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   The equations of Barton and of Johnston, which can predict the sequence-distribution dependence 
of copolymer glass transition Tg, are revealed to hold some algebraic relationships between the  Tg of 
equimolar random copolymer, the Tg of alternating copolymer, and some kind of the average of the Tg's 
of the two homopolymers. With use of these relationships and the literature data of 25 copolymer 
systems, the two equations are compared with each other. Although the predictions of the two 
equations are rather similar and are seen to be in reasonable accord with all the random copolymer data 
analyzed, it is found that in certain systems, the predictions greatly differ for alternating copolymers. 
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                         INTRODUCTION 

   In order to describe the sequence-distribution dependence of glass transition 
temperature of copolymers, there have been reported two equations: Barton's' and 
Johnston's.' Those two equations, proposed in the same time span yet independently, 
have been taken as logical extensions, respectively, of the equations of DiMarzio and 
Gibbs' and of Fox.4 Although they have different theoretical bases, i.e., the configura-
tional entropy and the free volume, the two equations work almost evenly for the 
copolymer systems the authors analyzed in each publication. For certain systems, 
however, there must appear some significant differences in prediction between the two 
equations. Such possible differences have not been examined yet in detail. 

   In the preceding paper,' some algebraic characteristics of the Barton equations has 
been demonstrated. Those allow us, with minimum experimental results, to predict the 
whole variation of copolymer glass transition with sequence distribution. Similarly it 
may be possible to figure out characteristics of the Johnston equation. Those charac-
teristics must provide us with a clue helpful for a comparative study on the two 
equations. The present paper describes first the intrinsic features of the two equations, 
followed by the comparison between the two predictions with use of the literature data 
of glass transition and copolymerization kinetics of 25 copolymer systems. For all 
random copolymers examined, the predictions of the two equations are rather similar 
and are seen to be in reasonable accord with experimental data. Accordingly, it is 
hardly expected to differentiate the two equations with random copolymer data only. 
It is suggested that crucial examinations could be successful by comparing the data of 
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alternating copolymers with the predictions, because, in certain systems , the predictions 
differ greatly. 

              EQUATIONS OF BARTON AND OF JOHNSTON 

New Expressions 

    In a copolymer chain composed of two monomer units A and B with mole fractions 
 mA and mB, there are four different dyad sequences: AA, BB, AB, and BA. As the last 

two sequences have an equivalent linkage, the number of different linkages in the 
copolymer chain becomes three. Since those linkages have generally different stiffness 
energy of rotation, we have to differentiate between the contributions to the glass 
transition temperature of the three linkages. This has been called the dyad model . 
Barton's and Johnston's equations, both being based on this model , have been derived, 
respectively, as 

Tg = MAPAATgAA + mBPBBTgBB + (mAPAB+mBPBA)TgAB(B) (1) 

and 

1/ Tg = WAPAA/ TgAA + WBPBB/ TgBB + (WAPBB+ WBPBA)/ TgAB (J) (2) 

Here, Tg is the glass transition temperature of a compolymer with composition and 
sequence distribution specified by the values of products mPs or WP s; W is the weight 
fraction; PJ and TgIJ are, respectively, the probability of, and the glass transition 
temperature referred to, the IJ dyad sequence. In the concrete, PAB implies the 

probability that a given A monomer has a B monomer on its right. Accordingly, the 
product of mAPAA is equal to the mole fraction of the AB dyad sequence, mAB; 
similarly, mBPBB= mBa, mAPAB= mAB and mBP BA= MBA. The original form of Bar-
ton's equation does not include mjPIJ's, but is written as eq 1 for better comparison with 

Johnston's equation. TgAA and TgBB are equal, respectively, to the Tg's of the 
homopolymers of A and B, and TgAB is the Tg of the corresponding alternating 
copolymer. Equation 1 has a structure simple to understand. On the other hand, eq 2 
may be considered in such a way that each W/ Tg term similar to that of the Fox 
equation is multiplied by a corresponding weight of F, followed by summation. 

