Estimation of Chemical Effect on the Decay Rate of 99mTc

Takeshi Mukoyama, Hiromasa Mazaki, Shunji Kakiuchi,* and Masakazu Matsui**

Received January 9, 1980

The chemical effect on the decay rate of the 2.17-keV isomeric transition of 99mTc has been studied theoretically. Simplified estimation of the effect is presented, where calculations of the internal-conversion probabilities for various subshells are made and the relative change in λ for two kinds of pairs are estimated. The results are λ(TcO$_4^-$) − λ(Tc$_2$S$_7$) = 3.27×10^{-3} λ(Tc$_2$S$_7$) and λ(Tc$_2$S$_7$) − λ(metal) = 3.15×10^{-4} λ(metal). The present theoretical treatments are not accurate enough for the quantitative discussion, but give the reasonable explanation to the experimental results.

KEY WORDS: Radioactivity 99mTc / Calculated $T_{1/2}$ / Chemical effect /

I. INTRODUCTION

Since the discovery of radioactivity, it has been believed that decay rates of radioactive materials are constant and can not be affected by any external condition. Therefore, the suggestion by Segré"1 and Daudel2 in 1947 that in the case of nuclear decays involving the orbital electrons, the decay rate might be altered by an external influence, drew a strong attention to physicists. There are two types of decays where the orbital electrons directly concern the nuclear decay, i.e., the electron capture decay and the internal conversion.

The most interesting case is 99mTc($T_{1/2}$=6.0h). This isomer is the second excited state decaying to the ground state 99Tc($T_{1/2}$=2.12×105y) through a cascade nuclear transition, of which the transition energies are 2.17 and 140.5 keV, respectively. The isomeric transition of 99mTc to the first excited state has an E3 character and proceeds almost completely by the internal conversion, where the conversion can take place only in the M and N shell due to its low transition energy. This indicates that the change in the conversion probability (or decay rate) may be observable when the isomer is in different environmental conditions. The earliest experiment with 99mTc was by Bainbridge et al."3,4) Using three kinds of Tc samples (metallic Tc, Tc$_2$S$_7$, KTcO$_4$), they compared the difference in their decay rates and have established the experimental evidence that the nuclear decay rate can be altered chemically. Recently, we have measured"5 the relative change in the decay rate λ of 99mTc having three different chemical forms.

* 向山 敬，間崎啓司，堀内俊二: Laboratory of Nuclear Radiation, Institute for Chemical Research, Kyoto University, Kyoto.
** 松本正和: Laboratory of Radiochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto.
Estimation of Chemical Effect on the Decay Rate of 99mTc (metallic Tc, Tc$_2$S$_7$, AsTcO$_4$). Our results essentially agree well with those by Bainbridge et al.3,4

However, because of the difficulty in theoretical treatments, up to the present only one simple theoretical estimation has been reported by Slater.\textsuperscript{6) Introducing the concept of the atomic bond length and using the fact that the Tc-O bond length in KTcO$_4$ is smaller than the Tc-Tc distance in Tc metal, he claimed that the Tc atom is squeezed more in KTcO$_4$ and that this squeezing effect gives rise to a larger conversion probability of the 2.17-keV transition in KTcO$_4$.

In the present work, a more realistic model is used. First, the states of valence electrons in the chemical compounds are estimated by the use of the molecular orbital theory. Second, the atomic potential corresponding to the estimated valence electron states is calculated. Then the states of core electrons are estimated by using this atomic potential, and calculations of the internal-conversion probability for various shells are made. The theoretical model presented here gives the reasonable explanation to our experimental results reported in the previous paper.5

II. THEORETICAL

The accurate estimation of the chemical effect on λ is very difficult. However, if we are interested only in the relative magnitude of λ between different chemical environments, it is possible to make approximate estimations of this effect. In this paper, we present rough theoretical estimations of the chemical effect on λ in three different states; metallic Tc, Tc$_2$S$_7$, and TcO$_4$. For the latter two compounds, the electronic structures were calculated by the molecular orbital (MO) theory. There have been developed several MO theories for analysis of the molecular structures of chemical compounds. Of these models, we used the simplest approach, the extended Hückel method (EHMO).7

In most MO theories, the molecular orbitals are expressed as the linear combinations of atomic orbitals (AO) of the valence electrons in the atoms which constitute the molecule:

$$\Psi_i = \sum p \epsilon_{\mu} \phi_{\mu},$$

where Ψ_i is the MO and ϕ_{μ} is the AO. We use the Roman suffix to denote the MO, while the Greek suffix represents the AO. The coefficient ϵ_{μ} is to be determined as that the total electronic energy of the valence electrons in the molecule becomes minimum.

