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                         INTRODUCTION 

    Repulsive core of nuclear forces was introduced by Jastrow in 1949.1) Its origin 

still remains an open problem in nuclear physics, although the w-meson exchange has 
been often stated as contributor since Nambu's proposal in 1957.2) Now it has become 

a general belief that the nucleon N is a cluster of three quarks in the color-singlet state, 

which are confined by the colored gluon fields. We can get rid of phenomenological 

stage in the problem of repulsive core by studying it from the quark-model point of 

view. This note presents a possible way to understand repulsive core as the orthogonality 

to exotic dibaryon states on the basis of the string-junction model. 

    At the present stage, it is suitable to divide two-nucleon relative distances rNN into 

two regions, the outside region (rNN>1 fm) where the meson-theoretical description is 

successful and the inside region (rNN<1 fm) where the quark structure of the nucleon 

plays a vital role. This division is also suitable from the nuclear structure viewpoint, 
because the NN relative wave function in the nucleus is almost uniquely determined for 

rNN>1 fm and the success of the traditional nuclear physics is essentially independent 

of phenomenological versions employed in the inside, as far as they are chosen to repro-

duce the NN data. On the basis of such established aspects, a reasonable choice for 

the extension of quark structure of the nucleon is that its radius is about 0.5 fm, a 

half of the boundary between the inside and the outside, although the electromagnetic 

extension of the nucleon including meson cloud is about 0.8 fm. 

                   CRITERIA FOR REPULSIVE CORE 

   In this note we presume the following criteria which repulsive core should satisfy: 
1) Repulsive core is a universal nature of all the baryon-baryon (BB) interactions at 

    small relative distances (rBB<0. 4-0. 7 fm). 
2) Its repulsive nature is a manifestation of the quark confinement mechanism, which 

   is characteristic of the BB system. 

3) The aspect of originating mechanism described in the quark level (from the inside) 

    is to be connected with the most responsible one in the outside, namely the cu-meson 

    exchange. 
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A few points on these criteria are remaked. The effects represented by repulsive core 

in phenomenological potential medels have been shown to exist in the NN relative S 

states (1S0 and 8S1), indicated in the NA S-states and there is no evidence against its 

existence in all the other two-baryon states. It seems reasonable to suppose that all the 

baryon-baryon (BB) pairs have repulsive core, because the confinement mechanism is 

inherent in the color degree of freedom and essentially independent of those of flavor 

and spin. It has been often stated that the neutral-vector meson (w) exchange is 

responsible for repulsive core, but the strength given by the  wNN coupling constant, 

being consistent with the outer part of nuclear forces and other hadronic phenomena 

is not strong enough to explain the full aspect of repulsive core.31 

   A typical example is shown in Fig. 1 for the 'So NN potential: The meson-theore-

tical potential due to pion (r), a neutral-scalar meson (cr) as a substitute of attractive 

2r exchange effect and co is given by 

           v lso(TNN)——4
7rv( 774 rArN) — 

                                  mY (n, rivN) +1-771.17(m.rNN)( 1 ) 
with m„--- 135 MeV, m.= 3. 70 m„, m.= 5. 81 m„, f2/47= O. 08, 4/4r =5, 4/4r =10 and Y(x) 
= c"/ x. This potential denoted by (r+a+w)NN very close to (a+co)NN for rivN<1 fm               
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       Fig. 1. Nucleon-nucleon (NN) potentials in the 'S0 state and illustration of the 
               regions where the various processes explained in the text are effective. 