   Only implicitly, both equations in the original form describe the sequence-
distribution dependence of copolymer glass transition temperature. So as to express 
the dependence explicitly, the run number R introduced by Harwood and Ritchey' can 
be used. That is defined as the average number of monomer sequences (runs) 
occurring in a copolymer per 100 monomer units. With use of the Harwood-Ritchey 
expressions for Pj's or more directly from the relations between mu and R,5•6 it has 
been shown that Barton's equation may be rewritten as5 

                Tg=mATgAA + mBTgBB+ (R/100)( TgAB —Tg)(3) 

with 

                      Tg = ( TgAA + TgBB)/2 

( 298 )



                            Copolymer Glass Transition 

or 

 Tg =  MA TgAA+ mBTgBB + (R/R*)[Tg(R*) — Tg](4) 

Here, R* is the R value of an equimolar random copolymer and is equal to the 
maximum value of R attainable in conventional copolymerization. So Tg(R*) (_ 
Tg(mA=0.5)) is an observable. Obviously, Tg is best represented by 3-dimensional 

plots against mA and R. For ordinary purposes, however, a plot of Tg against R is 
preferable: equations 3 and 4 imply that on such a plot, the three points of Tg, Tg(R*) 
and TgAB are on the same straight line.' This line is the locus of an arithmetic mean of 
the glass transition temperatures of two random copolymers, Tg(mA) and Tg(mA'=1— 
mA). It is because the variation of R with mA is symmetrical with respect to a line of 
mA=0.5, and those two random copolymers are characterized by a fixed value of R. In 
other words, the straight line represents the Tg's of hypothetical equimolar copolymers 
with varying degrees of sequence distributions. 

   Similarly, Johnston's equation may be expressed as 

        1/Tg=WA TgAA+WE/ TgBB+(R/200 M)[(MA + MB)/ TgAB 

— MA/ TgBB- MB/ TgBB](5) 

with 

                        M = mA MA + inn MB 

or 

1/ Tg = WA/ TgAA + WB/ TgBB + (R/R*)[1/ Tg(R*) 

                      — WA*/ TgAA — WB*/ TgBB](6) 

with 

WI* = MI/(MA+MB); I = A or B 

where M stands for the formula weight of monomer. Equation 6 is derived by 
eliminating TgAB from eq 5 at R= R* and eq 5 itself. These equations suggest the 
existence of a straight line similar to that Barton's equation implicitly contains. On a 

plot of 1/ Tg against R, the three points, (WA*/TgAA--WB*/ TgBB)R=o, 1/ Tg(R*) and 
1/ TgAB allow us to draw such a straight line. This can be regarced as the locus of 
1/ Tg of hypothetical equimolar copolymers with varying degrees of sequence distribu-
tions. This line divides two 1/ Tg's of random copolymers having a given value of R 
but different compositions in the ratio of formula weights of monomers A and B. On a 

plot of Tg against R, however, the line mentioned above deviates from the linearity, the 
degree of which mainly depends on the location of TgAB relataive to those of TgAA and 
TgBB. Besides, the ratio of formula weights in which the line divides the two Tg's of 
random copolymers can be no longer seen on this type of plot. A choice of the plots is 
totally arbitrary, but only for the simplicity, plots of Tg against R will be used below for 
comparing the two equations with experiments. 
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Possible Differences 

    For easy understanding, the predictions and characteristics of Barton's and John-
ston's equations are illustrated in Fig. 1. In addition, the data of acrylonitrile/buta-
diene (AN/BD) copolymers by Furukawa and Nishioka7 are plotted in the same figure. 
Both Tg and R have been determined experimentally by these authors. Alternatively, 
the run number may be estimated indirectly from the equation' 

R = 400 mAmB/[1 + I 1+ 4 mAmB(rArB-1) f 1/2](7) 

where rArB is the product of the monomer reactivity ratios in copolymerization.' Since 
the TgAB value of this copolymer system has been reported, eqs 3 and 5 were used to 
draw the predictions. Unless it is known, eqs 4 and 6 will do for the same purpose. 
That means a change of the reference point, yielding different values for the TgAB 

predicted. 
   Prior to assessing those equations with experimental data, it could be sensible to 
remark the differences in prediction between Barton's and Johnston's equations. One 
of the differences is obviously that between the curves predicted. In addition, two 
others can be seen in Fig. 1: the differences between the points at R=0 and R*. The 
Tg(R=0)'s as obtained by extension of the respective line Tg(R*)— TgAB back to the 

ordinate are the glass transition temperatures of an equimolar (di-)block copolymer. 
For copolymer systems like acrylonitrile/butadiene whose ratio of MA/ TgAA to MB/ 
TgBB differs greatly, a big difference appear between the Tg(R=0)'s predicted. This 
temperature is attractive for comparison with experiment, but one should be aware of 
the heavy restriction that the two kinds of blocks be compatible. Otherwise, the 

two-phase structure could be formed by segregation of each other block, presenting two 
distinct glass transition temperatures identical to those of the homopolymers.9 The 
other is the difference between the Tg(R*)'s predicted. This difference is, however, 
relatively minor and also such a case is actually rare that TgAB is known but Tg(R*) is 
not. All things considered, a practically important difference seems to be that between 
the TgAB's predicted, as will be illustrated below, when the corresponding Tg(R*) is 
used as reference point. 

