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     Using a weakly-connected loop model, the profile of superconducting transition of a microbridge-
 coupled superconductor has been generated. Applied magnetic fields to the specimen are supposed 

 as periodic but non-sinusoidal. 
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                          INTRODUCTION 

    The Hartshorn-type ac bridge has been widely used in the field of low-temperature 

physics. This method has benefited from the development of a lock-in technique 
and has been extensively modified from the original. The fundamental susceptibility 

y,'—ix," is conventionally measured by using a two-phase lock-in analyzer, i. e., we 
need not make an elaborate effort to balance the bridge. In the case that a substance 
behaves in a non-linear manner against an external magnetic field, the higher-harmonic 
susceptibility ! x„( can be obtained by applying our modification to the bridge.n As to an 
exciting magnetic field, however, the operation of the bridge has so far been limited 
to a sinusoidal one. 

    Recently, we investigated a microbridge-coupled superconductor by means of the 
fundamental and higher-harmonic susceptibilities.',2' We found the temperature-dependent 
and amplitude-sensitive properties of the superconducting transition. And the odd-
harmonic susceptibilities were also observed to appear in the ac response of microbridge-
coupled superconductor. A fine explanation of these properties was given from the stand-

point of weakly-connected loop model, which implicates a non-linear process in the 
response. The results previously obtained lead to a further interest how the ac response 
would be in various kinds of non-sinusoidal periodic fields. 

   In the present work, we attempt to generate a superconductive profile of micro-
bridge-coupled superconductor against nonsinusoidal exciting field with the aid of 
weakly-connected loop model. 

                         CALCULATION 

1. Sinusoidal Magnetic Field 
    In our previous works, we investigated the response of superconducting Tc with 
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multiply-connected structure against a small ac magnetic field, which can be explained 

by the weakly-connected loop  model.1,2) There, we considered that the specimen can 

be viewed as a microbridge-coupled network of superconductors and that a number of 

shielding loops induced in the network behave like a single loop as a whole due to the 

coherent nature of the specimen. Assigning Jo as the critical current of the equivalent 
loop, ho as the amplitude of the field, and h. as the magnetic field which iuduces a 

supercurrent Jo in the loop, we define sin 0=-h„,/ho. From the model, xi' and xi" are 

analytically expressed by 

    1                      — — 477122(a—sin 2a), xi"— 47r2sin' a,( 1) 
where a= 2 sin-l(sin 0)"2. The odd-harmonic susceptibility z„=--x„'—ix„" is also given by 

                    1  sin (n + 1) cr  _  sin (n — 1) al                 Z.= 4n7r2 L n+1n —1 

                      

1  r  cos(n+ 1) a — 1 _  cos(n — 1) a — 1I( 2)            Xn 4777r2 ?I+ 1n — 1 

By the change in parameter 0 from 0 to 7r/2, the profile of superconducting transition 

can be generated. Here we assumed that Jo is proportional to (1-7-/T0)372, which is a 

microbridge-type temperature dependence. To is the onset temperature of supercon-
ductivity. 

2. Non-Sinusoidal Magnetic Field 

  We consider the cases that the bridge is excited by three kinds of non-sinusoidal 

magnetic fields, i. e., a triangular-wave magnetic field hi(t), a square-wave field /22(0, 

and a trapezoidal-wave field h3(t). The amplitudes of fields are always chosen as h0. 

The fields hi(t), 112(0, and h3(t) are expanded by Fourier series as 

           h2 (t) 4h                = 4h0 E (2n— 1) sin (2n 
                                 27 n=1 

                  8h -              h
2 (0—°E (-)n-i-(2/2- 1) -2 sin (2n — 1) wt,( 3 ) 

                                 7r n=1 

             h3 (t) = 4h0E (2n— 1) -2 sin (2n — 1) ws sin (2n— 1) wt, 
                            7: n=1 

where s is a rise time of trapezoidal wave. They contain higher harmonics in themselves, 

which complicate the problem by analytical reason. In the next section, we develop the 

numerical evaluation for the response of microbridge-coupled superconductor. 

