in a continuous 
 medium (ea*) with a high volume fraction 0. For diphasic systems such as emulsions, 
 it was found that Wagner's equation15) does not hold in higher concentrations. Hence 

Hanai16,17) derived an equation in Bruggeman's type extended to complex numbers 

 by means of successive applications of Wagner's equation to the infinitesimally 
 increasing processes in concentration of the disperse phase. In a similar manner, it 

 can readily be shown that complex relative permittivity e* of the present suspension 
 illustrated in Fig. 1-D is given by 

              1  E*—Es* Ea*  V/3 
      1-0ea*--Es*\5* /=1.(2) 
 Thus the complex relative permittivity e* of the concentrated suspensions can be 

 expressed as a function of ea*, es*, ei*, D, d, and 0, where 

   6-6—i 2r f!v ,(3) 
  ~¢(4)               Ed*—Ea'27rfE 

                                        v                                         ) 

    Cs* —ES -j27cfE„ ,(5) 
Xi     Si* _ si 12
71Ev(6) 
 and 

j=/—i. 

               IV. COMPUTER EXPERIMENTS ON NUMERICAL 
                    SOLUTIONS OF THE EQUATION 

     In the present study numerical calculations were performed with a Hewlett— 
 Packard Model 9810A Programmable Calculator. Since Eq. (2) has the compli- 

                            ( 299 )
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         cated form including a cubic root of the complex variable, the numerical solutions 
         were obtained by the following computing scheme which is within the reach of the 

          present calculator. 
          (a) By the use of subroutine programmes of addition, subtraction, multiplication, 

         and division for complex numbers, E,* of Eq. (1) can readily be calculated numerically 

          provided that the phase parameters ss*, Ei*, D, and d are given. 
         (b) The values of Es* thus obtained are substituted for Eq. (2) to carry out the 

          subsequent calculation for E*. 

         (c) By cubing the both sides of Eq. (2), we have a cubic equation with respect to 
s* as 

                     s*3-3sg*E*2+f3gs*2+  C(0-1)(Ea*—Eg*)]31.E*—Ea*3=O.(7) 
            11Ed*JJ 

         The coefficients of the cubic Eq. (7) can be determined by substituting Ea*, gs*, and 0. 

          (d) By the u§e of a computer subroutine programme "Root-finder of cubic equation 
          with complex numbers", we obtain three roots of Eq. (7) designated by 63*, 33*, and 63*. 

          (e) Among the three roots si*, s2*, and 33*, we have to choose only one solution 
         satisfying Eq. (2) by means of the following criterion. Since Eq. (7) is derived by 

          cubing Eq. (2), respective substitutions of the three roots si*, s2*, and 63* into a 
          function 

                              — 1 E*—gs'K1//Ea*1/3            F(E,k)1-0 Ea* —Es*\6*)(8) 
          are to give 

           F(Ei*)=1+0-=exP (0J), 

l(9)                    F(E2*)_—              1+23j
=exp(3'j)(10) 

          and 

            F(E3*) =—2—---23 j=exp(—3~.7)(11) 
         respectively. Here the exponent 1/3 in Eq. (8) denotes a principal value of cubic 

         roots. When each of the three roots is thus substituted into F(s*) given by Eq. (8), 
         the roots which lead to either Eq. (10) or Eq. (11) should be ruled out, and only 

         one root giving Eq. (9) is adopted as the solution of Eq. (2). 

          (f) The only root is regarded as E* of Eq. (2), giving the values of s, lc, and s" for 
          the concentrated disperse system. 

                  V. THE COMPLEX PERMITTIVITY PROFILE OF THE THEORY 

             A general equation of Pauly and Schwan's theory") was characterized by two 
          relaxation times. Under the conditions d«D, ,s<<Ka and xs«ki, which are usually 

         the case for biological cell suspensions, their equation reduced in effect to a single 
          relaxation system.18) In this instance, the complex plane plots of the complex relative 

          permittivity were simplified to semicircles. 
             On the contrary, Eq. (2) of the present theory cannot be simplified even under 

         the similar conditions. To find a clue to the permittivity profile, numerical calcula-
         tions were carried out following the procedure shown in the preceding section by 
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             Fig. 2. Complex plane plots of complex relative permittivity for suspensions 

                   of shell-spheres calculated from Eq. (2) (solid curves). The dashed 
                       curves are semicircles. Phase parameters used: so,=80, ira=ei=2.5 

mS cm-1, si=50, ss=6.5, fcs=0 mS cm-1, d=50 A, D=3.8 (im. 

    using a set of phase parameters relevant to biological cell suspensions. Some examples 
    of the results are depicted in Fig. 2. 

