<table>
<thead>
<tr>
<th>Title</th>
<th>Recent Progress in the Chemistry of 1, 3-Dithiolanes and Related Compounds (Commemoration Issue Dedicated to Professor Masaya Okano on the Occasion of his Retirement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tanimoto, Shigeo; Terao, Hiromu; Oida, Tatsuo; Ikehira, Hideyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1984), 62(2): 54-71</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-09-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/77067</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
This review deals with recent progress in the chemistry of 1,3-dithiolanes and related compounds. It consists of the following sections: introduction, the deprotonation at C-2 and the subsequent reaction, the deprotonation at C-4 or C-5 and the subsequent reaction, the attack to functional group at C-2 and the subsequent reaction, the attack to S-1 and/or S-3 and the subsequent reaction, and the other reactions.

KEY WORDS: 1,3-Dithiolanes/ 2-Substituted 1,3-dithiolanes/ Deprotonation/ Desulfurization/

I. INTRODUCTION

The synthetic usefulness of the umpolung of the reactivity of carbonyl compounds by reaction of sulfur-containing reagents is widely known.1) Among the reagents employed for carbonyl umpolung, 2-lithio-1,3-dithianes have been most frequently employed since the 1,3-dithiane unit possesses high stability and hence it can be carried through a multistep synthesis.1,2) Thus, the chemistry of 1,3-dithianes and related compounds have received much attention to say nothing of the chemistry of 2-lithio-1,3-dithianes. In contrast, the chemistry of 1,3-dithiolanes and related compounds is of practical significance with respect to the widespread use as the masked carbonyl compounds, and hence many efforts have been devoted to preparation and especially to desulfurization of such the compounds. For example, S-2-pyridyl ester (1) of 2-methyl-1, 3-dithiolane-2-propanethioic acid, prepared from levulinic acid, react with hexylmagnesium bromide in tetrahydrofuran to give the ketone 2 having a 1, 3-dithio-

![Diagram](image-url)
Recent Progress in the Chemistry of 1,3-Dithiolanes and Related Compounds

1,3-Dithiolane unit. On treatment with CuCl₂ and CuO in 99% aqueous acetone 2 undergoes desulfurization, forming the 1,4-diketone 3, which is cyclized to dihydrojasmine (4).³,⁴ As is evident from the accompanying equation, the 1,3-dithiolane unit of 1 is carried through the Grignard reaction without any change of the 1,3-dithiolane moiety. As is described in the beginning of this section, the formation of 2-metalated 1,3-dithianes from 1,3-dithianes is clean and quantitative.¹³ On the other hand, the five-membered homologues, 1,3-dithianes, are reported⁵ to undergo a variety of reactions upon treatment with strong base, including deprotonation, cycloreversion and elimination, depending on reaction conditions. Recently, several detailed reports in this area have been published in the literature. These results which seem to possess practical use in synthetic organic chemistry will be described in the latter sections. Thus, 1,3-dithianes, 1,3-dithiolanes, and their related compounds seem to fulfill the requirement for intermediates of synthetic organic chemistry. Concerning 1,3-dithianes and related compounds, one or probably more parts of the chemistry of them have already been reviewed in a few articles.¹⁶ To our knowledge, however, there has not been any collective information about the chemistry of 1,3-dithiolanes and related compounds. In this article a survey is given of experimental results and some pertaining explanations in the area of synthetic reactions in which 1,3-dithiolanes and related compounds participate with some emphasis on work conducted in our laboratory. However, the greater part of the previously reported reactions utilizing spiro-1,3-dithiolanes is omitted due to its failure in generality.

II. THE DEPROTONATION AT C-2 AND THE SUBSEQUENT REACTION

2-Lithio-1,3-dithiolanes have been reported to undergo facile elimination to form ethylene. This hypothesis was apparently based on the work of Schönhberg and his co-workers,⁶ who showed that 4, 4, 5, 5-tetraphenyl-1,3-dithiolane was cleaved with phenyllithium to tetraphenylethylene (5). Further, it has been found that several 2-aryl-1,3-dithiolanes in N,N-dimethylformamide containing hexamethylphosphoric triamide undergo deprotonation by NaH at the ring C-2 to afford 6, which are subsequently methylated by methyl iodide leading to the formation of the corresponding aromatic methyl dithiolates 7.⁶ Regarding 2-alkyl-1,3-dithiolanes, only 2-methyl-1,3-dithiolane has been found to undergo the analogous deprotonation-methylation
sequence to give methyl methylidithiolate, where lithium diisopropylamide is used instead of NaH. When 2-benzyl-1,3-dithiolane are treated with butyllithium or lithium diisopropylamide in ether, the reaction proceeds via a process involving deprotonation at the ring C-2 of 2-benzyl-1,3-dithiolane to afford preferentially \(\beta, \beta \)-bis(methylthio)styrene (8) upon treatment with methyl iodide.\(^{10} \)

