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On the basis of electrostatic laws, a dielectric theory is developed to explain dielectric relaxations due to
the interfacial polarization for terlamellar structure composed of three phases. It is proven that the derived
formula is equivalent to that for a series combination of three lumped capacitance-conductance circuit
models. Some dielectric observation was carried out on composite systems of distilled water, a Teflon film
and potassium chloride solutions, the results being in quantitative conformity with the dielectric theory
developed.
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I. INTRODUCTION

In order to understand the characteristics of membranes of practical use such as
filtration films, dialysis films, ultrafiltration membranes and reverse osmotic mem-
branes, it is important to obtain information on those membranes in electrochemical
equilibrium with the ambient aqueous solutions. Dielectric properties relevant to the
ion permeation through the membranes are usually measured for the membranes sand-
wiched between two aqueous phases as shown in Fig. 5 later on.

This kind of membrane-aqueous phase system is assumed to be a series combina-
tion of three phases, each of which is represented routinely by a lumped capacitance-con-
ductance (C-G) model as shown in Fig. 4. This model, however, should be subjected to
justification in terms of electrostatic field quantities and laws applied to the composite
dielectrics prior to the routine use of a lumped C-G model!~®.

In the present work, a heterogeneous dielectric in terlamellar structure is for-
mulated theoretically by means of electrostatic quantities and laws to show the dielectric
relaxation behaviour. According to a consequent formula, the terlamellar structure
will be seen to be equivalent to a series combination of the three lumped C-G models.
Some experimental results of dielectric relaxation observed in the terlamellar dielectrics
are shown to confirm the theoretical formulation.

*#f FLM : Department of Chemistry, Northeast Normal University, Changchun, China.
OLRERGE, BRREBE, fEHE : Laboratory of Dielectrics, Institute for Chemical Research, Kyoto
University, Uji, Kyoto 611, Japan.
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II. CONSTRUCTION OF THEORY ON THE BASIS OF ELECTROSTATIC
FIELD LAWS

2.1 Fundamental Relations in the Quasi-electrostatic Field

A triphase system in terlamellar structure is depicted in Fig. 1, which is composed
of Phase b (henceforth referred to with a subscript ), Phase f (subscript f) and Phase a
(subscript a) inserted in a parallel-plate capacitor with unit area. Each electrode plate is
charged with the electric charge Q; or Q,, respectively. The charge is assumed to ac-
cumulate on the boundary between Phases b and f, the charge density being denoted
by ;. Similarly the charge is assumed to accumulate on the boundary between Phases f
and a, the charge density being ¢,. Figure 1 includes electrostatic laws and expressions
necessary for the explanation below, where vector quantities are assumed to have
postitive values for pointing to the right.

For a system with a uniformly charged infinite plane, electrostatics gives a succint
relation that the contribution of the surface charge density to electric flux density, or elec-
tric displacement, outside the plane is equal to the surface charge density divided by
two. Hence, the electrode charges Q;, Q, and the boundary charge densities gy, 0, give
rise to the constituent parts of the electric flux density, or the electric displacement, as
shown in the lowest part of Fig. 1. The elctric flux densities D;, Dy and D, are thus
represented as follows: '

D[):M_ﬂ_oa (1)

2 2 2

~%=Q , 0 _ o
=732 % @
D=2 =Q o 0 3)

2 2 2
The relation between the flux density D;, Dyor D, and the electric field E;, Efor E, is

given by
E,= D, , Efz—DL, and E,= D, , (4)
€,8; evsf €,¢,

respectively, where ¢ is the relative permittivity of the respective phase, and
€,=0.088542 pF cm™! is the permittivity of vacuum.
Potential differences V, V; and V, for respective phases are given by

Vi=Ed, V;=Ed, and V,=Ed, 5)

where d;, d; or d, denotes the thickness of the respective phases. The total potential
difference V is the sum of V,, V;and V,, that is,

V="V,+ V,+ V. (6)

