<table>
<thead>
<tr>
<th>Title</th>
<th>Action Pattern of a Yeast Cell Lytic Enzyme from Pellicularia sasaki (Commemoration Issue Dedicated to Professor Tatsuo Yamamoto on the Occasion of his Retirement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamamoto, Shinpei; Yuki, Yoshikazu; Nagasaki, Susumu</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1980), 58(3): 343-350</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-05-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/76898</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Action Pattern of a Yeast Cell Lytic Enzyme from Pellicularia sasak

Shinpei YAMAMOTO*, Yoshikazu YUKI**, and Susumu NAGASAKI

Received March 21, 1980

General action pattern of the enzyme, which is isolated from the culture medium of Pellicularia sasak No. 89 and disrupts the living yeast cells, was established through the hydrolysis kinetics and the quantification of the hydrolysis products from β-1,3-glucans, to be a higher oligosaccharide producing type of endo β-1, 3-glucanase. The mechanism on the binding site is proposed to explain the action pattern and specificity of the enzyme.

From the results of pH dependence of kinetic parameters and of the chemical modification of carboxyl residues with Woodward's reagent K, it is indicated that carboxyl and amino groups were probably involved in the catalytic site.

KEY WORDS: Yeast cell lytic enzyme/ Lytic enzyme, on yeast cell/ Action pattern/ β-1,3-glucanase (Endo)/

INTRODUCTION

The purification and characteristics of an endo β-1,3-glucanase from Pellicularia sasak No. 89 have been reported in the previous paper.1) The action pattern of the enzyme has not been elucidated. The present paper deals with the study on the nature of the active site by chemical modification of amino acid residues with structure-function selective reagents, and on the action pattern of the enzyme.

MATERIALS AND METHODS

Enzyme — The endo β-1,3-glucanase was prepared by the procedure described in the previous paper.1) The $E_{1%}^{1%}$ at 280 nm of 15.75 was used for the determination of the enzyme concentration.

Chemicals — To identify various states of amino acid residues in the tertiary structure of protein in term of their reactivities, the following structure-function selective reagent was used. N-Ethyl-5-phenyl isoxazolium-3'-sulfonate (Woodward's reagent K) was purchased from Fluka Ag, Chemische Fabrik and recrystallized three times from 1N HCl with acetone before use. 3H-reduced laminaran was prepared from laminaran by the reduction with NaB3H4. All other chemicals were obtained commercially and were recrystallized or redistilled when necessary.

Enzyme assay and analytical procedures — Enzyme assay, analytical methods and chromatographic procedures were the same as have been reported in the previous
Photooxidation of histidine residue — The histidine residue in the enzyme was photooxidized at 10°C in the presence of 0.05 % Rose bengal under the conditions similar to those reported by Westhead.9
Modification of carboxyl group — The enzyme was treated with Woodward’s reagent K under the conditions similar to those reported by Brake and Weber.10
Measurement of radioactivity — Aliquots of radioactive solutions were added to vials containing 10 ml of toluene scintillation fluid and counted in a Packard Model 3303 scintillation spectrometer. Correction for quenching was made by the external standard method.

RESULTS AND DISCUSSION

Identification of Functional Groups
pH dependence of kinetic parameters — Before the determination of kinetic parameters, the effect of pH on the activity of the enzyme was reexamined precisely. The enzyme was stable in the pH range of 4 to 7 when treated for 10 minutes at 80°C. Beyond this range, it became markedly unstable. However, it is possible to obtain the useful data of the initial velocity within the pH range of 3 to 8 by monitoring the time course of the reaction and by extrapolating the initial velocity.

At low concentrations of substrate, the initial velocity of hydrolysis of yeast glucan followed simple and hyperbolical Michaelis-Menten kinetics. At higher concentrations of substrate, the reaction velocity decreased. Therefore, the Michaelis parameters were determined at low concentrations of substrate on the assumption that the intercept on the base line gave a value for K_m.

The Michaelis parameters of the enzyme varied with pH as shown in Fig. 1. Following the interpretations of Dixon plot by Dixon11 and Cleland,12 there appear to be two groups (pK values close to 2.8 and 7.5) in the enzyme. These groups

Fig. 1. Dependency of Rate Parameters on pH for the Enzyme.
are probably carboxyl group with a pK of 2.8 and the protonated imidazole ring
of histidine residue or amino group with a pK of 7.5.