On the other hand, the generation of 1,2-ethanediylbis(trithiocarbonic acid) dianion (10) from 2,2'-[1,2-ethanediylbis(thio)]bis-1,3-dithiolane and its reaction with several electrophilic reagents have been investigated.\(^{11,12} \) The dianion formation is readily accomplished by the addition of butyllithium in hexane to 2,2'-[1,2-ethanediylbis(thio)]bis-1,3-dithiolane under nitrogen. The initially formed dianion 9 is unstable and therefore undergoes ring opening leading to 10 with elimination of two moles of ethylene. The dianion 10 thus formed was subsequently treated with the trapping agents such as highly electrophilic alkyl halides, haloacetic esters, and chloromethyl alkyl ethers to produce mainly the corresponding 11. With the trapping agents such as less electrophilic alkyl halides and chloromethyl alkyl sulfides, the reaction occurred only at one of the nucleophilic ends in 10 to give a monoanion 12, which underwent fragmentation to afford the trithiocarbonate anions and 1,3-dithiolane-2-thione, and the former was then attacked by the same trapping agent to give the corresponding trithiocarbonates.

\[
\begin{align*}
\text{RS-CS-SCH}_2\text{CS-SR} & \overset{\text{RX}}{\rightarrow} \text{RS-CS-SCH}_2\text{CS-S-RX} \\
\text{RS-CS-SCH}_2\text{CS-S-R} & \overset{\text{RX}}{\rightarrow} \text{RS-CS-SCH}_2\text{CS-S-RX} \\
\end{align*}
\]

In the reaction of 2-alkylthio-1,3-dithiolanes with butyllithium, the initially formed anion is assumed to be 13, which immediately decomposes to ethylene and alkyl trithiocarbonate anion, and the latter is subsequently alkylated by several alkyl
Recent Progress in the Chemistry of 1,3-Dithiolanes and Related Compounds

halides to afford the corresponding dialkyl trithiocarbonates. In cases where 2-arylthio-1,3-dithiolanes were used instead of 2-alkylthio-1,3-dithiolanes, the similarly formed aryl trithiocarbonate anion undergoes further fragmentation to afford carbon disulfide and arenethiolate anion, presumably due to the electron-withdrawing effect of the benzene ring. The anion was then trapped by methyl iodide to afford the corresponding methyl sulfides.

The reactions of 1,3-dithiolane derivatives having a typical electron-withdrawing group such as carbonyl or cyano group at the ring C-2 with strong bases have also been investigated. Especially, it is interesting that the initially formed anionic species in such the case is stable to the cycloreversion above mentioned. For example, the anion generated from ethyl 1,3-dithiolane-2-carboxylate with lithium diisopropylamide at -78°C was found to be stable and does not undergo cycloreversion leading to at that temperature.

There are some instances relating to the reaction of with several Michael receptors. Thus, reacted with the unsaturated

\[
\begin{align*}
\text{RS} \text{Li} & \xrightarrow{\text{H}^+} \text{RS} \text{Li}^+ \\
\text{RS-CS-SR'} & \xrightarrow{\text{R}^+} \text{RS-CS-SR'}^+ \\
\text{RS}-\text{CS}-\text{SR} & \xrightarrow{\text{R}^+} \text{RS}-\text{CS}-\text{SR}^+ \\
\text{RS}-\text{CS} & \xrightarrow{\text{R}^+} \text{RS}-\text{CS}^+ \\
\text{RS}-\text{Li} & \xrightarrow{\text{CH}_3\text{I}} \text{RSCH}_3 \\
\text{RSCH}_3 & \xrightarrow{\text{R}^+} \text{RSCH}_3^+ \\
\text{R} & = \text{C}_6\text{H}_5, \beta-\text{CH}_3\text{C}_6\text{H}_4, \alpha-\text{CH}_3\text{C}_6\text{H}_4
\end{align*}
\]
lactam 17 and ethyl crotonate to afford the adducts 18 and 19, respectively. Also, the reaction of 15 with the β-chloro substituted Michael receptors such as 20 and 22 provides, after hydrolysis, a novel preparation of α,β-unsaturated 1,4-dicarbonyl compounds such as 21 and 23. In addition, 15 reacts cleanly with the pyranoside enone 24 to afford the adduct 25.