        The profiles show marked deviations from circular arcs as well as from semicircles. 
    At low concentrations (0<0.3) the profiles seem to be close to semicircles, the charac-

    teristics being the same as the results of Pauly and Schwan's theory. At medium 
    concentrations (0=0.3- '0.5), the profiles may be approximated by circular arcs 

    proposed by Cole and Cole,19> the examples being found in various biological suspen-
    sions.2,20'25> At high concentrations (0=0.6-0.8), the profiles are seen to show 

    remarkable deviations from circular arcs. At extremely high concentrations (0= 
0.8-0.9), the profiles show very peculiar patterns of which the lower frequency part 

    might be simulated by another relaxation process. As a matter of fact, such high 

    concentrations (0=0.8-0.9) exceed a state for the close-packed structure with uniform 
    spheres, the examples being unavailable in biological suspensions. 

             VI. PROCEDURE TO DETERMINE THE PHASE PARAMETERS 
                   BY CURVE-FITTING BASED ON THE EQUATION 

       Owing to the complicated functional form of Eq. (2), it is impossible to calculate 
    straightforwards the phase parameters such as 0, ss, Si, and in by using dielectric 

    parameters El, en,, ICI, and fo observed. The determination of the phase parameters, 
    however, is possible by fitting the theoretical curve of Eq. (2) to the observed data. 

    Prior to the curve-fitting, it is advisable to make a list of the effects of changing one 
    of these phase parameters on the change in the dielectric parameters predictable 

    from Eq. (2). The procedure is the same as that discussed1s) previously for Pauly and 
    Schwan's theory. The numerical considerations are hereafter restricted to the case 
    of ,rs <10-4 x ira or preferably Ks =0, which is pertinent to biological suspensions. 

        The calculation was made, on a reference state specified by a set of phase 

    parameters relevant to biological suspensions, by changing one of the phase parameters 
    in Eq. (2). The relative variations in the dielectric parameters from those for the 
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                  Table I. Response of Characteristic Dielectric Parameters to Individual Changes in 
                              Phase Parameters 

                                PhaseVariation from values for the reference statea), %             P Dielectric parameter             Caseparameter 
          [% change]ICIeteh,fo 

I0 [+10%]—6.4+ 3.9— 1.3— 1.2 
IIes [-50%]0.00 —33— 7.1+58 
III ei [-50%]0.000.00-11+12 

       IVsi [-50%]0.000.000.00 —41 

                 a) The reference state is specified: ea=ei=80, ,c5=,i=15mS cm-1, es=3, rs=0---10-4X ee, 
d=50 A, D=0.5 pm, and 0=0.3. 

                  `                            (ValuebyEq.(2)afterchanginglValue for the reference state             Variation=oneofphaseparameters/ X 100                                              Value for the reference state 

          reference state are listed in Table I. The general feature found in the Table is very 
          similar to the case of Pauly and Schwan's theory in that all six terms in the lower-

          left part of the Table are zero. Thus the procedure to determine the phase 

           parameters can be stated as follows: 
              Step 1 To put tentatively si=ea, es=3, and Ks=0, provided that sa and 

tcc, are given from direct measurements of the continuous medium. 

             Step 2 To find a proper value of 0 so that the calculated value of ,r5 may fit in 
           with the observed value of ,c1. 

              Step 3 To find s, so that the calculated si may fit in with the observed sr. 
              Step 4 To find 6i so that the calculated eh may fit, in with the observed sh,. 
             Step 5 To find ri so that the calculated fo may fit in with the observed fo. 
              If the fitting to si and eh, turned out insufficient after Step 5 was carried out, Steps 3, 

          4, and 5 should be repeated. The numerical values presented in Table I is effective 
          for this reference state. Strictly speaking, such a survey table must be prepared on 

           a reference state pertinent to the respective cases, though the general features in Table 
           I necessary for the curve-fitting procedure is in fact subjected to no alteration. 

                            VII. EXAMPLE OF THE APPLICATION 

             An example of the application of the procedure proposed is shown with a biologi-
          cal suspension. A bovine erythrocyte suspension was prepared by washing the blood 

          thrice with a saline solution after addition of heparin, and finally being suspended 
          in a 50 mM NaC1 solution containing 250 mM sucrose for adjusting the tonicity. 