Thermodynamic parameter (standard enthalpy change) for the two groups in
the enzyme as determined by the van't Hoff analysis were +1.5 Kcal per mole for
the group with a pK of 2.8 and +1.1 Kcal per mole for the group with a pK of 7.5,
suggesting these groups are carboxyl group and amino group, respectively.

These observations make it likely that a carboxyl and amino groups are parts
of the catalytic mechanism.

Chemical modification of the enzyme — As a histidine residue was presumed to be
one of catalytic groups that is titrated at pH 7.5, the effect of dye-activated photoo-
oxidation on the enzyme was investigated with Rose bengal. Photooxidation at pH
6.0 caused no loss of the activity of the enzyme, indicating no histidine residue in
the enzyme is essential for the activity of the enzyme. An attempt through the use
of specific reagent was made to confirm this result. For the carbethoxylation of
all accessible histidine residues in the enzyme, the enzyme was treated with 0.5 mm
diethylpyrocarbonate at pH 6.5. The treatment caused no inhibition even after 60
minutes treatment. Difference spectra made between treated and untreated enzyme
during the course of the reaction indicated that one histidine residue was carbethoxy-
dated. Because the enzyme contains one histidine residue as described in the
previous paper,1 these experiments rule out any possibility that the histidine residue
is involved in the catalysis.

In an effort to ascertain what role, if any, carboxyl group plays in the catalytic
action of the enzyme, experiments employing Woodward’s reagent K were attempt-
ed. The enzyme rapidly inactivated with Woodward’s reagent K (Fig. 2). About
80\% inhibition could be attained by increasing the molar ratio of the reagent to
the enzyme to 2,000:1. However, this resulted in considerable precipitation of
the protein. The rate of inactivation obeyed psudo-first order kinetics for about 3
minutes, after which loss of reagent due to a base-catalyzed rearrangement became
significant.

![Fig. 2. Effect of Woodward’s reagent K on the Enzyme Activity.](image)

The modification of the enzyme (112.1\,\mu g) was carried out in the presence of varying concentrations of Woodward's
reagent K in pH 6.0 at 20°C.

1. Woodward’s reagent K, 1.99 \times 10^{-3} \, M.
2. Woodward’s reagent K, 4.97 \times 10^{-3} \, M.
3. Woodward’s reagent K, 9.95 \times 10^{-3} \, M.
Determination of Action Pattern

Action of enzyme on linear β-1,3-glucan (Pachyman) — Pachyman in the form of an insoluble dispersion was incubated with the enzyme. The main product produced over the whole course of hydrolysis, was laminarapentaose on the basis of the results of paper chromatography and gel filtration on Bio-Gel P-2 as shown in Fig. 3.

![Fig. 3. Hydrolysis of Pachyman](image)

A reaction mixture containing 550 mg of pachyman and 500 μg of the enzyme in a total volume of 100 ml of 0.05 M sodium acetate buffer, pH 6.0 was incubated at 40°C with gentle shaking. Sample of 5 ml was removed at prescribed time. After the concentration of the sample, sample was fractionated on Bio-Gel P-2 column (0.9 x 150 cm). The flow rate was 5 ml per hour. Fractions of 1 ml were collected.

---: 1 hour. ----: 9 hours. ------: 27 hours.

Stakes represent molar ratio of oligosaccharide.

Action of enzyme on β-1,3-linked chain interrupted by β-1,6-linkages (Laminaran) — Laminaran was hydrolyzed by the enzyme to give mainly higher oligosaccharide along with a small amount of glucose and lower oligosaccharides. As described before, the reaction velocity fell off at high concentration of substrate. To characterize the phenomenon, the higher oligosaccharide isolated from the reaction mixture by Bio-Gel P-2 gel filtration was hydrolyzed with the enzyme. The degree of polymerization of the higher oligosaccharide isolated was determined to be about 10 on the basis of the relationship between molecular weight and elution volume. After the enzymatic hydrolysis of the higher oligosaccharide, gel filtration showed that the products were a series of saccharides from glucose to heptaoligosaccharide in an equimolar ratio (Fig. 4). There was no demonstrable attack on β-1,3-oligosaccharides (from trisaccharide to heptasaccharide) as examined by paper chromatography. The observations suggest that the enzyme requires a β-1,3-long chain of consecutive glycosyl residues for full activity. The inference that a series of glycosyl
Fig. 4. Gel Filtration of the Hydrolyzate of the Higher Oligosaccharide Isolated from the Digest of Laminaran. A reaction mixture containing 10 μmoles as glucose of the higher oligosaccharide and 5 μg of the enzyme was incubated at 40°C for 12 hours with gentle shaking. After the termination of the reaction, the reaction mixture was concentrated to 1 ml and fractionated on Bio-Gel P-2 column as described in Fig. 3. Stakes represent molar ratio of oligosaccharide.