                ANALYSIS OF THE LITERATURE DATA 

                   Systems whose TgAB's are known 

   As McEwen and Johnson have listed in their contribution to "Alternating Copo-
lymers",10 there are nine copolymer systems whose TgAB's are known up to now. One 
of them is the acrylonitrile/butadiene (AN/BD) system which have already been 
depicted in Fig. 1. The predictions, as illustrated in the figure, are based on eqs 3 and 5 
with the experimental data: 248.2 K for TgAB of the alternating copolymer and 373.2 K 
and 193.2 K for the Tg's of the corresponding homopolymers. For the calculation of R, 
use was made of the value of rArB, 0.054, estimated from the R values reported by 
Furukawa and Nishioka. Although the formula weights are almost the same for these 
monomers (           -AN/MBD=53.06/54.09), Johnston's value of Tg(R=0) for a corresponding 
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hypothetical equimolar (di-)block copolymer is apart from the arithmetic mean Tg due 

to the great difference between Tg's of the homopolymers. 

   The experimental data presented cover only a limited range of R, but roughly 

speaking, both equations seem to be in fair accord with the data. In more detail, the 

data of the random copolymers are seen to conform to Barton's equation better than to 

Johnston's. As for the data of the equimolar copolymers having sequence distributions 
slightly deviated from strict alternation, six out of the nine data points are in good 

agreement with Johnston's prediction illustrated by broken line. Yet, on the whole, it 

can be seen that those are in better accord with Barton's prediction. Since the values 

of Tg and R have been obtained experimentally, it may be said that this comparison is 

considered to be more important than those in the figures below. In the following 

eight systems, the data of Hirooka and Kato' for equimolar random and alternating 

copolymers are to be plotted. The run numbers are to be estimated from eq 7. 

   Figure 2a shows the data of Iilers,l2 as referred to by Hirooka and Kato, for 

styrene/methyl methacrylate (S/MMA) copolymers. The predictions were drawn by 
using eqs 3 and 5 with the TgAB value of 366.1 K and the kinetics data, rs/rMMA= 

0.520/0.480. The actual experimental value for TgAB by Hirooka and Kato is 364.2 K,i3 

while our own value, though not presented in the figure, is 369.2 K,13 when that is 
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Figure 2 a and b. Plots of Tg against R for (a) S/MMAl2 and (b) S/AN copolymers:2 data with pip, 
               Hirooka and Kato.11 For key of each symbol or line, refer to Fig. 1. 

determined from the enthalpy curve.14 The value adopted here was obtained in such a 
way that an average value of two Tg(R*) measurements, 371.7 K, was used as reference 
data in eq 4. Both predictions of Barton and of Johnston do not differ appreciably and 
are seen to be in reasonable accord with the experimental data. Barton and Johnston 
analyzed Beevers' data15 independently to estimate the TgAB value, respectively, as 
363.2±5 K (most probably 362.9 K) and as 363.1 K. However, Beevers' data are rather 
widely scattered and also 4-8 K lower than the data presented, accordingly being 
withdrawn. 
   Figure 2b shows Johnston's data of styrene/acrylonitrile (S/AN) random and 
alternating copolymers together with two data of Hirooka and Kato. The data of 
Beevers and White' were withdrawn for those are significantly lower than Johnston's. 
The predictions were drawn by using eqs 3 and 5 with Johnston's data only: 384.7 K for 
TgAB and 0.41/0.04 for rs/rAN. Both predictions are rather close to each other, and 
cannot be expected to assess by experiments. This copolymer system is known to 
deviate from statistics of the terminal model in the study of reaction kinetics.17 
However, this figure suggests that the dependence of glass transition temperature on 
sequence distribution is reasonably described by the dyad model principally identical to 
the terminal model in the copolymerization study.' 

