Bull. Inst. Chem. Res., Kyoto Univ., Vol. 59, No. 3, 1981

Chemical Transport Reaction of Niobium Oxides

Yasuhiro Kobayashi*, Shigetoshi Muranaka**, Yoshichika Bando**, and Toshio Takada***

Received May 20, 1981

The transport experiment of niobium oxides using $TeCl_4$ as a transport agent and the mass spectrometric analysis of gas species in the closed tube were carried out.

In the transport reaction, the starting material, NbO₂, at the hot zone was partially oxidized to Nb₁₂O₂₉. A portion of oxygen source was water vapor in the silica tube. The single crystals of Nb₁₂O₂₉ were deposited at the cold zone, when the oxide phase at the hot zone was NbO₂-Nb₁₂O₂₉ mixture. About 10 days later, the oxide at the hot zone became a single phase of NbO₂ and the deposition of NbO₂ crystals started. It was found by the mass spectroscopy that gas species of NbOcl₈ and NbCl₅ were concerned with the transport reaction of Nb₁₂O₂₉. When the mixture of NbO and NbO₂ corresponding to the composition of NbO_{1.8} was used as the starting material, the single crystals of NbO₂ were from the first deposited at the cold zone. The transport rate of NbO₂ using NbO_{1.8} as the starting material was lower than using NbO₂. The transport mechanism was discussed from the results of gas analysis.

KEY WORDS: Chemical transport reaction/ Niobium oxide/ Mass spectrometric analysis/

I. INTRODUCTION

There have recently been several reports on the chemical transport reaction of NbO₂ material. Sakata *et al.*¹⁾ succeeded in the growth of single crystals of NbO₂ and Nb₁₂O₂₉ using TeCl₄ as a transport agent. Kodama *et al.*^{2,3)} prepared NbO and NbO₂ crystals using other transport agents such as NH₄Cl. Ritschel *et al.*⁴⁾ reported that the single crystals of Nb₁₂O₂₉ were at first deposited and the deposition of NbO₂ followed. They predicted the gas species equilibrated in the NbO₂-TeCl₄ system based on the thermochemical consideration. The difference in composition between a starting material and single crystals obtained have often been observed in the chemical transport reaction. The representative example is the chemical transprot of Ti_nO_{2n-1} using TeCl₄.^{5,6)} As one of the important factors of composition difference, it was found that the starting material was oxidized at the hot zone in the initial stage of the transport.⁷⁾ The second is due to the equilibrium condition that the compositions of oxide in the two component system depends on the oxygen partial pressure and the temperature.^{6,7)}

^{*} 小林康宏: Present address: Research Laboratories, Kawasaki Steel Corporation, Kawasaki-cho, Chiba, 280.

^{**} 村中重利, 坂東尚周: Research Facility for Inorganic Synthesis, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611.

^{***} 高田利夫: Laboratory of Solid State Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611.

Chemical Transport Reaction of Niobium Oxides

In the closed system, the oxygen partial pressure is the same in the cold and hot zone, and therefore the composition of the oxide in the cold zone should be different from that in the hot zone. In the transport of Ti_nO_{2n-1} , the difference of the composition between the hot and cold zones appeared clearly, because of the large temperature dependence of the composition under the same oxygen partial pressure.

This phenomenon may not on the rare case. To clarify the mechanism on the composition change in the transport of NbO₂, the detailed transport experiments and the gas analysis on the NbO₂-TeCl₄ system were carried out.

2. EXPERIMENTALS

2.1 Preparation of Starting Materials

The mixtures of niobium metal and Nb₂O₅ powders corresponding to NbO₂ and NbO_{1.8} compositions were sealed in evacuated silica tubes and heated at 1000°C for 2 days. The sample was pulverized and the same heat treatment was repeated for the sample homogenization. The products were identified by the X-ray powder diffraction method. The sample corresponding to NbO_{1.8} composition was two phases of NbO and NbO₂.

2.2 Transport Experiment and Mass Spectrometric Analysis of Gaseous Species

The starting material of 1200 mg and TeCl₄ of 200 mg were charged in a silica tube of $165 \sim 175$ mm in length and 12.5 mm in diameter. The tube was evacuated to 10^{-5} Torr and then sealed. The tube was placed in the electric furnace with the temperature gradient and after appropriate time of transport reaction the tube was rapidly quenched in water. The single crystals transported and residual starting material were treated with a hydrocholoric acid and identified by X-ray diffraction. The compositions of residual starting materials were determined from the weight gain in oxidation of the materials to Nb₂O₅.^{8,9)}

The gas analysis system with a quadrupole spectrometer for the chemical transport reaction is the same as described in the previous paper.¹⁰ The gas analysis was carried out for the chemical transport of NbO₂ and the mixture of NbO₂ and NbO. The starting material of $50 \sim 70$ mg and TeCl₄ of $10 \sim 15$ mg were used for the gas analysis. The temperatures of the hot and cold zones were 1050° C and 870° C for the NbO₂–TeCl₄ system, and 1100° C and 870° C for the mixed oxides (NbO–NbO₂)-TeCl₄ system.