3. Numerical Method 

   In Fig. 1, the procedure of present calculation is summarized as a flow chart. The 

field h(t) is supposed to have a period 7. The critical current of the equivalent loop 

J0 (T) is assumed to be proportonal to (1—T/7'03'2 at temperatures near T0. At each 
specified temperature, we subsequently generate h(ti) from i=---- 1 to 1024, where t1=(i— 1) 
r/1024. Details of the generation of sample magnetization m(t) are shown in Fig. 2. 

For each ti, the magnetic field b(1) in the loop is determined as 
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Fig. 1. Schematic flow diagram ofFig. 2. The computational flow diagram of the sample 

     the program.magnetization an(t). 

           b(ti) =b(ti_1) for b(1,,) —It(ti) I <47cja (T) /c, 

           b(ti) =h(ti) +47rJo(T)/ c for b(t5_1) —h(ti)>47i-Jo(T)/c,( 4 ) 

            b(td=h(ti)-4)7,11(T)/c for b(ti_1)—h(15)<-471.0(T)/c. 

The magnetization m(ti) of the specimen is obtained by 

                7121(ti) = Lb (ti) —h(ti)( 5) 

This process is repeated for another period r. This is for the sake of obtaining a stationary 
behavior with respect to time. One gets Fourier expansion of stationary m(t) by 

                      m(t) ho Di,' sin hot + zi," cos kcot).( 6) 
                                                 k=1 
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From this expression, xi: and yd," are given by 

                        Xk' = in(x/w) sin kxdx, 
                                      /107Ca 

        1 2x(7) 
                       7.kI                              norSOM( X/(')) COS kxdx, 

                           (k= 1, 3, 5, 7,  ). 

At 100 points of temperature during superconducting transition, we calculate m(t) and 

analyze it by means of Fourier expansion. The transition curves thus generated are 

programmed to be drawn by the preview routines. 

                    RESULTS AND DISCUSSION 

   First, we apply the numerical method to the sinusoidal exciting field h(t) =h0 sin cut, 

for which the analytical expression of susceptibilities are available (see Eqs. (1) and (2)). 

In Fig. 3 is shown the generated transition curve in terms of fundamental susceptibility. 
The higher-harmonic susceptibilities z,' and x„" (a =3, 5, 7, 9, 11) are also drawn in 
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          Fig. 3. Numerically generated transition curve in terms of fundamental 
                susceptibility xi' and xi". The sinusoidal exciting field is applied 

                  to a microbridge-coupled superconductor. 
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Fig. 4. The curves of Figs. 3 and 4 show an excellent agreement with those expected 

from Eqs. (1) and (2). This confirms that the present method is reliable. 

   Next, the responses of the microbridge-coupled superconductor against non-sinusoi-

dal periodic magnetic fields are examined. The trapezoidal magnetic fields, which contain 
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   Fig. 4. Generated higher-harmonic susceptibilities y„' and y„" vs temperature. The exciting 

         field of the bridge is sinusoidal. 
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  Fig. 5. Generated fundamental susceptibilities yi' and yi" vs temperature. The exciting 
         fields are trapezoidal. The rise time s of the field is shown in each figure, where 

          r is a period. .5=-7/1024 and 2567/1024 correspond to square-wave and triangular-
          wave fields. 
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   Fig. 6. Generated higher-harmonic susceptibilities 7.„' and x„" vs temperature. The exciting 
          field is triangular. 

triangular and square wave fields as a special case, are used to excite the system. In 

Fig. 5 are shown the transition curves of fundamental susceptibility for rise times 1/1034, 

50/1024, 100/1024, 150/1024, 200/1024, and 256/1024 of a period r. The rise time 1/1024 

corresponds to square wave and 256/1024 correponds to triangular wave. Surprisingly, the 

square-wave exciting field does not cause any dissipation in the superconductor. The 

gradual growth in Xi" is found as rise time increases. The superconductor in the 
triangular field is more dissipative than in the sinusoidal field (see Figs. 3 and 5). In 

Fig. 6, an example of odd-harmonic susceptibilities are also shown for triangular wave. 

The differences between Figs. 4 and 5 are apparent. 

   In conclusion, non-sinusoidally excited magnetic substances have a possibility to cause 

a versatile feature of the response. It is hoped that the method will be widely examined 

in various kinds of materials such as spin glass. 
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