Using the electrical conductivities &,, £ and £,, the electric current densities 7, %
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charge density on the boundary

electrode

Oa
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Vb == Eb db 3 Vf = Ef df ) Va= Ea da P
~<—— whole, V = Vp+ Vi + Vg,
current ib = KpEp> if =K;Ef» ia= KaEa,
. . dOb : i do : i
increasing rate 5t = ip— lf » _(_“i =1if—la,
Qp . . Qa
I , I
by external V-source
— dQp : dQa :
[ = at + Ip I - dt + la ,
flux density D |
‘DduetoQp | Qp/2 ! Qy/2 | Qp/2 |
i
D due to Qg : -Qa/2 | -Qa/2 : —Qa/2 I
|
Ddueto Op | -0,/2 | ©Op/2 | Op/2 :
I !
DdwetoG, | -Ga/2 | -Gaj2 | Oaj2 |
. _Qb_Qa _Ob_Ga __Qb_Qa,0b,0a
total D, Db_2 5 > 5 ' D=5 2+2+2
— Qb _Qa ,Ob _Oa
Df'_ 2 2 + 2. 2
Fig. 1. Quasi-electrostatic fields; the related electric phenomena and the laws concerned

for a terlamellar structure in a parallel-plate capacitor.
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and ¢, are given by
ib = hbeb, Zf = /CfEf, and ia = /faEa. (7)

As regards the charge density g, per unit area on the boundary surface between Phase b
and Phase f, its increasing rate d g,/dt against time ¢ is the difference of the current densi-
ty # and 7, that is,

do . .
7%=n~y _ (8)

In a'similar manner, we have

do, _ . .
ik )

The inflow current density 7 must be equal to the outflow current density owing to the
total charge conservation law, being given by

4 4D : :
7 +p=1 & + 1, (10)
From Eqs. 10, 8 and 9, we have

%(Q;,%—Qa):—z',,+ia=—%(ab+0a). (11)

Integrating Eq. 11 with null integration constant corresponding to the neutral condi-
tion, we have '

@+@=¥wﬁwn : (12)

The above are all of the expressions to describe the terlamellar system shown in
Fig. 1. ‘
For simplification of succeeding calculation, we put as follows:

_ d _d _ 4, :

= =4 = 4 13
5b evgb) 6f €,¢ ’ 511 €8, ’ ( )

7 -k — K 14’
kb - eveb) kf eusf’ ka €8, > ( )

2.2 Guideline and Procedure of Successive Calculation

The course of successive calculation is apt to be in confusion because of too mamy
formulas and-too tedious rearrangement. The following items are pointed out to per-
form the calculation efficiently.

(i) In the present problem, independent variables are @5, Q,, ¢, and g, in princi-
ple. Since Egs. 1, 2 and 3 include a term Q,—@,, the calculation can be simplified in
practice to obtain three independent variables Q;— Q,, 6; and ¢,. Hence we have to find
three formulas which include the three variables only.

(ii) By eliminating Q;— Q, among the three formulas obtained, two formulas are
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derived which include ¢, and ¢, only. The two formulas are to be simultaneous
differential equations of the first order with respect to time ¢.

(ili) By eliminating ¢, among the two simultaneous differential equations of the
first order, we derive a differential equation of the second order including ¢, only. By
solving the second order differential equation, a solution of ¢, can be obtained.

(iv) A solution of g, can be derived by use of the solution of g,. Solutions of Q,
and @, are also obtained by use of ¢, and g,. ‘

(v)  Next, solutions of i; i, and ¢, are derived by use of @;, Q,, ¢; and ¢, obtained
above.

(vi) The inflow and outflow current density [ is expressed with dQ,/dt, v, dQ,/dt
and 7,. By use of the formulas of current density I, the apparent complex permittivity
for the whole system can be expressed in terms of Q, 4, Q, and ¢,

(vii) The expressions of Q;, Q,, 4, and ¢, obtained are introduced into the complex
permittivity formula of the whole system derived above. After rearrangement an ex-
pression of the complex permittivity is written out to represent two dielectric relaxa-
tions.

(viii) In the course of rewriting and rearranging these expressions, some terms
are expressed with a factor of 1/[1+4j (w/wp)] and 1/[1+j(w/wp)], which signify the
dielectric relaxations. Further calculation with keeping this type of factors is very in-
tricate and difficult to attain to the final expressions. An ingenious method of rearrange-
ment is to make up a factor 1/[(jo+ wp) (jo + wg)], which is a synthesized form of the two
factors: 1/[1+4j (@/wp)] and 1/[1+j(w/wg)]. This particular technique of calculation
makes further rearrangement much easier.