However, when a crystalline sulfonium salt (26, R=OC₂H₅), prepared from ethyl 1,3-dithiolane-2-carboxylate and methyl fluorosulfonate, was treated with K₂CO₃ in the presence of 2,3-dimethylbutadiene, the thiocarbonyl cycloadduct (29, R=OC₂H₅) was obtained in good yield. This means that a labile sulfur ylide (27, R=OC₂H₅) was apparently formed as the intermediate which underwent cycloreversion to 28 (R=OC₂H₅) under nearly neutral conditions. Similar transformations leading to 29 (R=CH₅) and 29 (R=CH₅) were also achieved with 2-acyl-1,3-dithiolanes such as 2-acyl- and 2-benzoyl-1,3-dithiolane as representative examples. Batyrbaev and his co-workers have found that the free-radical addition of 1,3-dithiolane and 2-methyl-1,3-dithiolane to 1-hexene in the presence of tert-butyl hydroperoxide at elevated temperature give 2-hexyl-1,3-dithiolane and 2-methyl-2-hexyl-1,3-dithiolane, respectively.

III. THE DEPROTONATION AT C-4 OR C-5 AND THE SUBSEQUENT REACTION

The successful deprotonation at the ring C-4 of 1,3-dithiolanes is initially found by Wilson and his co-workers and independently by us. The reaction of major part of 1,3-dithiolanes with butyllithium in an appropriate solvent results in fragmentation to the corresponding thiocarbonyl compound followed by further reaction with butyllithium. All four type of thiocarbonyl reactions such as reduction, S-addition, C-addition, and double addition have been observed in the reaction. For example, an excess of butyllithium in ether at room temperature reacted with 2-hexyl-1,3-dithiolane to yield a product mixture consisting of 32 and 34 together with 33 and 35 in relatively low yields. All products obtained from this reaction can be explained by involving initial deprotonation at the ring C-4 giving 30 and subsequent cleavage to the thiocarbonyl compound 31 followed by reaction with excess butyllithium. Such the new 1,3-dithiolane cleavage reaction offers a unique approach to 1,2-carbonyl transposition. Thus, when the α-ketodithiolane 36 was treated with an excess of
Recent Progress in the Chemistry of 1,3-Dithiolanes and Related Compounds

\[
\begin{align*}
\text{1} & \rightarrow \text{2} & \text{3} \\
\text{4} & \rightarrow \text{5} \\
\text{6} & \rightarrow \text{7} & \text{8}
\end{align*}
\]

Butyllithium, a vinyl sulfide 37 was formed in moderate yield. Hydrolysis of 37 in the presence of TiCl₄ in acetic acid gave the 1,2-transposed ketone 38.¹⁸

The reaction of several 2,2-disubstituted 1,3-dithiolanes derived from saturated ketones with butyllithium under the same reaction conditions and subsequent quenching with methyl iodide leading to the corresponding methyl sulfides has also been reported by the same authors.¹⁸ However, more interesting results have been observed in the reaction of 1,3-dithiolane derivatives of several ketones having α-hydrogen with the less nucleophilic lithium diisopropylamide and the subsequent quenching with alkyl halides. Thus, similarly formed thiocarbonyl compounds 39 were further converted in a few steps to the other intermediate species which, on trap-
ping with alkyl halides, lead to vinylic sulfides 40 and/or sulfides 41 bearing a secondary alkyl group depending on choice of the starting 2,2-disubstituted 1,3-dithiolanes. When 1,3-dithiolane derivatives of several diaryl ketones were submitted to the deprotonation with the same base and the subsequent quenching with alkyl halides, either one of 43, 44 and its mixture with 45 was produced depending on choice of the starting 2,2-diaryl-1,3-dithiolanes.19'20'21'

\[
\text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \quad \text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \quad \text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \\
\]

The lithium diisopropylamide-induced hydrolysis of 2-aryl-2-methyl-1,3-dithiolanes leading to the corresponding carbonyl compounds has also been reported.21'22'23' The reaction may be assumed to proceed via deprotonation of the similarly formed intermediate thioketone 46 by lithium diisopropylamide to give a species 47 which finally converted into the corresponding ketone by added aqueous acetic acid.

\[
\text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \quad \text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \quad \text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \\
\]

