<table>
<thead>
<tr>
<th>Title</th>
<th>A Computer Code for K- and L-Shell Ionization Cross Sections in the Plane-Wave Born Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mukoyama, Takeshi; Sarkadi, László</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1980), 58(1): 60-66</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-03-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/76859</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Computer Code for K- and L-Shell Ionization Cross Sections in the Plane-Wave Born Approximation

Takeshi Mukoyama* and László Sarkadi#

Received December 7, 1979

A computer code DEKY has been written to calculate the K- and L-shell ionization cross sections by heavy charged-particle impact in the plane-wave Born approximation. Corrections for binding-energy and Coulomb-deflection effects as well as relativistic effect are taken into account.

KEY WORDS: K- and L-shell ionization cross section / Plane-wave Born approximation / Binding-energy, Coulomb-deflection, and relativistic effects /

I. INTRODUCTION

In recent years inner-shell ionization of atoms by impact of heavy charged particles, such as protons, α particles and carbon ions, has been studied both theoretically and experimentally. Extensive data on K- and L-shell ionization cross sections have been reported and theoretical cross sections have been calculated in the plane-wave Born approximation (PWBA).1)

For low-velocity projectiles, two effects become important; (1) the increase in the binding energy of the target electron due to penetration of the projectile inside the inner shell during collision and (2) the deflection of the projectile by the Coulomb field of target nucleus. The PWBA theory modified for both effects has been successfully used to predict the direct Coulomb ionization cross sections. Furthermore, in the case of targets with large atomic number, the relativistic effect should be taken into consideration.

There have been already published numerical tables for the PWBA calculations,2-6) and the ionization cross sections can be obtained from these tables by interpolation technique. However, it is useful to prepare a computer code to calculate ionization cross sections in the PWBA modified for the effects described above.

The computer code DEKY has been written to calculate the PWBA cross sections for K- and L-shell ionization by impact of heavy charged particles. The corrections for the binding-energy and Coulomb-deflection effects as well as the electronic relativistic effect are taken into account. The program has been written originally for the PDP–11/40 computer in the Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary.

* Laboratory of Nuclear Radiation, Institute for Chemical Research, Kyoto University, Kyoto.
Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary.
A Computer Code for K- and L-Shell Ionization

Academy of Sciences (ATOMKI) and then modified for the FACOM M-190 computer in the Data Processing Center of Kyoto University.

II. THEORY

A. Ionization Cross Section

The s-shell ionization cross section in the PWBA can be written as

$$\sigma_s = \frac{8\pi Z_t^2}{Z_s^4 e^2} f_s(\theta_s, \eta_s) a_0^2,$$ \hspace{1cm} (1)

where $Z_t e$ is the charge of the projectile, Z_s is the effective nuclear charge seen by the s-shell electron, and a_0 denotes the Bohr radius of the hydrogen.

When the projectile velocity is v_1, the scaled projectile velocity parameter, η_s, is defined as

$$\eta_s = \frac{1}{Z_s^2} \left(\frac{hv_1}{e^2} \right)^2,$$ \hspace{1cm} (2)

and the scaled target-electron binding energy is given by

$$\theta_s = I_s n^2 / (Z_s^2 R_e),$$ \hspace{1cm} (3)

where I_s is the measured ionization potential, R_e the Rydberg energy, and n is the principal quantum number of the s shell.

The function $f_s(\theta_s, \eta_s)$ is calculated as

$$f_s(\theta_s, \eta_s) = \int_{Q_{\min}}^{Q_{\max}} dQ \int_{W_{\min}}^{W_{\max}} dW |F_{W_s}(Q)|^2,$$ \hspace{1cm} (4)

where $Z_s Q_{\text{tr}}^2/a_0$ is the momentum transfer and $WZ_s^2R_e$ is the energy transfer. The lower limit of the integral with respect to W is taken to be $W_{\min} = \theta_s n^2$, while $W_{\max} = (M_1/m) \theta_s$, where M_1 and m are the masses of the projectile and the target electron, respectively. On the other hand, Q_{\min} and Q_{\max} are given by:

$$Q_{\min} = (M_1/m)^2 \eta_s \{1 - \left[1 - m W / (M_1 \eta_s) \right]^{1/2}\}^2,$$

$$Q_{\max} = (M_1/m)^2 \eta_s \{1 + \left[1 - m W / (M_1 \eta_s) \right]^{1/2}\}^2.$$

The form factor, $F_{W_s}(Q)$, is given explicitly for K shell and each L subshell in Refs. 2 and 3.