2.3 Replacement of various Expressions

For the sake of simplification in the course of cumbersome calculation; some
replacements and the consequent simplified relations are summarized here.

S=5,+ 0+ d, (15
R Eﬂ.{__d[__|__d_a, (16)
Ky /ff K N

TbEBb—Bf—(L, T455b+5f—5a7 . (17)

J=k+k, GC=k+k, (18)

H=k—Fk, K=k—Fk, (19)

L=k (0,+0r) + kb, M=K (0p+ 0e)Tke0,, (20)
=7 —p —_f K

H—K=k —k, ce oo (21)
=_L - _H =H,

A=—§ B=—gh, =7V (22)
— K _ M _ K

D= —?55, E=— < F= __S-V, : (23)
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A+E=_T1(L+M)

=L b8+ 8) + B (3, + 3) + k(3 + ), 249

Nt S
A—E=——(L—M)

= [k (30 +3) = k(3 + 3) + k(8 = 3,)], (25)
LM

AE = =55,

1

= [k (4, +5f)+/cf5,,][/c(5,,+5f)+kf5] (26)

HK 1
BD = 7555,1 = '3,2—51,5,,(161, — k) ( k, — kf); 27)
AE — BD = %(lsbkﬁf + bk, + ko), (28)
AK + DH= —Kk,= —ky (k. — ks), (29)
BK+EH=—Hk,= —k,(k — k), (30)
(AK + DH) — (BK + EH) = ky(H — K) = k;(ky — k,), (31)
AF=L2v= 1k (5.4 0) + ko) (k. — B), (32)

HK —y

DC = ——S:Z—Véb = T(kb — k) (ko — k) 05, (33)
AF—DCZ—E—(/ca — k) k. (34)

2.4 Derivation of three Expressions including three variables @, — Q,, 6, and g,
Substitution of Egs. 5, 4, 1, 2, 3, 13, 15 and 17 in turn into Eq. 6 yields a new

expression of V" as follows:

V="V, + V,+ V;=E,,d,,+E,d,+ Ed,,

=L, Ldy + d
€,8; GEf €,8,

=—(Qﬁ Qﬂ)——g,,——?—d (35)

Rearrangement of Eq. 35 with respect to Q,— 0, gives
9 — Q‘,:—}S,—(T,,ab-l— T,0,+ 2V). (36)
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In a similar manner, substitution of Egs. 7, 4, 1, 2, 3, 18 and 19 in turn into Eq. 8 yields
a new expression of doy/dt as follows:

doy _H o oy G, H

Substituting Eq. 36 for Q,— 0, in Eq. 37 yields the following equation:

doy _ _L__ H el
a4 50T st gl (38)

Replacement in the above equation by Eq. 22 gives

%’t—”— = Ag, + Bo, + C. (39)

In a similar manner, Eq. 9 is rearranged as

do, _ K, M K
& g0 T g0 T gV (40)

Hence, replacement in the above equation by Eq. 23 gives

dd‘;" = Do, + Eo, + F. (41)

Here Items i and ii in subsection 2.2 have been dealed with.
2.5 Derivation and the Solution of the Second Order Differential Equation of g,
Eliminating ¢;-term between Egs. 39 and 41, we have

- do, do,

—D—g‘—‘(AE—BD)aaﬂ-AF—DC—Adt. - (42)
Differentiating Eq. 41 with respect to ¢, we have
dzaa o dO‘[, p— Eﬂ‘l_ = E . (4_3)

at* dt dt dt”

Substituting Eq. 42 for Ddo,/di in Eq. 43, we have the second order differential equation
of ¢, as follows:

d%s,
dt

—(A—I—E)%+(AE—BD)0E=DG—AF+%. (44)

For the purpose of obtaining a general solution of Eq. 44, we consider the following
linear homogeneous differential equation:

420,
da

do,
dt

—(A+E)Z~ + (4E — BD) g, =0, (45)

which is the form with left side zero in Eq. 44. A general solution of this Eq. 45is
assumed to have the following form:
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g, = const X ¢™, : (46)

where m is a certain constant to be determined below.
Substituting Eq. 46 for ¢, in Eq. 45, we have

m2— (A+ E)m+ (AE — BD) = 0. (47)