              OPEG (OPER) is a realistic potential with the OPEP-tail and the 
              Gaussian soft core (hard core). The solid line detoned by (7r+u+w)N, 

              is the meson-theoretical potential given by Eq. (1) and the parts from 
              (a+w) and w only are shown by the dotted lines. The dashed line is 

              the corresponding potential in the Ng system. The shaded area indicates 
              the domain of possible appearance of exotic dibaryon states M. The 

              lines denoted by F.NN is an example of the relative wave function with 
              one radial node at EM —0. 1 and 660 MeV (in arbitrary unit)."b) 0. C. 

              is the abbreviation to orthogonality condition. 
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shows much weaker inside repulsion, compared with the realistic potentials (OPEG 
and  OPEFI4) for example). Therefore we regard the universal repulsion brought about 
by the co-exchange as a tail part to be superposed on the originating mechanism existent 
in the inside region. The w-exchang provides strong attraction in the BB system, the 
sign-reversed partner of the co-exchange repulsion in the BB system because of its negative 
G-parity, and net BB potential (state-independent part) becomes deeply attractive, as 
shown by (u+w)NTT in Fig. 1. Such contrast in the BB and BB systems is to be implied 
in the inside description. 

          BB INTERACTION BASED ON STRING-JUNCTION PICTURE 

   Here we adopt the string-junction model" as a realization of confinement mechanism, 
because the prescription given by this model is clear in discriminating exotic states from 
the ordinary (nonexotic) ones. The hadron structures are represented by the oriented 
strings with the following properties: In the ordinary mesons M= (0) a string connects 

q and q and in the ordinary baryons B= (qqq) three strings from three q's join together at 
a junction J which represents pictorially the color-singlet property of B, as shown by the 
arrows in Fig. 2. In f3 (m) three strings from three 's join together at a junction J. 
In exotic states there appear the inter-junction strings between J and J, abbreviated to 
IJ. Hadrons consist of three kinds of building blocks, namely, q and q with one string, 

J and J with three strings and IJ's. If the total numbers (associated energy) of these 
building blocks are denoted by Ng, NJ and N11 (m5, m1 and v), respectively, the simplest 
mass formula from additivity given by Imachi and Otsuki6 is 

               m(N5, NI, N11) =maN4+mi-NT+vNij=n2BNI-3 N u( 2 ) 

with the baryon mass mB=.3mg+mj and Oa.-2m5—v, where the relation IV,=-3NT-2Nri 

(for Ni�0) is used in the last equality. For 3 (an effect exerted by the IJ string) 
<mB--1 GeV, m is approximately given by mBNJ. The energy of a string is of the order 
of mN/3 for u and d quarks with small masses, and its essential part is simply described 
by a linearly rising potential; V(r)--,-ar with a-L=-_-O. 7 GeV/fm at 0.5 fm. 

   If the increment in V(r) of an elongated string is large enough to exceed the self-
energy of a meson, the string is separated to produce a pair of q and q as open ends 
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      Fig. 2. Pictorial representation of the ordinary mesons M and baryons B (antibaryons 
            P.) in the string-junction model. The dotted lines illustrate the bag-like extension 

            in which quarks and gluons exist. 
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at the scission point. Typical mass of such radial excitation (es) can be taken as the 
order of mass of the lowest vector mesons (p and  co) ; es 75 GeV. In B, excitation 
due to hinging mode of strings possibly occures in addition to the radial excitation, as 
far as the Y-shape configuration is not rigid. Its excitation energy would be not so 
different from Co, because hinging motion is apt to be coupled with bending mode accom-

parying elongation. The string symbolically drawn by the line has its spatial extension. 
The B= (qqq) clusters also have the bag-like space (illustrated by dotted curves in Fig. 
2) in which the strings and junctions are realized, and thus predispositions of various 
modes of motion. 