   Figure 2c shows the data of Jenckel and Herwig'8 for styrene/methyl acrylate 
(S/MA) random copolymers. The predictions drawn are based on eqs 3 and 5 with the 
data: 337.7 K for TgAB and 0.76/0.19 for rs/rMA.11 It can be seen that both predictions 
hardly differ, and are in accord with the experimental data. Barton analyzed these data 
of Jenckel and Herwig to get the estimate of 331.5 K for TgAB. This lower value of 
TgAB could be more correct for this set of random copolymer data, because the 
experimental methods adopted by the two groups11•18 are incompatible. Figure 2d 
shows the data of Hirooka and Kato for vinly choloride/methyl acrylate (VC1/MA) 
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Figure 2 c and d. Plots of Tg against R for (c) S/MA18 and (d) VC1/MA copolymers:2 data with pip, 
               Hirooka and Kato.' For key of each symbol or line, refer to Fig. 1. 

copolymers. The predictions illustrated are based on eqs 3 and 5 with the data: 313.2 K 

for TAB and 0.07/5.6 for rVC1/rMA. The data shown are seen to be a little favorable to 

Johnston's equation, but the differences between the two predictions are less than 5 K. 
We should say there is not much to choose between the two equations. 

   Figure 2e shows Johnston's data2 for a-methyl styrene/acrylonitrile (aMS/AN) 

copolymers. The data of Hirooka and Kato are also plotted in this figure, but those are 

systematically lower than Johnston's data. So the predictions illustrated were calcu-

lated with Johnston's data only: 395.2 K for TgAB and 0.17/0.88 for rMs/rAN. Both 

equations are seen to describe well the dependence of Tg on sequence distribution for 

this copolymer system. Figure 2f shows Reding's data19 for vinyl chloride/acrylonit-     
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Figure 2 e and f. Plots of Tg against R for (e) aMS/AN2 and (f) VC1/AN copolymers:19 data with pip, 
              Hirooka and Kato.' For each symbol or line, refer to Fig. 1. 
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rile (VC1/AN) random copolymers. Since the datum of 346.2 K for TgAB by Hirooka 
and Kato is not compatible due certainly to the low molecularity of their sample, the 

 TgAB value is estimated from eq 4 with the data: 361.2 K for Tg(R*) and 0.05/3.2 for 
rya/ rAN.11 Both equations are seen to be actually identical and be in good accord with 
the experimental data. 

   Figure 2g shows Haward's data20 for vinyl acetate/acrylonitrile (VAc/AN) copo-
lymers. The predictions drawn are based on eqs 3 and 5 with the data of Hirooka and 
Kato: 344.7 K for TgAB and 0.04/5.3 for rvAc/rAN. The agreement between the 

predictions and the experimental data are rather fair, but the differences between the 
three data for Tg(R*) are too large to be acceptable. If the values of Tg(R*) and TgAB 
are almost equal, as the data of Hirooka and Kato indicate, those should be close to the 
value of Tg, too. This means their values of Tg(R*) and TgAB might be some 10 K 
higher than the expected. This difference must be an artifact due to incompatible 
experimental conditions. Figure 2h shows the data of vinylidene chloride/methyl 
acrylate (NdC1/MA) copolymers, which were taken from Illers12 and from Powell and 
Elgood.21 The data of Wessling et al.22 are not shown simply because it is cumbersome 
to plot more points in the figure. The predictions illustrated are based on eqs 4 and 6 
with the data: 312.0 K for Tg(R*) and 1.0/1.0 for rvdcl/rMA• The adoption of this 
Tg(R*) value reproduces Barton's result of analysis, 357.5 K for TgAB. It is seen that 
both predictions are hardly different for the random copolymers, but significantly 
different for the alternating one. This is the first case where both predictions of Tg are 
different more than 10 K at a certain degree of sequence distribution. The TgAB value 
of Hirooka and Kato, 325.7 K, seems to be too low to be compared with either 

prediction. Only for the random copolymers, a fair comparison can be seen between 
theory and experiment. 
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Figure 2 g and h. Plots of Tg against R for (g) VAc/AN2° and (h) VdC1/MA copolymers:12.21 data 
               with pip, Hirooka and Kato.11 For each symbol or line, refer to Fig. 1. 
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                   Systems whose  TgAB's are unknown 

   These systems will be divided into three groups according to the degree of 
difference between the two predictions, especially for TgAB. 