A variety of alkyl vinyl trithiocarbonates 48 can be prepared22'23' in synthetically useful yields by reaction of 1,3-dithiolane-2-thione with lithium diisopropylamide in tetrahydrofuran followed by treatment with several alkyl halides. Some 1,3-dithiolane-2-thione derivatives such as 4-methyl- (49), 4-phenyl- (50), and cis-4,5-diphenyl-1,3-dithiolane-2-thione (51) also receive22'23' the same conversion to give the corresponding trithiocarbonates. The initial deprotonation involved in these reactions occurred at C-5 of 49 and at both C-4 and C-5 of 50.22'23' An example of the analogous conversion

\[
\text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \quad \text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \quad \text{ArLiN(iPr-C,H)}_2 \xrightarrow{\text{S=C}} \text{Ar} \\
\]
Recent Progress in the Chemistry of 1, 3-Dithiolanes and Related Compounds

is also seen in the reaction of 2-alkylidene-1, 3-dithiolanes with a strong base. Thus, a sequential reaction of 2-alkylidene-1, 3-dithiolanes with lithium diisopropylamide in tetrahydrofuran in the presence of hexamethylphosphoric triamide and aqueous HCl gave 52. Besides, basic catalysts can effect a rapid polymerization of 1, 3-dithiolane-2, 4-dione to yield polyester (53) of 2-mercaptoacetic acid. The catalytic effect of aprotic bases such as N-methylmorpholine and triethylamine increases with their increasing basicity because the initiation consists of the deprotonation at C-5 of the monomer.

\[RX = \text{CH}_3\text{I, C}_2\text{H}_5\text{I, C}_x\text{H}_y\text{Br, } \text{C}_6\text{H}_5\text{CH}_2\text{Br} \]

IV. THE ATTACK TO FUNCTIONAL GROUP AT C-2 AND THE SUBSEQUENT REACTION

When the reaction mixture of 1, 3-dithiolane-2-thione with butyllithium in tetrahydrofuran is quenched with methyl and ethyl iodides, butyl methyl trithiocarbonate and butyl ethyl trithiocarbonate are obtained, respectively, together with ethylene. It seems reasonable that the reaction involves direct attack of the nucleophile on the sulfur of thiocarbonyl leading to an intermediate anion and subsequent fragmentation of to ethylene and butyl trithiocarbonate anion. Prior to this report, it has already been reported by Corey and Märk that the reaction of 1, 3-dithiolane-2-thione derivatives with trimethyl phosphite leads to the formation of the corresponding olefins by cis-elimination. If the objective product in these reactions is only the olefin, the former reaction using butyllithium seems to exhibit more advantages because it can be more easily visualized. More important from the synthetic point of view is the discovery that the former reaction constitutes, together with the reaction proposed by Overberger and Drucker, a new process of the interconversion of cis- and trans-olefins. For example, cis- and trans-stilbene are converted to trans-4, 5-diphenyl-1, 3-dithiolane-2-thione (55) and its cis-isomer (56), respectively. Thus, the compound 55 was treated with butyllithium in tetrahydrofuran to afford trans-stilbene in 100% yield. Similarly, cis-stilbene was obtained free of isomeric impurity in 99% yield from
The treatment of 1, 3-dithiolane-2-thione with dimethyl sulfate provides 57 which is further converted to a variety of compounds such as 58, 59, 60, 61, and 62.

When cis- or trans-4, 5-diphenyl-1, 3-dithiolane-2-thione in ethanol was irradiated by a mercury arc lamp with Pyrex filter under nitrogen, the obtained product was phenanthrene (63) regardless of which starting material was chosen (cis and trans). From the kinetic measurements which were made by monitoring the disappearance and appearance of the starting material and the product, respectively, in the presence of air and in degassed cells, and overview of the possible mechanistic paths operative in
Recent Progress in the Chemistry of 1,3-Dithiolanes and Related Compounds

This system is proposed, which is given as accompanying equations.

It has been found that the reaction of enol silyl ethers with 2-ethoxy-1,3-dithiolane proceeds smoothly in the presence of ZnCl₂ to give half-protected 1,3-dicarbonyl compounds. A novel procedure to ketene S,S-acetals of general structure has been proposed. The procedure involves the initial formation of a phosphorus ylide by base treatment of 2-ethoxy-1,3-dithiolane, triphenylphosphine, and HBF₄, and the subsequent Wittig reaction of with aldehydes. The reaction of 2-ethoxy-1,3-dithiolane with a variety of active methylene compounds in the presence of ZnCl₂ leading to was investigated. By this reaction the introduction of a 1,3-dithiolan-2-yl group into the active methylene compounds was achieved. Also, the reaction of various phenols with 2-ethoxy-1,3-dithiolane in dichloromethane proceeded smoothly in the presence of BF₃·O(C₂H₅)₂ to afford 1,3-dithiolan-2-ylated phenols (70 and 71), which were readily hydrolyzed to the corresponding aldehydes. This process for the formylation of phenols could also be extended to N,N-dimethylaniline and indole. Another example of the introduction of 1,3-dithiolan-2-yl moiety into methyl lysergate is also reported by Stütz and Stadler.

