A New Synthetic Route to α-Methylenecarboxamides Using Dianion of N-Phenyl-2-[(phenylsulfonyl) methyl] propenamide

Author(s)
Tanaka, Kazuhiko; Ushio, Hideki; Horiuchi, Hiroshi

Citation

Issue Date
1989-11-30

URL
http://hdl.handle.net/2433/77303

Type
Departmental Bulletin Paper
A New Synthetic Route to α-Methylenecarboxamides
Using Dianion of N-Phenyl-2-[(phenylsulfonyl)methyl]propenamide

Kazuhiko Tanaka,* Hideki Usui, and Hiroshi Horiuchi

Received May 26, 1989

Regioselective reaction of the dianion of N-phenyl-2-[(phenylsulfonyl)methyl]propenamide with alkyl halides leads to β-substituted carboxamides, which upon Lewis acid mediated cyclization afford α-methylenecarboxamides in good yields.

KEY WORDS: α-Methylenecarboxamides/ (E)-trisubstituted carboxamides/ 3,4-dihydroxy-2-methylenecarboxamides/ 5,6-dihydro-2H-pyrans/ 3-methylene-β-lactams/

The α-methylene carbonyl system is a common structural feature of naturally occurring substances possessing cytotoxic, fungitoxic, and growth-inhibitory activity.1) Accordingly, various methods have been developed for the synthesis of α-methylene carbonyl derivatives.2) However, there are relatively few methods available for the direct introduction of α-methylene carbonyl group using a carbanion derived from α-methylene carbonyl system because of the chemical instability of the carbanion.3) Recently we have found that the dianion of N-phenyl-2-[(phenylsulfonyl)methyl]propenamide (1) can be generated at —78°C and serve as a versatile reagent for the preparation of a variety of α,β-unsaturated carbonyl compounds like (E)-trisubstituted carboxamides, 3,4-dihydroxy-2-methylenecarboxamides, 5,6-dihydro-2H-pyrans, and 3-methylene-β-lactams.4,6>

We now describe a convenient method for the preparation of α-methylene carbonyl derivatives having fused-ring system by regioselective alkylation and subsequent Lewis acid mediated cyclization procedure. The dilithiation of (1) proceeds readily with 2 equiv. of butyllithium to provide a yellow solution of (2) which can be converted to the β-substituted products (3–7) upon reaction with alkyl halides. Treatment of the adducts (3–6) with AlCl₃ in dichloromethane gives six- or seven-membered exocyclic α-methylene carboxamides (8–11). On the other hand, reaction of (7) with AlCl₃ under similar conditions afforded seven-membered endocyclic product (12). The endo structure was confirmed by conversion of (12) to the known methyl ester (13) via isomerization of the double bond of the amide, N-tert-butoxycarbonylation, and subsequent methanolysis.8

In these synthetic sequences, the amide (1) is synthetically equivalent to a 1,1-dipole or a 1,3-dipole (Scheme 3) and perceived as a useful reagent for an efficient
elaboration of \(\alpha \)-methylene carbonyl derivatives that might otherwise prove difficult to prepare.

EXPERIMENTAL

A typical procedure for the preparation of 3. To a solution of the dianion 2 (6.64 mmol) at \(-78^\circ\text{C}\) under argon was added 1-bromo-3-phenylpropane (1.32 g, 6.64 mmol) in dry THF (3 ml). The reaction mixture was stirred at \(-78^\circ\text{C}\) for 2 h and warmed to 0\(^\circ\text{C}\) during 1 h, and quenched with saturated aqueous \(\text{NH}_4\text{Cl}\) (10 ml). The product was extracted with ethyl acetate (3 \(\times\) 50 ml). The combined
Table 1. Alkylation of dianion (2) and cyclization of adduct.

<table>
<thead>
<tr>
<th>Halide (El-X)</th>
<th>Adduct</th>
<th>% Yield</th>
<th>Product</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph(C₂H₃)Br</td>
<td></td>
<td>67%</td>
<td></td>
<td>63%</td>
</tr>
<tr>
<td>PhO(C₂Hₛ)Br</td>
<td></td>
<td>46%</td>
<td></td>
<td>57%</td>
</tr>
<tr>
<td>Ph(C₂H₄)Br</td>
<td></td>
<td>76%</td>
<td></td>
<td>47%</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td>37%</td>
<td></td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37%</td>
<td></td>
<td>67%</td>
</tr>
<tr>
<td>Ph(C₂H₃)₂Br</td>
<td></td>
<td>54%</td>
<td></td>
<td>63%</td>
</tr>
</tbody>
</table>

a) 3 equiv. AlCl₃, dichloromethane, room temp., 1 h.
b) 5 equiv. AlCl₃, dichloromethane, reflux, 3 h.

Extracts were washed with brine, dried over Na₂SO₄, filtered, and evaporated. The crude product was purified by chromatography (silica gel, hexane-ethyl acetate, 3:1) to give 1.87 g of 3 (67% yield): ¹H NMR δ 8.24 (s, 1H), 6.81–7.80 (m, 15H), 6.06 (s, 1H), 5.56 (s, 1H), 4.52 (dd, J=11.0, 4.0 Hz, 1H), 2.32–2.68 (m, 2H), 1.38–2.12 (m, 4H); IR (thin film) 3330, 1608, 1600, 1315, 770, 710 cm⁻¹; exact mass calcd for C₂₅H₂₅NO₃S (M⁺) 419.155, found 419.154.

A typical procedure for the conversion of 3 into 8. To a solution of 3 (0.48 g, 1.15 mmol) in dry CH₂Cl₂ (10 ml) at 0°C under argon was added powdered AlCl₃ (0.46 g, 3.45 mmol). After stirring at 0°C for 5 min and at room temperature for 1 h, the reaction mixture was poured into ice water and extracted with CH₂Cl₂ (3×10 ml). The combined extracts were washed with water, dried over Na₂SO₄, filtered and evaporated. The crude product was purified by chromatography (silica gel, hexane-ethyl acetate, 3:1) to give 0.20 g of 8 (85% yield): mp 134–137°C; ¹H NMR δ 7.40–6.80 (m, 10H), 5.87 (s, 1H), 5.05 (s, 1H), 4.20 (m, 2H), 2.78 (m, 2H), 1.40–2.20 (m, 4H); IR (nujol) 3250, 1650, 1600, 760, 700 cm⁻¹. Anal Calcd
Synthetic Route to α-Methylene carboxamides

for C₁₉H₁₉NO: C, 82.28; H, 6.90; N, 5.05. Found: C, 81.92; H, 7.07; N, 4.97.

ACKNOWLEDGMENT

K.T. expresses gratitude to the Kurata Foundation for financial support. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, and Culture of Japan.

REFERENCES

(131)