Differences negligible 

   In Fig. 3, the theoretical predictions for four systems whose differences are negligi-
ble over the entire region of sequence distribution. The data of acrylonitrile/methyl 
methacrylate (AN/MMA) copolymers were taken from Johnston.' His values of 
0.150/1.20 for rAN/rMMA were used for calculating the run number. Since the Tg's of 
the corresponding homopolymers are indentical, no loops are drawn as predictions. 
Although the formula weights of these monomers differ greatly, MAN/MMMA= 
53.05/100.12, no practical differences between the two predictions appear. Johnston 
has estimated TgAB to be 352.2 K, which was used for drawing the two lines in the 
figure. The data of Beevers and White16 for this system were withdrawn. Their data 
of the homopolymers are not identical with the presented ones: 371.2 K for polyacrylo-
nitrile is rather low, while 390.1 K for poly(methyl methacrylate) is definitely higher 
than Johnston's value of 378.2 K. This reminds us of the fact that the microstructure 
of polymers affects glass transition temperature.23 Another set of Johnston's data' of 
methyl methacrylate/vinyl chloride (MMA/VC1) copolymers is presented in the same 
left panel. The predictions drawn are based on his data: 322.8 K for TgAB and 11.2/0.04 
for rMMA/rvcL. The differences between the two predictions are at most 2 K, much 
smaller than the range of experimental error. 
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Figure 3. Plots of Tg against R for AN/MMA,2 MMA/VC1,2 VdC1/VP,22 and VdC1/IB copolymers:22 
         data with pip, prepared in emulsion. For each symbol or line, refer to Fig. 1. 

   In the right panel of Fig. 3, the data of Wessling et al.22 for vinylidene chloride 

(VdC1) copolymers with vinyl propionate (VP) and with isobutylene (IB) are presented. 
The predictions illustrated are based on eqs 4 and 6 with the data: for the VdCI/VP 

system, 292.2 K for Tg(R*) and 0.3 for the product of reactivity ratios, and for the 

( 305 )



                              H.  SUZUKI and T. MIYAMOTO 

VdC1/IB system, 235.0 K for Tg(R*) with R* =100, because the product of reactivity 
ratios is practically zero. On the whole, the agreement between theory and experi-
ments is fair, but the VdC1/IB copolymers prepared in emulsion are seen to indicate the 
behavior different from those prepared in bulk. Another example, though not shown 
in Fig. 3, is the styrene/butadiene (S/BD) system. Wood's data24 of S/BD random 
copolymers prepared at 50°C are in good accord with the predictions of Barton and of 

Johnston, both of which coincide within an error of 0.3 K for the random copolymers, 
when the following data are used: 188 K for TgBD, 0.5/1.12 for rs/rBD and 276.5 K for 
Tg(R*). For the alternating copolymer, Barton's prediction is 273.5 K, while John-
ston's is 274.6 K. 

Diffrences less than 10 K 

   In Fig. 4, comparisons are made for four systems for which the defferences in 

predictions of the TgAB value are less than 10 K. The data for styrene/acrylinc acid 
(S/AAc) random copolymers shown in the left panel were taken from Iilers.12 The 
predictions illustrated are based on eqs 4 and 6 with the data: 421.0 K for Tg(R*) and 
0.07/0.37 for rs/rAA,. For the TgAB predicted, Barton's value is 424.2 K, while John-
ston's is 426.2 K. Even for a highly polar system like this, the reasonable agreements 
are seen between the two predictions and the data. The data for styrene/butyl acrylate 

(S/BA) random copolymers were also taken from Iilers.12 For drawing the theoretical 
predictions, the following data were used: 271.2 K for Tg(R*) and 0.76/0.15 for rs/rBA. 
For the TgAB predicted, Barton's value is 265.0 K, while Johnston's is 273.7 K. Barton 
has analyzed these data, being based on all the data of random copolymers to obtain the 
TgAB value of 291 K. This value is considerably higher than the present estimate. 
For better agreements with the data, Barton's value for TgAB might be preferable to 
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Figure 4. Plots of Tg against R for S/AAc," S/BA,`L MMA/MA,'2 and VdC1/VAc copolymers.' 
        For key of each symbol or line, refer to Fig. 1. 
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ours, because a single datum, Tg(R*), for an equimolar random copolymer is taken here 
as reference point. 