\[
\begin{align*}
\text{OC}_2\text{H}_5 \cdot \text{RRC}_2\text{OSi(CH}_3)_2\text{ZnCl}_2 \quad & \text{RR'C}_2\text{COR}\nonumber \\
\text{(64)} & \text{(65)} \quad R, R', R'' = \text{H, C}_6\text{H}_5, \text{OC}_2\text{H}_5
\end{align*}
\]

\[
\begin{align*}
\text{OC}_2\text{H}_5 \cdot \text{P(C}_6\text{H}_5)_2\text{, HBF}_4 \rightarrow & \left[\text{OC}_2\text{H}_5 \cdot \text{P(C}_6\text{H}_5)_2\right] \text{BF}_4^- \nonumber \\
& \rightarrow \left[\text{OC}_2\text{H}_5 \cdot \text{P(C}_6\text{H}_5)_2\right] \text{Li}^+ \nonumber
\end{align*}
\]

\[
\begin{align*}
\text{RCHO} \rightarrow & \text{OC}_2\text{H}_5 \cdot \text{P(C}_6\text{H}_5)_2 \nonumber \\
\text{(66)} & \text{(67)} \quad R = \text{CH}_3, \text{C}_6\text{H}_5, \text{iso-C}_6\text{H}_5, \text{C}_3\text{H}_7
\end{align*}
\]

\[
\begin{align*}
\text{OC}_2\text{H}_5 \cdot \text{CH}_3 \cdot \text{ZnCl}_2 \rightarrow & \text{OC}_2\text{H}_5 \cdot \text{CH}_3 \cdot \text{R}'
onumber \\
\text{(68)} & \text{(69)} \quad R = \text{COCH}_3, \text{COCH}_2\text{C}_6\text{H}_5, \text{CN}, \text{CO}_2\text{H}_5
\end{align*}
\]

\[
\begin{align*}
\text{OC}_2\text{H}_5 \cdot \text{OH} \cdot \text{BF}_3 \cdot \text{O(C}_2\text{H}_5)_2 \rightarrow & \text{OH} \cdot \text{BF}_3 \cdot \text{O(C}_2\text{H}_5)_2
onumber \\
\text{(70)} & \text{(71)} \quad Y = \text{H, 2-CH}_3, \text{3-CH}_3, \text{4-CH}_3, \text{2-OCH}_3, \text{4-OCH}_3
\end{align*}
\]
2-Propyl-1, 3-dithiolane itself undergoes formylation with N-chloromethylene-N, N-dimethylammonium chloride in dichloromethane in the presence of a catalytic amount of p-toluenesulfonic acid to afford 2-(1, 3-dithiolan-2-yl)butanal. Ueno and Okawara reported on the reaction of 2-methylthio-1, 3-dithiolan-2-yl iodide, prepared from 1, 3-dithiolane-2-thione and methyl iodide in nitromethane, with ethyleneimine to produce 72, which was easily converted into the conjugated N-vinyl monomer 73. Further, it has been reported by the same authors that 2-methylthio-1, 3-dithiolan-2-yl iodide reacts with NaN$_3$ in N, N-dimethylformamide with evolution of nitrogen to give 74. Another interesting examples which should be involved in this section may be the reaction of 1, 3-dithiolane-2-thione with diphenylketene in dichloromethane leading to 75 as well as the reaction with bromocyanocetylene in xylene to give 76. The compound 76 was further converted to 77.

![Reaction Scheme](image)

