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              In order to evaluate the collective oscillation under thermal fluctuation we developed a computer 

          program to solve the Langevin equation numerically by using the random force. The computer program 
          was applied to a linearly connected collective oscillatory system and the neutron intermediate scattering 

          function and the autocorrelation functions of the velocity and of the position were calculated. This 

          program can be also applied to various problems of dynamics of molecular systems in a potential field 
          under thermal fluctuation. 
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                                   I. INTRODUCTION 

            Neutron scattering is a powerful tool for investigation of molecular dynamics; 

        both normal vibrations and random motions due to thermal fluctuation. The phe-

        nomenon by the former is observed as inelastic scattering and that by the latter as 

        quasielastic one. Strictly speaking, these two types of motions cannot be distinguished, 
        especially in disordered materials such as amorphous polymers.') In the extremely 

        low temperature region where thermal fluctuation can be ignored, dynamics of 
        molecular system can be understood in terms of normal vibration concepts even in 
        amorphous materials, though the formalism seems to be very difficult. With increasing 

        temperature, vibrational motions would be damped by thermal fluctuation and at 
        extremely high temperatures it becomes ramdom motion which can be observed as 

        quasielastic scattering. In the intermediate region, the vibrational motions and the 
        random motions are not strictly distinguished. 

            We developed a computer program to evaluate the collective oscillation under 
        thermal fluctuation and applied this program to a linearly connected collective oscilla-

        tory system consisting of N beads and fixed at both ends. In this paper, preliminary 
        results are reported. The Langevin equation of the system is solved by using the 

        random force and the neutron intermediate scattering function, and the autocorrelation 
        functions of the velocity and of the position are calculated. This model can be 

        applied to local motion of amorphous polymers entangled with each other in the time 
        region 10-13 to 10-10 sec and the computer program developed can also be applied to 

        various problems of dynamics of molecular systems in a potential field under thermal 
         fluctuation. 

            plJ : Laboratory of Fiber Chemistry, Institute for Chemical Research, Kyoto University, Uji, 
           Kyoto-fu 611. 
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                 II. MODEL AND  LANGEVIN EQUATON 

   We consider a model of one-dimensional bead-spring chain consisting of N 

beads connected linearly by N+ 1 harmonic springs of the force constant k, and all the 

beads have the same mass m. Both ends of the chain are fixed. The Langevin equation 

of the i-th bead for this system can be written in the following form 

                 2•m dt2+my; dttfi=R,(t) (i=1,...,N), (1) 
where u,• is the displacement of the i-th bead from the equilibrium position, 7,• the 
friction coefficient, and ft and Rt the external force and the random force on the 
i-th bead, respectively. It is assumed that the friction coefficient and the random 
force are the same for all the beads. For the present system, the external force f; on 
the i-th bead is given by 

fi=k(-2u1+u2), 
                ft=k(ut+i.-2u;+ut-i) (i=2, •••, N-1),(2) 
fN=k(-2uN I uN-1)• 

By the using matrix representation, eq. (1) can be written as 

                 m  dt2+my du —kAu=R(t),(3) 
where 

—2 1 0 0 . . 

                   1 —2 1 . 

A010(4) 
. . . . —2 1 
. . . 0 1 —2. 

For the case of N=1, the system corresponds to a harmonic oscillator under thermal 
fluctuation. We can analytically calculate some physical quantities of the system of 
N=1 and we can confirm the validity of the calculation program by comparing 
the numerical results with the analytical ones. 

   The random force must be well-defined. Then, we give the following character-

istics to the random force; 

(i) Ensemble average of R(t) is zero 

<R> =0.(5) 

(ii) Autocorrelation function of R(t) is given by the Dirac 8-function 

<R(0)R(t) > _ <R2>8(t),(6) 

where <R2> is the square average of R. 

(iii) Distribution function of the absolute value of R(t) is assumed to be a Gaussian, 

                   g (R) = V2raeXp (—R2/2a2) •(7) 
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(iv) Distribution of the time-interval of R(t) is defined as 

 .f  (T) = aexp(—T/a),(8) 

where a is the mean value of the time-interval. 

                 III. NEUTRON SCATTERING FUNCTION 

    According to van Hove theory,2) the time-space self-correlation function GS(r, t) 
for the present system can be written as 

GS(r, t)=<p(0, 0)p(r, t)> 

                N /~f 8[r+ri(t')—r']S[r'—r,(t'+t)]dr/,(9) 
where p(r, t) is the particle density at a time t and a position r and the bracket < > 
means an ensemble average. Assuming that there is a particle at an arbitrary time t' 
and a position r', G8(r—r', t—t') presents the ensemble-averaged probability of finding 
the same particle at a distant r for a later time t. In thermal equilibrium, the 
ensemble average does not depend on the time and position origins, so that we can put 
r'=0 and t'=0. 