   In the right panel, the predictions are drawn for the methyl methacrylate/methyl 
acrlylate (MMA/MA) system, the data for which were taken from Illers, again. The 
data used for predictions are 350.4 K for  Tg(R*) and 0.3/1.5 for rMMA/rMA. For the 
TgAB predicted, Barton's value is 366.0 K, while Johnston's is 371.2 K. The differences 
between both predictions for the random copolymers are seen to be much smaller than 
that for TgAB, 5.2 K. The data of Wessling et al.22 for vinylidene chloride/vinyl acetate 

(VdCI/VAc) random copolymers are compared with the predictions, which are based 
on the data: 317.2 K for Tg(R*) and 1.35/0.65 for rvc1/rvAc• For the TgAB predicted, 
Barton's value is 307.0 K, while Johnston's is 312.7 K. Another example, though not 
shown in this figure, is the vinyl chloride/vinyl acetate (VC1/VAc) system. The data 
of Reding et al.'9 for VC1/VAc random copolymers are in good accord with the two 

predictions, both of which coincide within error of 1.3 K for the random copolymers, 
when the following data are used: 317.2 K for Tg(R*) and 1.35/0.65 for rvc/rvAe. For 
the TgAB value, Barton's prediction is 307.0 K, while Johnston's is 312.7 K. 

Differences larger than 10 K 

   As systems for which the TgAB values predicted have a difference larger than 10 K, 
six examples can be cited in Figs. 5a to f. Figure 5a shows the two predictions, 
together with Johnston's data,2 for the butyl methacrylate/vinyl chloride (BMA/VC1) 
system. Johnston has analyzed his Tg data by using 13.5/0.05 for rBMA/rvcl,2 to obtain 
274.2 K for TgAB. His prediction is reproduced in this figure, and the Tg(R*) reads 
296.5 K. For Barton's prediction, equation 4 with this Tg(R*) value was used, yielding 
285.8 K for TgAB. Although the two predictions don't differ more than 8 K for the 
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random copolymers, the difference between the TgAB values predicted amounts to 11.6 
K. As is shown in Fig. 5b, a much larger difference for TgAB, 23.0 K, can be seen for 
vinylidene chloride/acrylonitrile (VdC1/AN) copolymers. The experimental data pre-
sented were taken from Wessling et al.22 and from Powell and Elgood.21 The predic-
tions drawn are based on eqs 4 and 6 with the data: 342.0 K for Tg(R*) and 0.37/0.91 for 
rvdcl/rAN. It is seen that these are preferable to Barton's prediction, while the data 
shown in Fig. 5a are to Johnston's on the contrary. 

d) 
                                                                . m 350— c)-*°' 300—/m 

                                i N 

                  a i 

      / 

     i
O    —.300 — o— 250 —— 

                      0 

                Bm 

      o~/BVdCI/EAVdCI/BA     250~— 200— 

   

I I  
    0 50100 0 50 100 

  RR 
Figure 5 c and d. Plots of Tg against R for VdC1/EA22 and VdC1/BA copolymers 22 For key of each 

              symbol or line, refer to Fig. 1. 

   In Fig. 5c, the two predictions for the system vinylidene chloride/ethyl acrylate 

(VdC1/EA) are compared together with the data of Wessling et al.22 Those were 
calculated from eqs 4 and 6 with the data: 296.2 K for Tg(R*) and 0.72 for the product 
rvdclrEA• The difference between the TgAB values predicted is 14.0 K. We find two 
other sets of data for this system in the literature. The data of Powell and Elgood21 are 
analyzed with their data, 299 K for Tg(R*), yielding 346.0 K/367.7 K for TgAB(Barton)/ 
TgAB(Johnston). On the other hand, the data of Comyn and Fernadez25 are analyzed 
with their data, 308 K for Tg(R*), yielding 367.6 K/404.6 K for TgAB(Barton)/ TgAB-

(Johnston). Although this system seems to be problematic a little, the two prediction 
for TgAB can be said to differ by at least more than 10 K. Figure 5d shows the 
comparison of the two predictions for the system vinylidene chloride/butyl acrylate 

(VdC1/BA), the experimental data for which were taken from Wessling et al.22 The 
data used for predictions are 274.2 K for Tg(R*) and 0.72 for the product rvdcIrBA22 
As is clear from this figure, the predictions are different for the alternating copolymers 
by a degree much larger than for the random copolymers. The agreements between 
the predictions and the data for both systems VdC1/EA and VdC1/BA are rather fair on 
the whole, but obviously more reliable data are desired. 