Fig. 5. Hydrolysis of 3H-reduced Laminaran. A reaction mixture containing 20 mg of 3H-reduced laminaran and 100 μg of the enzyme in 4 ml of 0.05 M sodium acetate buffer, pH 6.0 was incubated at 40°C with gentle shaking. Sample of 1 ml was removed at prescribed time and fractionated on Bio-Gel P-2 column (0.9 x 150 cm). The flow rate was 5 ml per hour.
residues are bound at the active site has led to a subsite of the enzyme.

To check further on the action pattern of the enzyme on laminaran, ³H-reduced laminaran was hydrolyzed. The reaction mixture was gel-filtrated on Bio-Gel P-2 column at appropriate intervals, and the radioactivity and total carbohydrate in the eluate were estimated (Fig. 5). At the early stage of the hydrolysis, little amounts of the radioactivity were found in the mono- and di-saccharide fractions, indicating these sugars did no arise as primary product from the reducing end of laminaran, and are probably a secondary products. The radioactivity of the tri-saccharide fractions once increased, and decreased. This phenomenon may be explained by transglucanosylation occurred concomitantly with hydrolysis.

After the reaction for 24 hours, the reaction mixture was divided into two portions; one was analyzed by Bio-Gel P-2 gel filtration, and the other was reduced
with NaB₃H₄ and followed by the gel filtration. The increment of radioactivity in a corresponding sugar fraction before and after the reduction with NaB₃H₄ is directly proportional to the amount of the newly formed reducing end in the sugar fraction. The two elution profiles, monitored by the measurement of total carbohydrate, are identical as shown in Fig. 6. For the lower oligosaccharides, such as mono-, di-, tri- and tetra-saccharide, much increment was determined, indicating these lower oligosaccharides are secondary products from primary product having the polymerization degree of about 10.

Action of enzyme on mixed-linked and highly-branched β-1,3-glucan (Yeast glucan) — Yeast glucan was incubated in the form of an insoluble dispersion under the standard conditions with the enzyme. Hydrolysis kinetics was followed by measuring the release of reducing sugar and the solubilization of total carbohydrate. With rapid decrease in absorbance at 610 nm, there was an increase in the solubilization of total carbohydrate. Even after exhaustive hydrolysis of yeast glucan, no production of glucose was observed. Decrease of apparent polymerization degree (total carbohydrate solubilized per reducing sugar released) was noted with the progress of the reaction, indicating a sizable portion of the yeast glucan, although in solution, was hydrolyzed further into lower reducing oligosaccharides. The enzyme produced a series of β-1,3-oligosaccharides, mainly laminarapentaose, as reaction products of the action on yeast glucan Fig. 7).
Transglucosylation — The fact that the radioactivity of the trisaccharide produced from 3H-reduced laminaran decreased with the progress of the reaction, together with the low rate of the enzyme action on yeast glucan, laminaran and pachyman at high concentrations, suggested that transglucosylation occurred concomitantly with hydrolysis. To check on the possibility of the transfer of glucanosyl residues, 10 mM laminaran was hydrolyzed in the presence of 200 mM p-nitrophenyl-β-glucoside. The reaction mixture was chromatographed at appropriate intervals, and the chromatograms were detected under ultraviolet light. The enzyme did not catalyze the hydrolysis of p-nitrophenyl-β-glucoside at any observable rate. The transglucosylation to enzymatically synthesize p-nitrophenyl-β-oligosaccharides (slower moving compounds than p-nitrophenyl-β-glucoside) occurred in addition to hydrolysis of laminaran.

ACKNOWLEDGMENT

Dedicated to Professor Tatsuo Yamamoto on the occasion of his retirement. The authors thanks him for his contributions, which have been of much help to everyone in the field.

REFERENCES

(9) E.W. Westhead, Biochemistry, 4, 2139 (1965).