3. RESULTS

3.1 Transport Behavior in the NbO₂-TeCl₄ System

The change of the transport behavior with time is summerized in Table I. In Run No. 6 and 7, the single crystals of NbO₂ and Nb₁₂O₂₉ were individually depos-

Y. KOBAYASHI, S. MURANAKA, Y. BANDO, and T. TAKADA

Pup No	Transport	Startin	g material	Single crystals	
Kun 190.	period	(by X-ray)	$Nb_{12}O_{29}/NbO_2$ (wt)	phase	quantity
1	2.8 (h)	NbO ₂ +Nb ₁₂ O ₂₉	0.19		— (mg)
2	50	"	0.27	$\mathrm{Nb_{12}O_{29}}$	102.7
3	71		0.29	11	122.9
4	102	NbO_2	0.12	"	273.5
5	184		0.06	"	296
6	247	"	0.04	$Nb_{12}O_{29}$	332.3
				NbO_2	17.9
7	303	"	0	$Nb_{12}O_{29}$	331.2
				NbO_2	153.1

Table I. Results of the transport of NbO₂ using TeCl₄. (NbO₂: 1200 mg, TeCl₄: 200 mg, temperature gradient: 1100°C-1030°C)

ited. The shapes of NbO_2 and $Nb_{12}O_{29}$ were different and two oxide crystals could be therefore separated from each other under a microscope.

At the initial stage of the chemical transport reaction, the starting material of NbO₂ was oxidized and became the mixture of NbO₂ and Nb₁₂O₂₉. The oxidation of the starting material lasted for 70 h, while the crystals of Nb₁₂O₂₉ deposited at the cold zone. The crystals of Nb₁₂O₂₉ continued to deposit as long as Nb₁₂O₂₉ was contained in the starting material at the hot zone. The transport rate of NbO₂ was 2.5 mg/h. The result that deposition of NbO₂ followed that of Nb₁₂O₂₉ had also been found by Ritschel *et al.*⁴)

3.2 Role of Water Content in Silica for Oxidation of Starting Material

The oxygen source for oxidation of the starting materials might be oxygen gas produced from reaction of NbO₂ with TeCl₄. The other oxygen source may be water vapor coming from silica tube. Therefore, the chemical transport behavior using a special silica tube (Toshiba Ceramics T-2030) which contained 5 ppm water was compared with using a normal one containing $100 \sim 150$ ppm water. The result is shown in Table II. The degree of oxidation of the starting material using the special silica tube was lower than using the normal silica tube. It was confirmed that the water contained in the silica contributed to oxidation of the starting material, but was not the main oxygen source.

Table II.	Effect of	transport by	water	content.

$(NbO_2: 120)$	$00 \text{ mg}, \text{TeCl}_4$: 200 mg, t	emperature	gradient:	1100–1030°C	C, transport	time: 71 l	1)
----------------	--------------------------------	-------------	------------	-----------	-------------	--------------	------------	----

	Starting material			Single crystal	
Silica tube	phase (by X-ray)	composition Nb12O29/NbO2	(wt)	phase	quantity (mg)
Normal silica (H ₂ O: 100~150 ppm)	NbO ₂ +Nb ₁₂ O ₂₉	0.19		Nb ₁₂ O ₂₉	115
Special silica (H₂O: ∼5 ppm)	$NbO_2 + Nb_{12}O_{29}$	0.29		$\mathrm{Nb_{12}O_{29}}$	123

3.3 Chemical Transport of NbO-NbO₂ Mixture

Table III shows the results of the transport using the mixture of NbO and NbO₂ as the starting material. The residuals at the hot zone and the crystals produced were only NbO₂ independent of the period of the transport reaction. It is interesting that the transport rate of NbO₂ (0.07 mg/h) is greatly lower than in the case of the transport using NbO₂ as a starting material. This suggests the difference of the transport mechanism.