           The measured relative permittivities are shown in Fig. 3. 
              The respective parameters subjected to Steps 1 to 5 are summarized stepwise in 

          Table II. The associated frequency profiles of the relative permittivity are illus-
          trated in Fig. 3. From this curve-fitting the following phase parameters were 
           evaluated: 0=0.540, ss=4.39, si=69.0 and ri=2.84 mS cm-1. Hence the membrane 

           capacitance was calculated to be CM=0.777 pF cm-2, from a relation 

       c Es(l-----------+d/D~2'(ll~ 

 d 

              The erythrocytes measured are, to speak strictly, in a form of depressed sphere 
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        Fig. 3. Frequency dependence of relative permittivity and conductivity for a 

                bovine erythrocyte suspension and the procedure of curve-fitting, The 
                hollow circles (-0—)   are the measured values. The curves A, 

               B, C, D, and E correspond to Steps 1, 2, 3, 4, and 5 in Table II, 
                respectively. The observed values for the outer medium are: ea=77.1, 

ra=4.346 mS cm-1. 

   Table II. Variations of Dielectric Parameters Associated with the Variation of the Phase 
            Parameters Subjected to Each Fitting Step 

 Curve-fitting Curve in Phase parameterDielectric parameter 
 procedure Fig. 3. 0Ei ,,fiiza) es Si 

mS cm-1 mS cm-1 eleh.  

                                                              Observed value 

                                                1.356 2176 71.5 1.63 

   Step lb) A 0.6 5.00 400 4.3461.099 2681 197 1.79 
   Step 2B 0.540 5.00 400 4.3461.356 2475 180 1.83 

   Step 3C 0.540 4.39 400 4.3461.356 2176 178 2.07 

   Step 4D 0.540 4.39 69.0 4.3461.356 2176 71.5 2.23 

   Step 5E 0.540 4.39 69.0 2.8401.356 2176 71.5 1.63 

  a) Since fo is difficult to be assessed in observed data, the fitting was carried out with fin 
     which is the frequency for a half-value point of the entire dielectric dispersion. At lower 

     concentrations (0<0.6), Eq. (2) shows no discernible difference between fo and fin. 
  b) Values of the phase parameters at the starting state (Step 1) are: ea=77.1, Ca= tci=4.346 
      mS cm-1, es=5, r,=0 mS cm-1, d=50 A, D=4.75 pm, 0=0.6, and ei=400. 

     Owing to exaggerating the difference between Curves A and D in Fig. 3, an extraordinarily 
     large value ei=400 was adopted. 

different from perfect sphere which is assumed in the present theory. Such a kind 

of non-spherical features must be discussed further. Nevertheless, in the present 

paper, the experimental data of erythrocyte suspensions were cited as a mere example 
to show the practice of the fitting procedure proposed. 
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                     Fig. 4. Dependence of limiting relative permittivity et and conductivity 

St at low frequencies on volume fraction for the suspensions of 
                            shell-spheres calculated from Eq. (2) and from Pauly and Schwan's 

                             theory (P. S.). Phase parameters used for the calculations are 
                             the same as used in Fig. 2. 

             As readily known from the curve-fitting procedure, the values of 0 and es are 
         closely related to ICI and et respectively, the correlation being characteristic of respec-

         tive theories. In Fig. 4 are compared the values of xi and Sy calculated from Eq. (2) 
        of the present theory and from Pauly and Schwan's theory with the same values of 

         phase parameters. Marked differences of it1 and Et values are found between the two 
         theories. The phase parameters obtained by means of the curve-fitting procedure, 

         therefore, are expected to vary from theory to theory used. The curve-fitting 
        based on Pauly and Schwan's theory18) was applied to the observed data of the 

        erythrocyte suspension shown in Fig. 3, the phase parameters obtained being com-

        pared in Table III. Remarkable differences are found between the two theories 
        with respect to the values of 0, CH, and es as seen in the Table. A number of dielectric 

               Table III. Comparisons of Phase Parameters Obtained by Means of the Curve-Fitting 
                            Procedure 

                                                           Phase parameters estimateda) 
CmICi 
                            pF cm-2esElmS cm-1  

          Eq. (2) of the present theory0.540 0.777 4.3969.02.84 
         Pauly and Schwan's theoryb)0.595 1.008 5.6969.42.77 

              a) For the estimation from the curve-fitting procedure, the following values were used for 
                 both the theories: x1=1.356 mS cm-1, et =2176, en,=71.5, fo=1.63 MHz, D=4.75 pm, 

d=50 A, =4.346 mS cm-1, so,=77.1. 
             b) The curve-fitting procedure is described in Reference 18. 
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 data previously reported for biological suspensions await further reconsideration in 

the light of the present theory. 
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