B. Binding-Energy Effect

Basbas et al.7 estimated the influence of the projectile on the initial state of the K-shell electron by the use of the perturbed-stationary-state theory. They incorporated this result in the PWBA and developed a simple method to include the effect of increased binding energy. According to them, the factor by which the scaled binding energy is increased is given by

$$\varepsilon_s(\xi_s) = 1 + 2(Z_t / Z_s \theta_s) \varepsilon_s(\xi_s).$$ \hspace{1cm} (5)

The parameter ξ_s is defined as
where \(v_s = Z_v \nu_0/n \) and \(\nu_0 = \epsilon^2/h \) is the Bohr velocity. The corresponding formula for L shell has been derived by Brandt and Lapicki. The binding-energy effect can be taken into account by increasing \(\theta_s \) to \(\theta_s^B \).

The function \(g_s(\xi_s) \) is estimated by the use of screened hydrogenic wave functions and by averaging the binding-energy increase over the impact-parameter-dependent ionization cross sections. The values are obtained by numerical integration and expressed in the analytical approximations:

\[
g_K(\xi) = \frac{(1 + 7.14 \xi^2 + 4.27 \xi^3 + 0.947 \xi^4)}{(1 + \xi)^5},
\]

\[
g_L(\xi) = \frac{(1 + 30.2 \xi^2 + 166.8 \xi^3 + 100 \xi^4 + 94.1 \xi^5 + 51.3 \xi^6 + 15.2 \xi^7 + 1.89 \xi^8)}{(1 + \xi)^9},
\]

\[
g_{L, s}(\xi) = \frac{(1 + 35.9 \xi^2 + 84.5 \xi^3 + 110 \xi^4 + 91.9 \xi^5 + 42.7 \xi^6 + 12.2 \xi^7 + 1.51 \xi^8)}{(1 + \xi)^9}.
\]

C. Coulomb Deflection

The Coulomb-deflection effect is taken into consideration through the method of Basbas et al. They used the differential ionization cross section for hyperbolic trajectory of the projectile in the semiclassical approximation, and derived a simple correction formula by integration over the energy transfer. The cross section with Coulomb-deflection effect, \(\sigma_c^C \), can be expressed as

\[
\sigma_{K, L_1}^C = 9E_{10}(\pi d \eta_0)\sigma_{K, L_1}^{PWBA},
\]

\[
\sigma_{L_2, L_3}^C = 11E_{12}(\pi d \eta_0)\sigma_{L_2, L_3}^{PWBA},
\]

where \(h \eta_0 \) is the minimum momentum transfer for ionization, \(d \) is the half-distance of closest approach in a head-on collision, \(E_n(x) \) is the exponential integral of order \(n \), and \(\sigma_{PWBA} \) denotes the PWBA cross section calculated from Eq. (1).

D. Relativistic Effect

The relativistic correction is incorporated through the usual method of Merzbacher and Lewis. The relativistic scaled binding energy is defined as

\[
\theta_s^R = 1 - (I_s^R - I_s)/I_s^{NR},
\]

where \(I_s \) is the observed ionization potential, \(I_s^R \) the ionization energy for s shell calculated by the relativistic screened hydrogenic model, and \(I_s^{NR} \) that obtained from the nonrelativistic screened hydrogenic model. The relativistic cross sections are obtained from Eq. (1) by replacing \(\theta_s \) of Eq. (3) by \(\theta_s^R \) defined in Eq. (12).

III. DESCRIPTION OF THE PROGRAM

The program is designed to calculate the PWBA cross section, the PWBA modified for the binding-energy effect (PWBA–B), the PWBA–B including the Coulomb-deflection effect (PWBA–BC), and the PWBA–BC corrected for the relativistic effect.

Input for each case consists of two cards; a card for the projectile and a card for the target. After input data are read, the scaled binding energies, θ_0 and θ_0^p, are determined. In the next step, the scaled projectile velocity, η_0, is estimated for a given projectile energy. Then the program starts to compute σ_{PWBA}^p. For this purpose, two subroutines are used. Subroutine F calculates the form factor $|F_{\text{WBA}}(Q)|^2$ for a fixed value of W and Q, and numerical integration over Q is performed in Subroutine FI. The numerical integration with respect to W is made and the cross section σ_{PWBA}^p is obtained from Eq. (1).

The binding-energy factor ε_0 is estimated from Eq. (5) by using $g_s(\xi)$ function in Eqs. (7)–(9) and the scaled binding energy θ_0 is replaced by $\varepsilon_0 \theta_0$. The procedures similar to those used for σ_{PWBA}^p are repeated and the PWBA–B cross section, $\sigma_{\text{PWBA–B}}$, is obtained. The factor for the Coulomb-deflection effect is determined from θ_0, ε_0, and η_0, and the PWBA–BC cross section is obtained by multiplying this factor to $\sigma_{\text{PWBA–B}}$.