Table III. Results of the transport using mixture of NbO₂+NbO (composition of NbO_{1.8}) as starting material (NbO_{1.8}: 1050 mg, TeCl₄: 200 mg, temperature gradient: 1000°C-1030°C)

Transport period	Starting material phase	Single crystals	Transport rate
93 (h)	NbO ₂	NbO ₂	0.065 (mg/h)
246	NbO_2	NbO_2	0.071

3.4 Gas Analysis in the NbO₂-TeCl₄ System

The mass spectrum is shown in Fig. 1. The ions, O_2^+ , HCl⁺, Nb⁺, NbO⁺, NbCl⁺, NbCl²⁺, NbCl²⁺, NbCl²⁺, NbCl³⁺, NbCl⁴⁺ and Te²⁺ were observed The relative intensities of the ions are shown in Table IV. The ions, O_2^+ , HCl⁺ and Te²⁺ indicated the presence of the gas of O_2 , HCl and Te² in the closed tube, respectively.

The niobium species observed may suggest the presence of NbOCl₃, NbCl₅, NbCl₄, NbCl₃ and NbCl₂ gas as gas species. The mass spectra were separately measured for NbCl₅ and NbCl₄. The relative intensities of ions observed are shown in Table V. The intensity of HCl⁺ is strong compared with the other ions. In the

Ion species	NbO ₂ -TeCl ₄	NbO _{1.8} -TeCl ₄
(70 eV)	1100/870°C	1100/870°C
$NbCl_4^+$	0.7	_
NbOCl ₃ +	98.0	·
$NbCl_3^+$	3.7	
$NbOCl_2^+$	100	2.7
$NbCl_2^+$	24.3	1.7
NbOCl+	55.0	10.9
NbCl+	51.6	35.8
NbO+	44.5	88.3
Nb^+	45.2	100
O_2^+	27.1	trace
HCl+	215.7	1900
Te ₂ +	1.6	
Te+		15.2

Table IV. Ions species and their relative intensities

(251)

Fig. 1. Mass spectrum of gases in the NbO2-TeCl4 system (Temperature gradient: 1050°C-870°C, Ionization energy: 70 eV).

Chemical Transport Reaction of Niobium Oxides

Substance	Temperature	Ions observed and the relative intensities
NbCl ₅	830°C	NbCl ₄ ⁺ (5.3), NbOCl ₃ ⁺ (2.8), NbCl ₃ ⁺ (10.2),
		$NbOCl_{2}^{+}$ (13.9), $NbCl_{2}^{+}$ (37.4), $NbOCl^{+}$ (16.5),
		NbCl ⁺ (70.4), NbO ⁺ (27.4), Nb ⁺ (100)
NbOCl ₃	1050°C	NbOCl ₃ ⁺ (10.0), NbCl ₃ ⁺ (1.0), NbOCl ₂ ⁺ (58.8),
		NbCl ₂ ⁺ (20.3), NbOCl ⁺ (57.6), NbCl ⁺ (100),
		NbO ⁺ (13.9), Nb ⁺ (17.6)

Table V. Mass analysis of NbCl₅ and NbOCl₃

spectrum of NbOCl₃, NbOCl₃⁺ and the fragement ions with the lower mass were observed. For NbCl₅, the fragment ions of NbCl₅ and the ion species corresponding to NbCl₃ were observed. The ion species of NbCl₃⁺, NbOCl₂⁺, NbOCl⁺ are derived from NbCl₃ molecule which is produced by reaction of NbCl₅ and H₂O. Gaseous species of NbCl₄ are unstable and decompose into NbCl₅, NbCl₃ and NbCl₂ gases at high temperature.¹¹

Compared with the relative intensity of the niobium ion species in Table V, the results of the spectram in Table VI indicated that NbOCl₃ and NbCl₅ molecules were the main niobium gaseous species in the NbO₂-TeCl₄ system. The ions of NbCl₂⁺ and NbCl₃⁺ may be mainly the fragments from NbCl₅ and NbOCl₃ molecules.

3.5 Gas Analysis in the (NbO-NbO₂)-TeCl₄ System

The mass spectrum and the relative intensities of the ions are shown in Fig. 2 and Table IV, respectively. The ions observed are $NbOCl_2^+$, $NbOCl_2^+$, $NbOCl_2^+$, $NbOl_2^+$, NbO^+ , Nb^+ , Te^+ , HCl^+ and trace of O_2^+ . The ions of $NbOCl_2^+$ suggested the presence of $NbOCl_3$, although $NbOCl_3^+$ was not observed. The intensity of HCl^+ was far strong compared with that of the niobium ion species.

4. DISCUSSION

As 90% of TeCl₄ dissociates into TeCl₂ and Cl₂ at 900°C, the reactions should be represented by following equations.