   In Figs. 5e and f, comparisons are made again for vinylidene chloride copolymers, 
respectively, with methyl methacrylate (MMA) and with vinyl chloride (VC1). The 
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        Figure 5 e and f. Plots of Tg against R for (e) VdC1/MMA22 and VdC1/VC1 copolymers.22 For key of 
                       each symbol or line, refer to Fig. 1. 

       data used for predictions are, for VdCI/MMA copolymers, 350.7 K for Tg(R*) and 
       0.24/2.53 for rvdci/rMMA, and for VdC1/VCI copolymers, 279.2 K for Tg(R*) and 3.2/0.3 

       for rvdc1/rvc1•22Both predictions don't differ by 5 K at most for the random copolym-
       ers, but does differ by more than 15 K for the alternating copolymers. It can be seen 

       that the two equations predict fairly well the sequence-distribution dependence of 
        copolymers glass transition. 

                                 DISCUSSION 

            A common feature of Barton's and Johnston's equations for copolymer glass 
       transition temperature is the fact that, though sometimes misunderstood in the 

literature,26 no adjustable parameters are included therein. Usually and exclusively, it 
       is on plots of Tg against overall composition that their equations have been compared 

       with experimental data. However, as the new expressions derived here suggest, plots 
       of Tg (or 1/ Tg) against the run number is much preferable. This is because the simple 

       algebraic relationship holds for the three points, Tg(R=0), Tg(R*) and TgAB(R=100), 
       e.g., in Barton's equation, on a plot of Tg against R. With use of this algebraic 

       relationship and the data of equaimolar random copolymers, Tg(R*)'s, it is possible to 
       predict the whole Tg variations with sequence distribution for the corresponding 

       random, alternating and even compatible (di-)block copolymers. 
           Both equations are seen to be in reasonable accord with all the copolymer systems 

       analyzed here except only one TgAB datum shown in Fig. 2h. That includes highly 
        polar systems like styrene/acrylic acid and styrene/butyl acrylate copolymers. We 

       recall Iller's remark that Kanig's theory27 does not satisfactorily fit to the data of those 
        polar copolymer systems. In addition, there is another strong point in the two 

        equations. As is suggested by the new expressions, it is possible to predict that Tg's of 
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hypothetical equimolar copolymers with varying degrees of sequence distribution. 
This is totally out of the scope of Kanig's theory, for he assumes the random 
distribution of the two monomers in the copolymers of constant overall composition 
irrespective of sequence distribution. Earlier  theories2s,29 including Kanig's which are 
capable of describing the occurrence of a maximum or a minimum value of Tg on the 
conventional plot have critically been discussed by Barton,' and have been interrelated 
to his own equation. On the other hand, some extended theoris3o;31 which appeared 
after Barton's and Johnston's papers have been discussed in detail in the previous 
article.' 
   Since they are based on the dyad model, the two equations may be considered to 
have the common intrinsic limitation: these equations can be applied only to the 
copolymers in which the concentration of the AB dyad is appreciably high. In other 
words, these equations could not be applied to block-like copolymers that have both 
monomer reactivity ratios noticeably larger than unity. This aspect will be treated in a 
separate paper in conjunction with the block-length distribution and the resulting phase 
structure. The VdC1/MA copolymer system whose data are shown in Fig. 2h has the 
monomer reactivity ratios of unity. So these equations can be applicable. Figure 2h 
shows, however, a big difference in TgAB between theory and experioment. This 
failure should not be ascribed to theory but to experiments, for example, to the 
incompatibility of measurements and/or low molecularity of the smaple. 

   It is not necessarily clear from the figures presented that which of the two 
equations is more superior to the other. Some systems like vinylidene chloride/ 
acrylonitrile are seen to fit better to Barton's equation, while some other systems like 
butyl methacrylate/vinyl chloride are to Johnston's. Although the result of Fig. 1 is 
more favorable to Barton's equation, crucial examinations could be carried out in the 
systems shown in Figs. 5a to f by measuring Tg of the corresponding alternating 
copolymers. Such works may be considered to have another significance in the long 
debating discussion of polymer glass transition theories. Since the two equations are 
based on different theories, thermodynamic32 or free-volume,33 measurements of the 
TgAB's of those systems must provide us with a new, promising clue for assessing 
theoretical models of polymer glass transition. 
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