Two roots mg and mp of this quadratic equation 47 are readily obtained. For the sake of
convenience during the calculation, two quantities wy and wp are introduced which are
Jjust opposite to mp and mpin sign. Hence the expressions of @y, @p, mg and mp are given

as follows:
(UQE —mg, (48)
= [—(A+E)+ {A+E} — 4(4E — BD)] (49)
= [~ (4+E)+ {A—Ey+iBD], (50)
Wp = —mp (51)
=~ (4+E)~ V(A FEY — #(4E — BD)] (52)
=5 [ = (4+E)— {A~Ey+iBD) (33)

Mutual situations among mg, mp, ®p and @p are shown schematically in Fig. 2.
Using the relation between the roots and the coefficients of Eq. 47, we have

wo+ wp= — (mgt mp)
= — (4+E)=<(L+ M) (59
=L Lk (0 + ) + k(50 + ) + (0 + 8] >0, (39)
Wgp = mymp = AE — BD | (56)
= L (hikady + by, + ki) 0. 67

Therefore, we have always @, >0 and ®p>0. Hence the general solution of Eq. 45 is
expressed as

g, = const X ¢7?Q! + const X ¢~ Pl (58)

The boundary charge density g, of this Eq. 58 tends toward zero for ¢t — °, being
negligibly small after sufficiently long time ¢.

Now a particular solution of Eq. 44 will be derived provided that an external a.c.
voltage applied to the electrodes is expressed as
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| Wq +Wp —(Ma+Mp)

2 2
——(A+E)
2
L. W, =-M
positive P P
—to
negative

—-F mp

%V(A—E)2+4BD1

- 1;\/(A—E)2+4B_D»{

Fig. 2. Relative location among mg, mp, ®Wg and ®p in relation to the roots of Eq. 47.

V= VO g]h’t, (59)

where Vj is the amplitude of the a.c. voltage, ® = 21 X frequency is the angular fre-
quency, and j= v —1 is the imaginary unit. The quantities C and F given by Egs. 22
and 23 also include the factor ¢/**. Hence ¢, given by Eq. 44 must have the following
form:

Oq = Og0 ejwla (60)

where ¢, is the amplitude of g,.
Substituting Eq. 58 for ¢, in Eq. 44, we have

[(Jw)? — (A + E)jw + (AE — BD)]o, = DC — AF + jwF. (61)
Hence we have

. = DC — AF + joF 62
“" (o) —(A+E)jo+ (AE—BD) )

Taking advantage of the previous analysis for the two roots mg and mpin Eq. 47, we can
rewrite the denominator of Eq. 62 as follows:
DC — AF + joF

% Go — mg) (o — mp) (%)

DC — AF + joF
(Jo + wg) (Jo + wp)’

(64)

'Here Item iii in subsection 2.2 has been dealt with.

2.6 Derivation of Expressions for 6, 6, Q;, Q., %, irand i,

By use of Egs. 22 and 23, Eq. 64 is rearranged as
(233)
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joK — (AK +DH) V. | (65)

g, = — = - .
(o twg)(jo + wp) S
Substituting Eq. 65 for ¢, in Eq. 41 and using d/dt = jw, we have
_JoH—(BK+EH) V
Gy = - et 66
P o+ ) (jo + wp) S (66)
By use of Egs. 29, 30 and 19, Eqgs. 66 and 65 are rearranged as
ky — k¢ Jo + £ ,
0y = - — - v, 67
b S (Jo + @g) (jo + wp) (67)
g, = — ka“‘/ff ](l)""kb (68)

C— : v,
N (Jo + o) (jo + wp)

For further rearrangement of formulas, we take notice of the following identities:

8 1 Jjoy + a __ «a
( Jw ) (Jo t+ wg)(jo + wp)  jowywp

_i_iw(ﬁfwowp“a)+a’owz=(7+ﬁa)_(wo+0)1°)a.

