Bull. Inst. Chem. Res., Kyoto Univ., Vol. 58, Nos. 5~6, 1980

Note

EPR Study of Vanadium Oxide Bis(8-quinolinolate) Doped in Zinc Bis(8-quinolinolate) Dihydrate

Morimasa Miyazaki*

Received October 8, 1980

EPR signal of vanadium oxide bis(8-quinolinolate), $[VO(quin)_2]$, has been observed in the matrix of zinc bis(8-quinolinolate) dihydrate, $[Zn(quin)_2(H_2O)_2]$. EPR parameters of $VO(quin)_2$ in $Zn(quin)_2(H_2O)_2$ have been found to be similar to those of $VO(quin)_2$ in toluene. The results indicate that $VO(quin)_2$ doped in $Zn(quin)_2(H_2O)_2$ has no ligand H_2O to interact at the axial position.

KEY WORDS: Magnetic properties / EPR parameters / Axial interaction /

INTRODUCTION

Vanadium oxide bis(8-quinolinolate), $[VO(quin)_2]$, [1], is generally unstable in air, and is rapidly oxidized to diamagnetic hydroxo (oxo)(8-quinolinolate) vanadium, $[VO(OH)(quin)_2]$, [2]. In the matrix of zinc bis(8-quinolinolate) dihydrate, $[Zn(quin)_2(H_2O)_2]$, [3], $VO(quin)_2$ is expected to be embedded because of the similar molecular shape. When $VO(quin)_2$ is embedded in the matrix, the following three possibilities can be considered.

1) $VO(quin)_2$ is oxidized to $VO(OH)(quin)_2$ by the reaction with H_2O .

2) $VO(quin)_2$ hydrates and becomes $VO(quin)_2(H_2O)$, [4].

3) $VO(quin)_2$ exists stable without distinct interactions with the matrix.

* 宮崎守正: Laboratory of Powder Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu, 611. Japan.

M. MIYAZAKI

In the first case no EPR spectrum can be observed because vanadyl ion becomes diamagnetic by the conjugation with OH^- . In the second case EPR parameters should be observed with some modifications as a result of the axial interaction between VO^{2+} and a ligand H_2O . In the last case EPR parameters should be similar to $VO(quin)_2$ in the solvent such as toluene which has no axial interaction.

The structure of $VO(quin)_2$ doped in $Zn(quin)_2(H_2O)_2$ was determined from the above mentioned viewpoints.

EXPERIMENTAL

Preparation. $VO(quin)_2$ in $Zn(quin)_2(H_2O)_2$ was prepared by adding the aqueous solution of the mixture of $VOCl_2$ (5%) and $ZnSO_4.7H_2O$ (95%) to an ethanolic solution of 8-quinolinol, and obtained as powdered precipitate. A toluene solution of $Cu(quin)_2$ (5%) was prepared by dissolving a powder of $Cu(quin)_2$ into pure toluene, where the powder had been obtained by mixing an aqueous solution of $CuSO_4.5H_2O$ and ethanolic solution of 8-quinolinol.

Measurements. The X-band EPR spectra were measured with JES-ME-3X spectrometer using 100 KHz magnetic field modulation. The calibration of the field strength was made with Mn^{2+} doped in MgO.

RESULTS AND DISCUSSION

The EPR spectrum of $VO(quin)_2$ embedded in $Zn(quin)_2(H_2O)_2$ was obtained at room temperature as shown in Fig. 1. This indicates that $VO(quin)_2$ does not change into diamagnetic $VO(OH)(quin)_2$ even in this hydrated host crystal. The EPR parameters of $VO(quin)_2$ in $Zn(quin)_2(H_2O)_2$ were calculated using the following spin Hamiltonian with an axial symmetry.

$$H_{s} = \beta [g_{\parallel} H_{z} S_{z} + g_{\perp} (H_{x} S_{x} + H_{y} S_{y}] + A_{\parallel} I_{z} S_{z} + A_{\perp} (I_{x} S_{x} + I_{y} S_{y}), \quad (1)$$

where A_{\parallel} and A_{\perp} are the vanadium nuclear hyperfine constants.