   The corresponding neutron intermediate scattering function I5(Q, t) is given by 

Is(Q, t)=<p(0, 0)p(Q, t)> 

                    1   

                 N/ENexp(—iQr,(0)) exp(iQrr(t))j,(10) 
where p(Q, t) is defined as the Fourier transform of p(r, t) with respect to r 

                   p(Q, t)= f p(r, t)eiQrdr.(11) 
   By the Fourier transform of the intermediate scattering function Is(Q, t) with 
respect to t, we get the incoherent neutron scattering function S;ae(Q, co). 

Siac(Q, w)= f Is(Q, dt,(12) 
where co corresponds to the angular frequency of a scattering particle. In the present 
report, we solve the Langevin equation req. (1)] numerically by using the random 
force defined by eqs. (5)–(8) and get the time-sequence of the velocities and the positions 
of the individual scattering particles. Then, the neutron intermediate scattering 
function can be calculated from the time-sequence and the incoherent neutron scatter-
ing function by the Fourier transform of the intermediate one. We average the 
neutron intermediate scattering function over all the orientation in Q space, assuming 
an isotropic distribution of orientation. 

IV. RESULTS AND DISCUSSION 

   The autocorrelation function <R(0)R(t) > and the distribution function f (T) of 
time intervals of the random force used in the present calculation are shown in Fig. 1. 
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     Fig. 1. Autocorrelation function of random force <R(0)R(t)> and distribution function 
           f (r) of time-interval of random force. 

<R(0)R(t) > can be approximately regarded as the 8-function. The time unit in this 
calculation is arbitrary. All the physical quantities calculated have been obtained 
from the average over 2000 trials. 

   We, at first, carry out calculations for a system consisting of one bead N=1 in 
order to reveal the characteristic properties of the systems and to confirm the validity of 
the calculation program. The system of N=1 corresponds to a harmonic oscillator 
under thermal fluctuation with the force constant 2k and mass m. The autocorrelation 
functions of the velocity and of the position can be analytically obtained3) and we 
calculate these functions by using the present program to compare them with the 
analytical ones. It is found that the results obtained by the program agree with the 
analytical ones within a statistical error. Figure 2 shows the autocorrelation functions 
of the velocity and of the position and the intermediate neutron scattering function at 
various values of the friction coefficient. Other parameters such as mass, force constant 
and mean square value of the random force are fixed. In a low friction limit 

(y2<<k/m), both the velocity autocorrelation function and the position one show a 
periodic behavior like that of a harmonic oscillator without thermal fluctuation. With 
increasing the friction coefficient, the velocity autocorrelation function is gradually 
damped and approaches to the 8-function. It is a so-called diffusion-limit. The 

position autocorrelation function is also damped in the same manner as the velocity 
autocorrelation function at a value of y smaller than 1.0. In a large friction limit 

(y2>>k/m), however, it becomes an exponential function in contrast with the velocity 
autocorrelation function. 

   Figure 3 shows the autocorrelation functions of the velocity and of the position and 
the neutron intermediate scattering function for the systems N=1, 3, 5, 10, 15 and 20. 
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     Fig. 2. Velocity and position autocorrelation functions, <v(0)v(t)> and <u(0)u(t)>, 
            and neutron intermediate scattering function Is (Q, t) at Q=1. Friction coeffi-

           cients; 0.1 (a), 0.5 (b), 1.0 (c), 2.0 (d), 5.0 (e) and 10.0 (f). Both force constant 
            and mass are fixed to he 1.0 for (a)-(f). 

The friction coefficient y, the mass m and the force constant k were fixed for all the 

systems. The velocity autocorrelation function, the position one and the neutron 

intermediate scattering function of the system N=1 are identical. The velocity 

autocorrelation function is independent of the number of beads N, which is determined 

only by the friction coefficient. On the other hand, the position autocorrelation 

function and the neutron intermediate scattering function vary with N. They show 

a damping oscillation for N smaller than 5, whereas the oscillatory behavior can be 

no more observed for N larger than 10. It means that the restoring force is not effective 

                           ( 51 )
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    Fig. 3. Velocity and position autocorrelation functions, <v(0)v(t)> and <u(0)u(t)>, 
           and neutron intermediate scattering function Is(Q, t) at Q=1 for N=1 (a), N=3 

           (b), N=5 (c), N=10 (d), N=15 (e) and N=20 (f). Force constant, mass and 
           friction coefficient are fixed to be 1.0 for (a)-(f). 

for the long chain. 
   In other calculations, we have observed the transition from an oscillatory behavior 

to diffusive one. Such a transition is observed with increasing the friction coefficient, 
with decreasing the force constant or with increasing the number of beads. It cor-
responds to the transition from the non-Markov process to Markov one. The transition 

can be treated by the generalized Langevin equation which was formulated by Mori4) 
and Zwanzig5) on the basis of the projection operator method. Inoue has applied it 
to a random jump particle in the periodic lattice.6) In their formalism, the total 
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information of a molecular system is included in a memory function. We will modify 

the present computer program in order to evaluate the memory function for various 

molecular systems. 
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