V. THE ATTACK TO S-1 AND/OR S-3 AND THE SUBSEQUENT REACTION

As described in the introduction of this review, the research upon the hydrolysis of 1, 3-dithiolanes and related compounds affording the corresponding carbonyl compounds is of practical significance with respect to the widespread use as the masked carbonyl compounds. Thus, a variety of simple, mild, and effective techniques for hydrolyzing 1, 3-dithiolanes and related compounds based on the use of easily available reagents have been investigated by many chemists. Almost all of these techniques have been accomplished by the following two methods. One is the acidic or transition-metal hydrolysis and the other is the oxidative or alkylative hydrolysis. A number of procedures using reagents such as methyl iodide or benzyl bromide in aqueous methanol, dimethyl sulfate in aqueous methanol, a combination of triethylxonium tetrafluoroborate in dichloromethane and aqueous CuSO$_4$ (the...
latter reagent is employed for hydrolysis of the intermediate sulfonium salt produced by action of the former reagent,43 methyl fluorosulfonate in benzene and aqueous NaOH (both of which are employed in the same significance),44 sulfuryl chloride fluoride in ether and water required for hydrolysis,45 tert-butyl bromide or iodide in dimethyl sulfoxide and water required for hydrolysis,46 (NH\textsubscript{4})\textsubscript{2}Ce(NO\textsubscript{3})\textsubscript{6} in aqueous acetonitrile,47 ice cold concentrated H\textsubscript{2}SO\textsubscript{4},48 O-(mesitylenesulfonyl)hydroxylamine in dichloromethane and water required for hydrolysis,49 trichloroisocyanuric acid in aqueous acetonitrile in the presence of AgNO\textsubscript{3},50 concentrated HCl plus H\textsubscript{2}O\textsubscript{2} in methanol,51 benzeneseleninic anhydride in tetrahydrofuran and water required for hydrolysis (this works well for hindered spiro-1,3-dithiolanes),51 a combination of HgO and BF\textsubscript{3} as well as water required for hydrolysis (this works well for 2-hydroxyalkyl-1,3-dithiolanes and ketene S,S-acetals of 1,3-dithiolane series),52,53 Ti(NO\textsubscript{3})\textsubscript{3} in methanol and co-solvents and water required for hydrolysis,54 aqueous HBF\textsubscript{4} plus HgO in tetrahydrofuran,55 NO+HSO\textsubscript{4} in dichloromethane and water required for hydrolysis,56 NaNO\textsubscript{2} or NaNO\textsubscript{3} in trifluoroacetic acid and water required for hydrolysis,57 NO+BF\textsubscript{4} in dichloromethane and aqueous NaHCO\textsubscript{3} for hydrolysis,58 bromodimethylsulfonium bromide in dichloromethane and water required for hydrolysis,59 SO\textsubscript{2}Cl\textsubscript{2} in dichloromethane in the presence of wet silica gel,60 chloramine-T in aqueous methanol,61 aqueous Hg(OOCCH\textsubscript{3})\textsubscript{2},62 as well as polystyryl-mercury trifluoroacetate in dichloromethane and water required for hydrolysis,63 are currently known. Most of these reagents seem to be also effective even if one substituent at the ring C-2 of 1,3-dithiolanes and related compounds is alkoxy, alkoxycarbonyl, alkenyl, or hydroxyalkyl group. It can be assumed that in the presence of these reagents 1,3-dithiolanes and related compounds undergo electrophilic attack on S-1 and/or S-3 followed by cleavage of the C-S bond in the first step of the reaction. Another type of dethioacetalization of a spiro-1,3-dithiolane is accomplished62 by its interchange reaction (transacetalization) with glyoxylic acid hydrate in acetic acid in the presence of concentrated HCl.

The intermediate adducts formed from a few 1,3-dithiolanes and the electrophilic reagents such as methyl fluorosulfonate, chloramine-T, and triethyloxonium tetrafluoroborate are also capable of undergoing alcoholysis and thiolysis. For example, the reaction of 2-hexyl-1,3-dithiolane with methyl fluorosulfonate in dichloromethane gave the sulfonium derivative 78, which on reaction with ethylene glycol, 2-mercaptoethanol, and methanol in the same solvent gave 80 \((Y=\text{O})\), 80 \((Y=\text{S})\), and 82, respectively.63 If these reactions were carried out under milder conditions, only the corresponding precursors, 79 \((Y=\text{O})\), 79 \((Y=\text{S})\), and 81, were obtained.63 The treatment of 1,3-dithiolane with chloramine-T in methanol gave the N-tosylsulfilimine 83, which on reaction with methanol and benzenethiol in the presence of KOH, gave 2-methoxy- and 2-phenylthio-1,3-dithiolane, respectively.64 Also, the disulfonium salt 84, prepared from 2-phenyl-1,3-dithiolane with triethyloxonium tetrafluoroborate in dichloromethane, reacts with 1,2-ethane-, 1,3-propane-, and 1,4-butanediol in the presence of either K\textsubscript{2}CO\textsubscript{3} or tert-amine to afford the corresponding benzaldehyde acetics 85.65 The procedure provides a convenient method for the conversion of polyfunctional alcohols such as methyl a-D-glucopyranoside to the corresponding benza-
dehydrate acetal under non-acidic conditions.65)

Dimethyl(methylthio)sulfonium tetrafluoroborate and methanesulfonyl chloride react rapidly with 2, 2-dimethyl-1, 3-dithiolane in nitromethane or dichloromethane to cleave both bonds between C-2 and the adjacent sulfur atoms. In the reaction, the product 89 has been obtained together with the polymer 90.66) All of these events can be interpreted by the accompanying reaction sequence. The transformation of 86 to 88 amounts to a ring-expanding 1, 2-rearrangement whereupon C-2 migrates from S+ to S.