NbO₂ +
$$\frac{3}{2}$$
 TeCl₂ = NbOCl₃ + $\frac{1}{2}$ O₂ + $\frac{3}{4}$ Te₂ (1)

$$NbO_2 + \frac{3}{2}Cl_2 = NbOCl_3 + \frac{1}{2}O_2$$
 (2)

NbO₂ +
$$\frac{5}{2}$$
 TeCl₂ = NbCl₅ + O₂ + $\frac{5}{4}$ Te₂ (3)

$$NbO_{2} + \frac{5}{2}Cl_{2} = NbCl_{5} + O_{2}.$$
 (4)

All the reactions produce the oxygen gas. This oxygen gas is considered to be oxygen source for oxidation of the starting material of NbO₂. As the oxygen gas is consumed for oxidation of NbO₂ and the reaction proceeds forwards, the gas of TeCl₂ and Cl₂ would be almost consumed. In fact, the ions of TeCl₂⁺ and TeCl⁺

were not observed and the intensities of the ion species derived from $NbOCl_3$ and $NbCl_5$ were very strong.

On the other hand, the existence of HCl gas means that TeCl_4 is partly hydrolyzed by water vapor in the closed tube.¹²⁾

$$TeCl_4 + 2H_2O = 4HCl + O_2 + \frac{1}{2}Te_2$$
 (5)

This oxygen gas from water vapor also oxidizes NbO₂. It is reported that NbCl₅ and HCl can act as transport agents of NbO₂, respectively.³⁾ It is therefore considered that the transport system NbO₂-TeCl₄ changes to mainly the systems Nb₁₂O₂₉-NbCl₅ which will be followed by the system NbO₂-NbCl₅. The examples of assumed transport reaction is then as follows:

$$\frac{1}{12}Nb_{12}O_{29} + NbCl_5 + \frac{1}{2}Cl_2 = 2NbOCl_3 + 0.209 O_2$$

$$NbO_2 + NbCl_5 + \frac{1}{2}Cl_2 = 2NbOCl_3$$
(6)
(7)

In the deposition of Nb₁₂O₂₉, the oxygen gas coming from H₂O and reaction (1)~ (4) acts not only as the oxidizing agent of starting material but also as the oxygen source necessary for formation of Nb₁₂O₂₉ crystal. The supply of oxygen gas will stop after the Nb₁₂O₂₉ phase at the hot zone is used up, and the transport of NbO₂ will start according to the reaction (7).

In the $(NbO-NbO_2)$ -TeCl₄ system, the starting material changed to the single phase of NbO_2 by oxidation of NbO. The very strong intensity of the HCl⁺ species in the mass spectrum indicated that the predominant gas species as transport agent was HCl. The transport system $(NbO-NbO_2)$ -TeCl₄ changed to mainly the system NbO_2 -HCl.

The transport reaction is as follows:

NbO₂ + 3HCl = NbOCl₃ + H₂O +
$$\frac{1}{2}$$
 H₂. (8)

The defference in the transport rate of NbO_2 between the NbO_2 -TeCl₄ system may be mainly due to the difference of the transport agents.

REFERENCES

- (1) T. Sakata, K. Sakata, G. Höfer, and T. Horiuchi, J. Crystal Growth, 12 88 (1972).
- (2) H. Kodama and M. Goto, J. Crystal Growth, 29 77 (1975).
- (3) H. Kodama and M. Goto, J. Crystal Growth, 29 222 (1975).
- (4) M. Ritschel and H. Oppermann, Kristall und Technik, 13 (9) 1035 (1978).
- (5) K. Nagasawa, Y. Kato, Y. Bando, and T. Takada, J. Phy. Soc. Japan, 29 241 (1970).
- (6) J. Mercier and S. Lakkis, J. Crystal Growth, 40 195 (1973).
- (7) Y. Bando, S. Muranaka, Y. Shimada, M. Kyoto, and T. Takada, J. Crystal Growth, 53 (1981), to be published.
- (8) H. Hibst and R. Gruehn, Z. Anorg. Allg. Chem., 442 49 (1978).
- (9) A. Taylor and N. J. Doyle, J. Less Common Metals, 13 313 (1967).
- (10) Y. Bando, M. Kyoto, T. Takada, and S. Muranaka, J. Crystal Growth, 45 20 (1978).
- (11) "Comprehensive Inorg. Chem.", vol. 3, Pergamon Press, Oxford, 1973.
- (12) J. Mercier, J. J. Since, G. Fourcaudot, J. Dumas, and F. Devenyi, J. Crystal Growth, 42 583 (1977).