   The innermost region of r BB dominated by repulsive core is just the full overlap 
region of two B= (qqq) clusters. What condition is needed for two B clusters to fuse ? 
In a strict sense the string-junction model provides the following condition; two B 
clusters can fuse only when the building blocks are connected into a closed system with 
correct orientations. In other words, two B clusters can not fuse unless recombination of 
strings takes place. As a possible interaction mechanism of two N= (qqq) systems without 
fusion, Miyazawan proposed the flip-flop process of strings producing the attraction in 
the intermediate region (rNN=O. 6 fm), which is usually described by meson exchange 

(27r or a) . This process is a kind of tunneling processes without change of two N= (qqq) 
characters (Fig. 3a). At closer approach of two B clusters, more violent flip-flop 

processes possibly occur with string excitations of the order of two or three units in eo 
(Fig. 3b). If two B clusters overlap fully (fuse into a compact system), such configura-
tion is nothing but a kind of exotic dibaryon states. The string-junction model predicts a 
typical configuration of exotic dibaryon states with Nq=6 and NI---4 at m---4mB, abbre-

viated to g (Fig. 4a).6) (Hadrons are denoted by HANr .) The .04 states can not decay 
directly into BB but to BBBB through the fission of three inter-junction strings (Fig. 4 
b). If we consider its inverse process, the fusion of BB can take place only through 
the recombination of oriented strings by virtual formation of a BP pair. 

   A BB pair can fuse directly into the configurations by contracting the open q and 
 end, as shown in Fig. 5. This aspect means strong attraction between B and B which 

is in sharp contrast with the BB repulsion, just like the w-exchange effect. Such con-
figurations form a group of boson-like states with Nj=2; molecular BL states, exotic 
mesons (M,T and MD and a kind of glue-balls (SD ,6) which are denoted symbolically 
by 4 with m,g---2 GeV. In order to make a connected string-junction net of gi through 

             ( a )I( b)                           1 f
m 

    Fig. 3. Flip-flop processes at close approach of two B= (qqq) clusters without change of 
           the B= (qqq) structure ; (a) the Y -shape structure of strings is also kept and 

           (b) the hinging and shrinkage (deformation of the Y shape) take place. If we 
           write the dotted lines as in Fig. 2, the domains of the dotted lines do not overlap. 
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          Fig. 4. Exotic dibaryon states M and the BBBI3 system appearing through 

                  fission of three inter-junction strings. 
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        Fig. 5. A series of boson-like states, A: M4, MZ and SF, are exotic baryonium 
               states produced by connecting q and q ends successively in BB.6) 

virtual creation of .4', the energy of about 2mB--2 GeV is required. This is just of the 

same order of repulsive core height when the Gaussian type of soft core is adopted,4' 

as shown by OPEG in Fig. 1. 

          REPULSIVE CORE IMPLYING THE ORTHOGONALITY TO 
                    EXOTIC DIBARYON STATES 

   If such exotic Dg states exist with compact size at about 2 GeV excitation as shown 

in Fig. 1, the wave function of the ordinary BB channel Cr BB) should be almost 
orthogonal to r(Ds) : 

                <3r (Dt) 1Y. BB> .( 3 ) 

Since this aspect comes from the color degree of freedom, it is universal for all the BB 

states, even though the /A states split somewhat by symmetry breaking effects depen-

dent on the spin and flavor quantum numbers. The almost energy-independent radial 

node resulting trom the orthogonality plays a role equivalent to repulsive core in the 

BB channel, the lowest configuration of the 6q system. The only difference from the 
di-nucleus case is that here the ./A states are actual states, while the orthogonality 

condition is taken with respect to the Pauli forbidden states in nuclear cluster theory.8> 

               POSSIBLE EXPERIMENTS TO FIND OUT Dt 

   For the explanation for origin of repulsive core mentioned above, it is crucial 

whether the exotic pg states with small size are realized or not. When they are once 
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formed, they turn into something like little bag  states') (substatially exotic for N5>3) due 
to the asymptotic free nature. Because of their high excitation energies, they can not 

be identified to the dibaryon resonances"' with large widths recently found at much 

lower energies. If these g states be lower than the threshold of NNNICT, experimental 

test is to search narrow peaks of nucleon yields corresponding to the two-body reaction; 