In the EHMO theory, the Hamiltonian of the system is approximated by the one-electron Hamiltonian, H_{eff}, and the interaction between electrons is taken into account implicitly. This assumption simplifies the problem and the equation to be solved is of the from

$$(H - ES)C_i = 0,$$

where C_i represents the column vector ϵ_{μ}, E is the energy eigenvalue, and the overlap integrals are given by

$$S_{\mu\nu} = \int \phi_{\mu} \phi_{\nu} \, d\tau.$$
In Eq. (4), the Coulomb integrals are chosen as

$$H_{\mu \nu} = \int \phi_\mu \phi_\nu \, dr.$$ \(\text{(4)}\)

where I_μ is the valence orbital ionization potential for the atomic orbital μ. On the other hand, the resonance integrals ($\mu \neq \nu$) are approximated as

$$H_{\mu \nu} = -0.5K(H_{\mu \mu} + H_{\nu \nu})S_{\mu \nu}.$$ \(\text{(5)}\)

The constant K is taken to be 1.75.

Then the orbital energies are given by roots of the secular equations [Eq. (2)] and the coefficients $c_{\mu i}$ are obtained for the corresponding eigenvalues. Using $c_{\mu i}$ and $S_{\mu \nu}$, the AO populations are calculated in the following form:

$$P_{\mu} = 2 \sum_{i} c_{\mu i} S_{\mu \nu}$$ \(\text{(6)}\)

where the summation \sum_{i} runs over occupied molecular orbitals only. The value P_{μ} obtained by Eq. (7) can be considered as the number of valence electrons in the atomic orbital μ.

The above calculations have been made by the use of the Slater-type orbital (STO) for the AO's.\(^9\) The overlap integrals were evaluated from the table of Lofthus.\(^9\) In the original STO's, instead of principal quantum number n, non-integer n^* is used in the power of r. However, we used $n = 4$ instead of $n^* = 3.7$ for 4d shell of Tc as well as 5s and 5p shells, because $S_{\mu \nu}$ can not be evaluated analytically for non-integer n^*.

The electronic structure of the TcO$_4^-$ ion is known to be a regular tetrahedron with Tc-O distance of 1.75 Å.\(^10\) On the other hand, to the authors' knowledge, no report has so far been published for the crystal structure of Tc$_2$S$_7$. In rough approximations, however, we may replace Tc by Re and S by O, respectively. This assumption is supported by the fact that the ions TcO$_4^-$, ReO$_4^-$, and ReS$_4^-$ have the similar molecular structure.\(^1\)

Krebs et al.\(^12\) determined the crystal structure of Re$_2$O$_7$ by X-ray diffraction. According to their results, the structure consists of strongly distorted ReO$_6$ octahedra connected to fairly regular ReO$_4$ tetrahedra. We used their data of Re$_2$O$_7$ for calculations of the electronic structure of Tc$_2$S$_7$. The calculated values of P_{μ} for the valence electrons in TcO$_4^-$ and Tc$_2$S$_7$ are listed in Table I. The P_{μ} values for TcO$_4^-$ indicate that the Tc atom is in the form of Tc$^{+7}$. This value are in agreement with the usually adopted value of the charge on Tc in TcO$_4^-$, +7. On the other hand, the charge on Tc in Tc$_2$S$_7$ is slightly less than zero. This may be due to many assumptions made by us because of lack of the data for the crystal structure. However, the present result sug-

<table>
<thead>
<tr>
<th>Table I. The AO Populations P_{μ} for Tc Atom in TcO$_4^-$ and Tc$_2$S$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>4d</td>
</tr>
<tr>
<td>5s</td>
</tr>
<tr>
<td>5p</td>
</tr>
</tbody>
</table>
Estimation of Chemical Effect on the Decay Rate of 99mTc

gests that the charge on Tc is much smaller in Tc$_2$S$_7$ than in TcO$_4$.

The AO populations in the Tc atoms obtained from the MO calculations have been
used to modify the atomic potential estimated from the self-consistent-field (SCF) cal-
culations. For this purpose, the nonrelativistic SCF calculations were performed for free
Tc atoms by the use of the modified version of the computer program developed by
Herman and Skillman. A natural Tc atom has a ground-state electronic configuration
of $(4d)^5(5s)^2$, but in the chemical compounds one of $5s$ electrons is considered to be
promoted into $5p$ state. Therefore, we made the SCF calculations for the configuration
of $(4d)^6(5s)$ $(5p)$.