Finally, the relativistic correction is made. The scaled binding energy θ_0 is replaced by θ_0^R of Eq. (12) and calculation of the cross section is made for $\varepsilon_0 \theta_0^R$. By multiplying the Coulomb-deflection factor, the PWBA cross section including binding-energy, Coulomb-deflection, and relativistic effects (PWBA–BCR) is obtained.

The projectile energy is increased by the energy step given in the input data and all the cross-section calculations are made for this energy. The whole procedures are repeated until the projectile energy exceed the maximum value given in the input. Then the program reads the next input cards.

IV. INPUT DATA SPECIFICATION

In the following we give details of the input required, including FORMAT specifications and explanations of the variables and options.

Card 1. FORMAT (I10, F10.0, 2I5, F10.0)
IZ2 Atomic number of the target.
A2 Mass number of the target.
L Identifying label for the atomic shell. For K shell $L=0$, and $L=i$ corresponds to L_i-shell electron.
N Number of integration points. Usually 101.
BE Measured binding energy of the target electron (keV).

Card 2. FORMAT (2I5, 3F10.0)
IZ1 Atomic number of the projectile.
IA1 Mass number of the projectile.
EMIN Minimum projectile energy (MeV).
EMAX Maximum projectile energy (MeV).
DE Energy step size (MeV).
T. Mukoyama and L. Sarkadi

A blank card will terminate the run or another input data may follow.

V. THE TEST RUN

The test run has been made for the K-shell ionization cross sections by protons on silver ($Z_2=47$). The energy range is taken to be between 0.5 and 1.0 MeV with the energy step of 0.5 MeV. Thus the cross sections are calculated for two projectile energies, 0.5 and 1.0 MeV.

ACKNOWLEDGMENTS

One of the authors (T. M.) would like to acknowledge his appreciation of the hospitality extended him by Professor D. Berényi and members of Nuclear Atomic Group of ATOMKI during the time when the work reported here was carried out. He also wishes to thank the Hungarian Institute for Cultural Relations and the Japan Society for Promotion of Science for award of Research Fellowship.

REFERENCES

(8) W. Brandt and G. Lapicki, Phys. Rev. A, 10, 474 (1974). The coefficients in $g_{L\alpha}(\xi)$ and $g_{L\sigma}(\xi)$ given in this reference are in error. The values in Eq. (9) are calculated by the present authors.
OUTPUT OF TEST RUN

*********** Input ***********
ATOMIC NUMBER = 47 MASS = 10A
K SHELL BONDING ENERGY = 25.514 keV INTEGRATION POINTS = 101

***** thETA = 0.066921+00 *****

***** thETA (x) = 0.031363+00 *****

*********** Adjustment ***********
ATOMIC NUMBER = 47 MASS = 10A

***** NUMBER OF ENERGY POINTS 2 *****

ENERGY = 0.000000+00 keV YETA = 0.91174+02
F-FUNC = 0.465471+06

PAUA = 0.769361-26
UUEI = 0.322794+00
e = 1.761441+00
EPUIAUN = 0.184505+00
F-FUNC = 0.998664+00

PAUA = 0.016946-26
SEPLECT = 0.976614+00

PAUA-UC = 0.193638-26

*********** Relativistic Correction ***********

UUEI = 0.322794+00
e = 1.761441+00
EPUIAUN = 0.184505+00
c = 0.970432+00
F-FUNC = 0.998664+00

PAUA = 0.016946-26
SEPLECT = 0.976614+00

PAUA-UC = 0.016946-26

ENERGY = 0.175866+01 keV YETA = 0.718765+01
F-FUNC = 0.847041-04

PAUA = 0.847041-04
<table>
<thead>
<tr>
<th>SUBRT</th>
<th>5.31047*10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HIA</td>
<td>5.31047*10^6</td>
</tr>
<tr>
<td>EXP-FUNC</td>
<td>5.31047*10^6</td>
</tr>
</tbody>
</table>

------------------------ RELATIVISTIC CONNECTION ------------------------

<table>
<thead>
<tr>
<th>SUBRT</th>
<th>5.31047*10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HIA</td>
<td>5.31047*10^6</td>
</tr>
<tr>
<td>EXP-FUNC</td>
<td>5.31047*10^6</td>
</tr>
</tbody>
</table>

------------------------ CLEAR STEPS ------------------------

<table>
<thead>
<tr>
<th>SUBRT</th>
<th>5.31047*10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HIA</td>
<td>5.31047*10^6</td>
</tr>
<tr>
<td>EXP-FUNC</td>
<td>5.31047*10^6</td>
</tr>
</tbody>
</table>