                           + 'He N + 

appearing over the background of many-pion emission processes. Widths of these states 

depend on the strength of their coupling to the BB channel, and are expected to be 
small because D6 can not decay directly to BB through fission of strings. If the DI be 

realized at higher energy than the threshold of NNNA7, they may be found as resonances 

in fi+31-le scattering. The problem of DI is related to that of exotic baryonium states 

whose existence is still open. From the string-junction model point of view, three 

problems-repulsive core, exotic dibaryons and exotic baryoniums-are linked. 
   Due to the coupling between ?BB and 3V(M), although it is weak, the exotic and 

compact components are mixed into the ordinary (nonexotic) two B= (qqq) cluster states. 

Studies of the charge form factors of d, 'He and 'He from the quark-model viewpoint 

suggest compact multi-quark components through high momentum transfer region.11,12) 

Also cumulative processes studied in hadron reactions on nucleus targets for high mo-

mentum transfer are related to this problem.12' 

                 COMMENTS ON OTHER APPROACHES 

   Finally comments to other approaches of the repulsive core problem from the quark-

model viewpoint are given. In the cluster-model approach, the confinement condition is 

taken into account by the color-singlet property of 6q system, and the NN short-

range repulsion is attributed to the color magnetic interaction.") The resulting effect is 

dependent on the spin and flavor quantum numbers (a kind of symmetry-breaking 

effects), and not universal for all the BB states, as pointed out by Jaffe."' The original 

idea from the cluster viewpoint was proposed at the "pre-color stage" by taking analogy 

to the a-a effective repulsive core originating from the Pauli principle.") In the nucleus-

nucleus interaction such exchange repulsion is independent of details of models and 

interactions, because the orthogonality to the Pauli forbidden states plays a vital role. 

Validity of direct analogy to the nucleus-nucleus interaction was lost when the color 

degree of freedom was introduced. Then, in the "post-color stage," the problem has 

been inevitablly correlated with details of N= (qqq) structure and of q-q interaction.1') 

In the bag-model approach, the confinement is assured by the boundary condition at 

the bag surface. In an approach to BB systems, where six quarks are confined in a 

single bag, it is not clear whether the calculated energies are those of exotic 6q states 
or of the ordinary states.") Comparison of the energies of 6q system with those of two 

B system may be useful, when the stability problem of bag states in the presense of 

surrounding meson clouds will be solved.") In the context of the present note, it is 

important to make clear whether multi-quark (6q, 9q, 12q,  ) states have metastable 

configurations with much smaller extension than 1 fm or not Evidently multi-quark 
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states with large size seriously disturb the nuclear structure already verified. 

                           SUMMARY 

   The situation considered in the present note is illustrated in Fig. 1. (We regard 

rNN as  rBB). In the outer region (rBB>1 fm), the w-meson exchange repulsion exists with 

various effects from other mesons. In the innermost region (r BB<0. 6 fm) the large energy 

expense is necessary for two baryon to fuse through formation of exotic baryonium states   

. In the boundary (rBB.=-:.-0. 6-1 fm), there appear various modes of string excitations 

shown in Fig. 3 and effects of .A formation in the pre-fusion stage. In order to avoid 

such large exitation, two baryons keep their positions to be apart, and this aspect 

correspond to repulsive core in potential description to suppress the BB relative wave 

functions at small distances. Although the argument given in this note is of speclatuive 

nature, the originating mechanism of repulsive core is accordance with the criteria 1)-,- 

3), and independent of details of (qqq) structures and of q—q interactions. It may 

be said as a reflection of the exotic dibaryon states with compact size. Conversely 

repulsive core of nuclear forces links to possible existence of such exotic states and of 

their small mixing in the nucleus. 

   This paper is dedicated to Professor T. Yanabu on the occasion of his retirement 

from Kyoto University. The author would like to express thanks to Professor Yanabu 

for pleasant conversations on nuclear physics. The author is also grateful to Professor 

S. Otsuki for his interest and valuable comments. 
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