In this SCF program, the Hartree–Fock–Slater (HFS) approximation is used and the
presence of other electrons is taken into account through the exchange potential:

$$V_{\text{ex}}(r) = -6\left[\frac{3}{8\pi} |\rho(r)| \right]^{1/3}.$$

Here $\rho(r)$ is the spherically averaged total electronic charge density, which is expressed
as

$$\rho(r) = \frac{1}{4\pi} \sum_{\mu} \omega_{\mu} |\phi_{\mu}(r)|^2,$$

where ω_{μ} is the occupation number of the orbital μ, $\phi_{\mu}(r)$ is the electronic wave
function of the orbital μ, and the summation is over all the AO's. In the case of chemical
compounds, we replaced ω_{μ} for the valence electrons by P_{μ} obtained in Eq. (7), and by
this procedure the atomic potential $V(r)$ was modified through the variation in the
exchange potential $V_{\text{ex}}(r)$.

For the metallic Tc, the electronic state has been estimated by the method of Watson
et al. They showed that for the 3d transition metals, the core-electron state can be
approximated by changing the number of 3d electrons in the free atoms. When the
ground-state configuration is $(3d)^{10}(4s)^2$, the metallic configuration is approximately
$(3d)^{10}(4s)$. If we extend this model to the 4d transition metal, the metallic Tc is
expressed as $(4d)^{10}(5s)$. By the use of the same nonrelativistic HFS program, the SCF
potential was calculated for the metallic Tc.

In the case of 99mTc, the relative change in the decay constant $\Delta \lambda/\lambda$ is equal to that
in the internal conversion coefficient (ICC). $\Delta \alpha/\alpha$, because the conversion probability is
quite large due to low transition energy and high multipolarity. Band et al. have
shown that even for valence shells and for the high multipole-order transition the values
of ICC are proportional to the electron density at the origin. Taking into account these
facts, the relative change in the decay constant is written by

$$\frac{\Delta \lambda}{\lambda} \approx \frac{\phi(0)}{|\phi(0)|^2},$$

where $\phi(0)$ is the electronic wave function at the nucleus.

Owing to low transition energy of 99mTc, only electrons from M, N, and O shells can
be ejected by the conversion process. Relative intensities of the M-subshell and the total
N-shell ICC have been measured by two groups and both results are in good
agreement with each other and also with recent theoretical values. However, no experi-
mental values for N-subshell ratios have been reported. In the present work, we used
the tabulated values recently calculated by Rösel et al. and evaluated the relative
T. Mukoyama, H. Mazaki, S. Kakuchi and M. Matsui

Table II. Internal Conversion Coefficients for 2.17-keV E3 Transition in 99mTc

Shell	Experimental	Theoretical				
	Ref. 16	Ref. 17	Ref. 20	Ref. 18	Ref. 19 (Absolute)	
M₁	<5	0.053	0.0449	2.48(+6)		
M₂	41±10	56.4±2	50.2	56.6	56.7	3.13(+9)
M₃	100	100	100	100	100	5.53(+9)
M₄	50±10	46.6±2	71.9	47.0	31.5	1.74(+9)
N₁	0.0112	6.21(+5)	2.2407912(-6)	2.2409625(-6)		
N₂	10.2	5.65(+8)	1.4423280(-10)	1.4420856(-10)		
N₃	17.9	9.87(+8)	2.231201(-13)	2.2323574(-13)		
N₄	1.59	8.80(+7)	2.2336612(-13)	2.2331201(-13)		
N₅	0.598	3.30(+7)	2.235904002(-14)	2.2405955(-14)		
ΣN	30±7	28.6±5	6.7190409(-19)	5.505875(-19)		

Intensities for all M and N subshells at 2.17 keV. Contributions from the O shell are negligibly small. The relative intensities of ICC given in Ref. 19 are listed in Table II and compared with the experimental and other theoretical values.

Using the atomic potentials obtained above, we calculated the electron density at the nuclear surface for all M and N subshells and for metallic Tc, Tc₂S₇, and TcO₄⁻. The Dirac equation was solved numerically for these electronic states in a central field. The nucleus is assumed to be a homogeneously charged drop whose radius is

\[R = 1.20 \times A^{1/3} \text{ fm.} \] (11)

Inside the nucleus, the potential is given by

\[V(r) = (Za/2R)(r^2/R^2 - 3), \] (12)

where Z is the atomic number and \(\alpha \) is the fine structure constant.

