Effective Charges of Neutral Atoms in Distant Collisions

(Commemoration Issue Dedicated to Professor Takuji Yanabu on the Occasion of his Retirement)

Author(s)
Kanamori, Yoshinori; Haruyama, Yoichi; Itoh, Akio; Kido, Teruo; Fukuzawa, Fumio

Citation
Bulletin of the Institute for Chemical Research, Kyoto University (1982), 60(2): 214-216

Issue Date
1982-08-31

URL
http://hdl.handle.net/2433/76971

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
In the classical picture of atom the electronic screening of nuclear charge is depicted as follows: all atomic electrons make their orbital motions many times around the atomic nucleus, so that each orbital electron is regarded as a closed shell with electronic charge surrounding the atomic nucleus. If the observation time is small compared to the periods of orbital motions for some electrons, the screening effect of these electrons are incomplete, and some effective charge should be observed even for a neutral atom.

In the fast collision between a projectile particle and a neutral target atom, where the effective interaction time corresponds to the observation time, this kind of effective charge is expected to reveal itself. When a projectile with velocity \(v(=\alpha v_0, \text{where } v_0 \text{ is Bohr velocity}) \) pass through straight at the distance \(R(=k\alpha_0, \text{where } \alpha_0 \text{ is Bohr radius}) \) from a target atom, the interaction time is given by

\[
t = \frac{2R}{v} = 2\left(\frac{k}{\alpha}\right)\frac{\alpha_0}{v_0}.
\]

The period of orbital motion \(t_i \) for \(i \)-th electron of which orbital radius and velocity are \(a_i \) and \(v_i \), respectively, is given by

\[
t_i = \frac{2\pi a_i}{v_i}.
\]

The screening is complete if \(t > t_i \), and incomplete if \(t < t_i \). In the latter case, for simplicity, we assume the screening is such that only \(t/t_i \) times of electronic charge is present in the corresponding closed shell. Then, effective charge \(Z_{\text{eff}} \) of a neutral target atom with atomic number \(Z_T \) is expressed as

\[
Z_{\text{eff}} = Z_T - \sum_i n_i - \sum_j \left(\frac{t}{t_j}\right) n_j,
\]

where the second term in the right hand side is summed over all orbital electrons with \(t > t_i \), and the third term over all orbital electrons with \(t < t_j \).

The effective charge \(Z_{\text{eff}} \) of eq. (3) are calculated with the values of orbital velocities and radii given by Desclaux.\(^{11}\) The effective charges \(Z_{\text{eff}} \) are shown in Fig. 1 as a function of \(k/\alpha \) for \(Z_T = 10, 20, 30, 40 \) and 50. In this figure, the scales of projectile energies for some collision distances are also given. The present calculation gives the false result that \(Z_{\text{eff}} \) approaches to \(Z_T \) at large projectile energies. However, overall

* 金森佳憲, 奈山洋一, 伊藤秋男, 木戸照雄, 福沢文雄: Department of Nuclear Engineering, Kyoto University, Japan.
Effective Charges of Neutral Atoms in Distant Collisions

Fig. 1. Effective charges of neutral atoms seen by a fast projectile as a function of parameter k/a, where k is the impact parameter in unit of Bohr radius and a the projectile velocity in unit of Bohr velocity.

Fig. 2. Electron loss cross sections of 1 MeV He$^+$ ions for various neutral target atoms. Experimental data are given by Pivovar et al (●, ref. 3 and 4), Itoh et al (△, ref. 5), Kanamori et al (▲, ref. 6) and T. Kido (●, ref. 7).
feature of Z_{eff} gives some clue for investigation of distant collisions with neutral atoms.

As an example of application of this effective charge, the electron loss cross section σ_{12} of 1 MeV He$^+$ ion for various target atoms are calculated on the basis of binary encounter approximation.\(^2\) The loss cross section is expressed with the maximum ionizable distance R_m,

$$\sigma_{12} = \pi R_m^2.$$ \((4)\)

The distance R_m is determined by solving the following equation,

$$I = 2Z_{\text{eff}}(R_m, \nu) \frac{e^4}{m_e \nu^2 R_m^2},$$ \((5)\)

where m_e is electron mass and I is the ionization energy of He*. The result is shown in Fig. 2. The calculated cross sections are fairly in good agreement with experimental ones\(^3\)\(^-\)\(^7\) with respect to the order of magnitude as well as the trend of increase with Z_T. There is very interesting oscillation with Z_T in the calculated cross sections. Experiments over wide range of target atoms are desired to clarify this oscillation.

REFERENCES