The reaction of several 1, 3-dithiolanes having two electron-withdrawing aryl substituents at C-2 with butyllithium in tetrahydrofuran can occur by a mechanism other than that involving deprotonation at C-4. Thus, when the 2, 2-diaryl-1, 3-
dithiolanes were treated with an excess of butyllithium in tetrahydrofuran solution followed by addition of an appropriate alkyl halide, the corresponding 1-butylthio-2-(1, 1-diarylalkylthio)ethanes 92 were obtained. The process probably involves S-addition of an n-butyl anion with simultaneous cleavage of the bond between the sulfur atom and C-2 giving an intermediate anionic species 91, which is then alkylated by the alkyl halide.

\[
\begin{align*}
\text{S-} & + \text{C}_4\text{H}_9\text{Li} \\
\text{Ar} & \rightarrow \text{C}_4\text{H}_9\text{Li} \\
\text{Ar} & \rightarrow \text{RX} \\
\end{align*}
\]

Tributyltin hydride has been found to be an effective and selective agent for complete or partial desulfurization of some 1, 3-dithiolanes. Thus, the reaction of the 1, 3-dithiolanes with 4 equivalents of tributyltin hydride in the presence of 2, 2'-azobis(isobutyronitrile) results in complete desulfurization, giving the corresponding hydrocarbons 96 in good yield, ethane, and bis(tributyltin) sulfide. Two equivalents of the hydride specifically cleave the two geminal bonds between C-2 and the adjacent sulfur atoms to give 96 and 95. One equivalent of the hydride reduces the 1, 3-dithiolanes quantitatively to 94. A reaction scheme consistent with these data obtained from the reaction of the 1, 3-dithiolanes with 1, 2, or 4 equivalents of tributyltin hydride is shown in the following equations.

\[
\begin{align*}
\text{R} & \rightarrow \text{R} \cdot \text{S} \cdot \text{SnH} & \rightarrow & \text{R} \cdot \text{CH}_{3} \cdot \text{S} \cdot \text{SnH} \\
\text{R} & \rightarrow \text{R} \cdot \text{S} \cdot \text{SnH} & \rightarrow & \text{R} \cdot \text{CH}_{3} \cdot \text{S} \cdot \text{SnH} \\
\text{R} & \rightarrow \text{R} \cdot \text{S} \cdot \text{SnH} & \rightarrow & \text{R} \cdot \text{CH}_{3} \cdot \text{S} \cdot \text{SnH} \\
\end{align*}
\]

1, 3-Dithiolane and several phenacyl bromides in \(N, N \)-dimethylformamide afford phenacyl-1, 3-dithiolanium bromides which, on treatment with aqueous NaOH, give 97 as stable crystals. By the following equations, several reactions of 97 with benzoic anhydride, phenyl isocyanate, and dimethyl acetylenedicarboxylate to afford
the corresponding carbonyl-stabilized sulfonium ylides having a 1,3-dithiolane moiety are indicated. Similar research is also carried out by Kato and his co-workers.

\[
\begin{align*}
\text{I} & \xrightarrow{\text{RCOCH}_2\text{Br}} \text{S} & \xrightarrow{\text{CH}_2\text{COR}} \text{S} & \xrightarrow{\text{NaOH}} \text{S} \\
\text{S} & \xrightarrow{\text{CH}_2\text{COR}} \text{S} & \xrightarrow{\text{NaOH}} \text{S} & \xrightarrow{\text{NaOH}} \text{S} \\
\end{align*}
\]