From the Bleaney's second-order perturbation theory¹), the magnetic field at which the resonance occurs is given as below.

$$H_{\pm M_{I}} = \frac{g_{0}}{g} \left\{ h\nu - AM_{I} - \frac{A_{\perp}}{4H_{0}} \left(-\frac{A_{\parallel}^{2} + A_{\perp}^{2}}{A^{2}} \right) \left[I(I+1) - M_{I}^{2} \right] \right\},$$
(2)

where

$$g = (g_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 \sin^2 \theta)^{1/2}$$

and

$$A = (A_{\parallel}^{2} g_{\parallel}^{2} \cos^{2}\theta + A_{\perp}^{2} g_{\perp}^{2} \sin^{2}\theta)^{1/2} / g$$

The final EPR parameters were calculated by the least-square method. The spectra of $Cu(quin)_2$ in toluene were measured as shown in Fig. 2 for comparison. These

EPR Study of Vanadium Oxide Bis(8-quinolinolate) in the Matrix

Fig. 1. The EPR spectrum of $VO(quin)_2$ in $Zn(quin)_2(H_2O)_2$ at room temperature.

Fig. 2. The EPR spectra of ${\rm Cu}({\rm quin})_2$ in toluene at room temperature (a) and 77° K (b).

M. Miyazaki

Compound	g 11	g⊥	$A_{\parallel}(G)$	$A_{\perp}(G)$	Ref.
$VO(quin)_2$ in $Zn(quin)_2(H_2O)_2$	1.950 ± 0.002	1.980 ± 0.001	166 ± 2	57 ± 1	*
VO(quin) ₂ in toluene	1.946 ± 0.003	1.980 ± 0.003	174 ± 2	60 ± 2	2)
$Cu(quin)_2(H_2O)_2$ in $Zn(quin)_2(H_2O)_2$	2.287	2.066	-160	-31	3)
Cu(quin) ₂ in toluene	2.234	2.044	-170	53	*

Table I. EPR parameters of VO(quin)₂ and Cu(quin)₂

*: This work

EPR parameters obtained are listed in Table I, together with the values of VO(quin)₂ in toluene and Cu(quin)₂(H₂O)₂ in Zn(quin)₂(H₂O)₂ reported in Ref. 2 and Ref. 3 respectively. It is well known that for copper complexes EPR parameters are very sensitive to a matrix. When interacriton between copper atom and the axial ligand is strong, the g value increases while |A| value decreases.^{3~7}) The differences between g values of VO(quin)₂ in Zn(quin₂ (H₂O)₂ and those of VO(quin)₂ in toluene are not significant. The differences in EPR parameters of VO(quin)₂ in those matrices are smaller than those of Cu(quin)₂. This means that the spin state of VO(quin)₂ is not affected so strong as in the case of Cu(quin)₂ by a matrix at the axial position in Zn(quin)₂(H₂O)₂. Therefore it is concluded that VO(quin)₂ has no ligand H₂O molecule at the axial position.

ACKNOWLEDGMENT

The author wishes to thank to Prof. N. Uyeda, Drs. H. Saijo and T. Kobayashi for their help throughout this work.

REFERENCES

- (1) G. Bleaney, Phil. Mag., 42, 441 (1951).
- (2) G. M. Par et al., Zh. Neog. Kim., 17, 2133 (1972).
- (3) G. F. Kokoszka, H. C. Allen, and G. Gordon, J. Chem. Phys., 42, 3730 (1965).
- (4) J. Ammeter, G. Rist, and Hs. H. Günthard, ibid., 57, 3852 (1972).
- (5) B. Roos, Acta Chem. Scand., 20, 1673 (1966).
- (6) B. Roos, *ibid.*, 21, 1855 (1967).
- (7) K. E. Falk, E. Ivanova, B. Roos, and T. Vänngard, Inorg. Chem., 9, 556 (1970).