Table III. Electron Density at Nuclear Surface in Tc Atoms in Three Different Chemical States

| Shell | \(\alpha \) | \(|\phi(0)|^2_{\text{total}} \) | \(|\phi(0)|^2_{\text{metal}} \) | \(|\phi(0)|^2_{r=0} \frac{\text{fm}}{\text{g}} \) |
|-------|-------------|-----------------|-----------------|-----------------|
| M₁ | 0.0449 | 1.2039006(-4) | 1.2039398(-5) | 1.2039152(-4) |
| M₂ | 56.7 | 2.2410858(-6) | 2.2407912(-6) | 2.2409625(-6) |
| M₃ | 100 | 1.4425000(-10) | 1.4423280(-10) | 1.4420856(-10) |
| M₄ | 20.5 | 2.236612(-13) | 2.231201(-13) | 2.2323574(-13) |
| M₅ | 31.5 | 6.4181798(-18) | 6.4166067(-18) | 6.4140595(-18) |
| N₁ | 0.0112 | 2.1956075(-5) | 2.1819538(-5) | 2.1493070(-5) |
| N₂ | 10.2 | 3.6442651(-7) | 3.6003729(-7) | 3.5521690(-7) |
| N₃ | 17.9 | 2.3946684(-11) | 2.300577(-11) | 2.2770886(-11) |
| N₄ | 1.59 | 2.3594002(-14) | 1.9679906(-14) | 2.3482417(-14) |
| N₅ | 0.598 | 6.7190409(-19) | 5.505875(-19) | 6.7107273(-19) |

\[\sum_{\phi} \frac{\alpha |\phi(0)|^2_{\text{metal}}}{|\phi(0)|^2_{\text{metal}}} = 239.9022 \]
\[|\phi(0)|^2_{\text{metal}} = 239.0441 \]
\[(168) \]
Estimation of Chemical Effect on the Decay Rate of 99mTc

Outside the nucleus, the potential is equal to the atomic potential calculated above. The numerical method to solve the Dirac equation is similar to that in Ref. 21. The calculated values of $|\phi(0)|^2$ for each M and N subshell in three different chemical environments are listed in Table III.

The relative change in the decay constant between two different chemical environments, A and B, is defined as

$$\frac{\Delta \lambda}{\lambda} = \frac{\sum_\mu \alpha_\mu |\phi^B(0)|^2 \lambda / |\phi^A(0)|^2 \lambda - \sum_\mu \alpha_\mu}{\sum_\mu \alpha_\mu},$$

where $|\phi^A(0)|^2$ and $|\phi^B(0)|^2$ are the density of the μ-shell electron at the nuclear surface in A and B, and α_μ is the μ-shell ICC. The $\Delta \lambda/\lambda$ values have been calculated for two combinations; Tc$_2$S$_7$-TcO$_4$ and Tc$_8$S$_7$-metallic Tc.

III. RESULTS AND DISCUSSION

Theoretical calculations have been performed in the manner described in the preceding section on the FACOM M-190 computer in the Data Processing Center of Kyoto University. The calculated results indicate that the large contribution to $\Delta \lambda/\lambda$ comes from 4d-shell electrons, though the values of ICC for these shells are small, about 1% of total conversion probability. Moreover, in general trend the decrease in the valence-electron density due to chemical bonding leads to increase the core-electron density at the nuclear surface. The latter fact yields a larger conversion probability for chemical compounds than for metallic Tc. These behaviors found here are consistent with that presented by Perlman and Emery.22

The numerical results obtained theoretically are listed in Table IV, where the experimental values are also given for comparisons. The calculated value for the Tc$_8$S$_7$-TcO$_4$...
T. Mukoyama, H. Mazaki, S. Kakiuchi and M. Matsui

pair is in excellent agreement with measured values, but for the Tc₂S₇-metallic Tc pair the theoretical value is about 2 times smaller than the experimental result.

The disagreement in the latter pair can be ascribed to the inadequacy of the approximation used for the metallic Tc. The method of Watson et al.¹⁴ is a good approximation to energy eigenvalues of the metallic states, but may not be appropriate for the wave functions.

In addition, considering many assumptions and approximations in the present calculations, it is difficult to discuss quantitatively the chemical effect on λ. The agreement found for the Tc₂S₇-TcO₄⁻ pair is probably fortuitous. Nevertheless, it may be said that qualitative agreements of the theoretical results presented here with the experiments, i.e., λ(TcO₄⁻) > λ(Tc₂S₇) > λ (metallic Tc), suggest that the present simplification is to some extents effective for explanations of the chemical effect on λ, but more precise structural information is needed to refine the theoretical evaluation of the chemical effect.

REFERENCES