The oxidation of 1,3-dithiolanes and related compounds affording the corresponding 1-oxides and/or 1,3-dioxides may be included in this section. For example, the stereoselectivity of oxidation of some 1,3-dithiolanes such as 2-methyl-, 2-phenyl-, and 2-tert-butyl-1,3-dithiolane with NaIO₄ and with m-chloroperoxybenzoic acid gives primarily the trans-1-oxide corresponding to attack from the less-hindered side. The trans/cis ratio varies from 3/2 for oxidation of 2-methyl-1,3-dithiolane to cleanly trans for 2-tert-butyl-1,3-dithiolane. Thus, the some 1,3-dithiolanes were oxidized in the analogous manner to the corresponding monosulfoxides which, on heating in dimethyl sulfoxide or \(N, N\)-dimethylformamide, gave dihydro-1,4-dithiins. The reaction involves [2,3] sigmatropic rearrangement of the oxides to generate a sulfenic acid intermediate followed by ring closure through a \(S\)-stabilized carbonium ion. Similar conversion using some spiro-1,3-dithiolanes is also achieved by
Recent Progress in the Chemistry of 1,3-Dithiolanes and Related Compounds

Janssen and Kwart. Thus, the thermal \(\beta\)-\(\delta \)-elimination reaction of cyclic sulfoxides and subsequent ring expansion reaction were achieved. \(\textit{HPF}_6 \) catalyzes the copolymerization of 2-methyl-1,3-dithiolane with ketene in dichloromethane at low temperature to afford the oily product \(101 \).

VI. THE OTHER REACTIONS

When the relatively labile methyl 4, 4, 5, 5-tetraphenyl-1, 3-dithiolane-2-carboxylate in toluene in the presence of a small amount of thiobenzophenone was kept at 100\(^\circ\)C, the relatively stable methyl 2, 2, 5, 5-tetraphenyl-1, 3-dithiolane-4-carboxylate \(105 \) and methyl 3, 3-diphenylacrylate \(104 \) were formed. Kalwinsch and Huisgen propose that the thiocarbonyl ylide \(102 \) occurs in the 1, 3-dipolar cycloaddition of the starting ester. The cycloaddition of the 1, 3-dipole \(102 \) to thiobenzophenone proceeds in both conceivable directions. The third competing reaction of \(102 \) is the electrocyclic ring-closure to \(103 \) which loses \(S \) to give \(104 \).

\[
\text{C}_6\text{H}_5\text{C} = \text{CHCO}_2\text{CH}_3 \xrightarrow{\text{hv}} \text{C}_6\text{H}_5\text{SC} = \text{CHCO}_2\text{CH}_3 + \text{C}_6\text{H}_5\text{CO}_2\text{CH}_3
\]

The irradiation of the acetylenes of the type \(106 \) and 1, 3-dithiolane-2-thione with a low pressure mercury lamp under nitrogen yielded \(107 \). Selective excitation of the acetylenes \(106 \) is essential to this reaction. Also, the irradiation of 1, 3-dithiolane-2-thione in dichloromethane and cyclohexene with a low pressure mercury lamp gave a pale yellow crystal \(108 \). Besides, the reaction of 1, 3-dithiolane-2-thione with dimethyl acetylenedicarboxylate to afford \(109 \) has been reported.

\[
\text{C}_6\text{H}_5\text{C} = \text{CHR} \xrightarrow{\text{hv}} \text{C}_6\text{H}_5\text{S} = \text{CHR}
\]

\[
\text{C}_6\text{H}_5\text{S} \xrightarrow{\text{hv}} \text{C}_6\text{H}_5\text{S} - \text{C}_6\text{H}_5
\]

\[
\text{C}_6\text{H}_5\text{C} = \text{CHCO}_2\text{CH}_3 \xrightarrow{\text{hv}} \text{C}_6\text{H}_5\text{S} = \text{CHCO}_2\text{CH}_3
\]
109 is useful for the preparation of tetrathiafulvalene.

REFERENCES

(7) A. Schönberg, D. Černík, and W. Urban, *Ber.*, 64, 2577 (1931).
(10) T. Oida, S. Tanimoto, H. Terao, and M. Okano, unpublished report. If the analogous reaction using 2-benzyl-1,3-dithiolane is conducted in tetrahydrofuran as reaction medium, it proceeds via another process involving attack at a hydrogen on C-4 of 2-benzyl-1,3-dithiolane to afford 1-(methylthio)phenethyl vinyl sulfide and/or 2-(methylthio)styrene.
(17) S. Tanimoto, T. Oida, T. Sugimoto, and M. Okano, unpublished report. If the analogous reaction using 2-benzyl-1,3-dithiolane is conducted in tetrahydrofuran as reaction medium, it proceeds via another process involving attack at a hydrogen on C-4 of 2-benzyl-1,3-dithiolane to afford 1-(methylthio)phenethyl vinyl sulfide and/or 2-(methylthio)styrene.
Recent Progress in the Chemistry of 1,3-Dithiolanes and Related Compounds

(67) H. Ikehira, S. Tanimoto, and T. Oida, unpublished report.