Bull. Inst. Chem. Res., Kyoto Univ., Vol. 60, No. 2, 1982

NOTE

Activation Cross Sections for Reaction Leading to Long-lived Reaction Products on Iron, Cobalt, Nickel, Zirconium and Molybdenum for 14.6 MeV Neutrons

Katsuya Fukuda+, Keiichi Matsuo++, Shigeki Shirahama+++ and Isao Kumabe*

Received March 12, 1982

The investigations on the interaction of 14 MeV neutrons with structural materials are very important for the design of the fusion reactor. Many workers¹⁾ have measured the activation cross sections for 14 MeV neutrons. However relatively a few data have been reported for the reactions leading to the long-lived nuclei. Therefore we have undertaken to measure the reaction cross sections leading to the long-lived nuclei on Fe, Co, Ni, Zr and Mo, which are most important structural materials of the fusion reactor, for 14.6 MeV neutrons with a shielded Ge(Li) detector.

Experimental procedures were similar to those of a previous investigation,²⁾ so that they are described only briefly here. Natural metal samples of about 1 gr of Fe, Ni, Zr and Mo were used. About 0.6 gr of sample powder of Co was pressed into plastic cups so that it acquired a cylinder from 14 mm in dia. and about 3 mm thick.

Thin Al-foils of about 50 mg were placed in the front and back of the samples.

The neutron irradiation times are about 2 h. After cooling periods of $5\sim30 \text{ d}$ in which short-lived activities had decayed, the γ spectra of long-lived activities were measured for periods of $8\sim24$ h with a 118 cm^3 coaxial Ge(Li) detector shielded with iron-plates of 150 mm thick and copper-plates of 20 mm thick. By the use of this shield, background counting rate was markedly reduced.

The ${}^{27}\text{Al}(n, \alpha){}^{24}\text{Na}$ reaction with a cross section of $114.5 \pm 4 \text{ mb}{}^{3)}$ was used as the monitor. The activities of Al were measured after several hours from the end of neutron irradiation.

Typical gamma energy spectrum is shown in Fig. 1. Table I shows the results obtained from the present work, together with the half-lives⁴) of the products, the γ -ray energies⁴) and the number⁴) of γ quanta emitted per disintegration used in the calculation of the cross sections.

The (n, p) and (n, α) cross sections predicted from the empirical formulas proposed by Kumabe and Fukuda^{5,6)} are also shown in Table I. The predicted values except

^{*} 福田勝哉, 松尾慶一, 白浜茂樹, 隈部 功: Department of Nuclear Engineering, Kyushu University, Fukuoka.

^{*} Present Address: Department of Nuclear Engineering, Kobe University of Mercantile Marine, Kobe.

⁺⁺ Present Address: Power and Industrial System Center, Mitsubishi Electric Corporation, Kobe.

⁺⁺⁺ Present Address: Kyushu Electric Power Co., Inc., Fukuoka.

for ${}^{98}Mo(n, \alpha)$ reaction are in fairly good agreement with the present experimental cross sections.

Fig. 1. Gamma energy spectrum for nickel target after cooling period of 20 days.

cross section (mb) E_{r} (keV) $(\%)^{\eta}$ Reaction $T_{1/2}$ experimental predicted ${}^{54}\text{Fe}(n, p){}^{54}\text{Mn}$ 312.5 d 834.8 100 358 ± 22 334. ${}^{59}\text{Co}(n, p) {}^{59}\text{Fe}$ 44.6 d 1099.3 56 53.1 ± 4.5 72.1 70.78 d 810.6 99.4 338 ± 26 58Ni(n, p)58Co 392. ⁶⁰Ni(n, p)^{60g}Co 5.272 y 1332.5 100 134 ± 11 95.5 ${}^{92}Mo(n, p){}^{92m}Nb$ 10.13 d 934.5 71.8 ± 5.7 ${}^{95}Mo(n, p){}^{95g}Nb$ 35.1 d 765.8 99 44.8 ± 3.5 ${}^{54}\mathrm{Fe}(n, \alpha){}^{51}\mathrm{Cr}$ 27.71 d 320.1 9.8 84.0 ± 7.5 123. ${}^{62}{\rm Ni}(n, \alpha){}^{59}{\rm Fe}$ 44.6 d 1099.3 56 25.8 ± 3.3 17.8 756.7 ${}^{98}Mo(n, \alpha) {}^{95}Zr$ 65.5 d 54.6 8.1 ± 0.8 4.88 70.78 d 810.6 99.4 ⁵⁹Co(n, 2n)⁵⁸Co 752 ± 60 96 Zr $(n, 2n) {}^{95}$ Zr 65.5 d 756.7 54.6 1639 ± 128 ⁵⁸Ni(n, np)⁵⁷Co 271 d 122.1 85.6 373 ± 29

Table I. Cross sections for (n, p), (n, α) , (n, 2n) and (n, np) reactions with 14.6 MeV neutrons.

 η : Intensity of γ -rays per disintegration

REFERENCES

- (1) CINDA 81, An index to the literature on microscopic neutron data, (May, 1981), IAEA Vienna.
- (2) T. Sato, Y. Kanda and I. Kumabe, J. Nucl. Sci. Technol. 12, 681 (1975).
- (3) Y. Kanda and R. Nakasima, JAERI-1207, (1972).
- (4) G. Erdtmann, "Neutron Activation Tables" (1976) Verlag Chemie., Weinheim, New York.
- (5) I. Kumabe and K. Fukuda, NEANDC(J)-56/U, 45 (1978).
- (6) Y. Fujino, M. Hyakutake and I. Kumabe, Preceding paper.