: : 69
wowp (o + ) (jo F 6p) (©9)
JoB+ a
(Jo + 0y) (Jo + wp)
[44 [44
=t . % (70)
a)Q Wp 1+]. 0% Wp 1+].
Wp 0}
——J—a—)—a—zwo————wo—w—=w0(l—~—1—w—). (71)
1 +]E 1+jw—0 1+]—(:)0—

By use of Eq. 70, Eqs. 67 and 68 are rearranged to the expressions consisting of
two relaxation terms as follows:

ko | — ha
_ /fb - kf Wp /Cb - /Cf (O]
G, = — . + — . ] V. (72)
S(wg — wp) 1+jwi S(wg — wp) 1+]~L
P Wq
Ky _ ks
Uaz[_Ska_kz) Wp "“Ska_kf w(!Q)]V (73)
((DQ p) 1 +j—— (O)Q Q)P) i +]_
The sum of Egs. 67 and 68 is given by
o, + g, = kb - ka Jw + /Ef (74)

C— - V.
N (Jo + wg) (jo + wp)
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By use of Eq. 70, Eq. 74 is rearranged to

‘ ks — & c/; —! ks — l_fL
0+ 0, = b "o £ b e . 2. 75
b S(wg — @p) 4 S(wg — wp) P42 (79)
v Wp 0o

The expressions of Q; and Q, are derived by addition or substraction of Eqs. 12 and
36 by aid of Eq. 17 as follows:
Q=7 —(0.+3d)os — 0,0, T V] (76)

Q=—<[— 040, — (0, + )0, — V] (77

L= =

Substitution of Eqs. 4, 1, 2, 3 and 36 into Eq. 7 leads to the following expressions
for 75 4 and i,: '

i =k (00, — 8.0, + V), (78)
b=k = (04 8) 0, — b0+ V] = b, 79)
i, = %ka[abob (8 + 3o+ V=~ kQ. (80)

Here, we have completed Items iv and v in subsection 2.2.

2.7 Derivation and Calculation of the Complex Permittivity Formula for the
Apparent Capacitor System

In order to derive the complex permittivity formula for the capacitor, attention is
paid to a connection between the capacitor and the exterior circuit shown in Fig. 3. If
we use the current density I which is defined and used in Fig. 1, the total current in Fig.
3 is given by I-T', where I' is the electrode surface area. The total current I-T' is
represented by the voltage ¥ multiplied by the complex conductance G¥,
that is,

I.T = VG*. (81)

The complex conductance G* is given by

G* = joC* = jws*eu—l;—, (82)
where C* is the complex capacitance, ®=27f the angular frequency of the a.c. voltage
applied, ¢*=¢+£/(jwe,) the complex relative permittivity of the composite capacitor,
and d is the separation or distance of the two electrodes.

By use of Eqs. 82, 81, 10, and d/dt=j®, the expression of £*/d is rearranged as
follows:
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e 6t I
d  joel  jwe,V (83)
_ e+, _ —0, Z
JwEV e,V t Jwe, v (84)
_Jodtih O %
Jwe,V e,V + Jjwe, V. (83)

Substituting Eq. 76 for Q, and Eq. 79 for 7, in Eq. 85 yields the following forrﬂula.

e* 1+kb

d €S ' jweS

ky

1,1
+ EUSV(“/'C‘I:'FJ.—Q))[—5fo'b—‘5a(ab+04)]. (86)

Substituting Eq. 67 for ¢, and Eq. 74 for ¢+, in Eq. 86, we have the following formula
after tiresome rearrangement:

. .
= el,,S + ja)kévS + ekaQ (/%,,Jr%w) Go +Ja)az)2;'£+ o)’ (87)
where
9= —(ky — k)0 — (ks — k) 0y, (88)
L= — (ks — k) o — ke(hy — ha) B (89)

Now the rearrangement of Eq. 87 will proceed to the function form with relaxation
terms.
By use of Eq. 69, the third term of the right side of Eq. 87 is rearranged as follows:

voltage generated

electrode
o V surface

area, I' ¢m?2

/current

T

voltage source
with angular frequency W

Fig. 3. Explanation of a complex permittivity for the whole of the triphase system in
terms of the outside arrangements.
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¢* 1 k
d €,5 + Jwe,Ss

]w(—Q—”r;—c)erQwP(y;Jr £ )—(wQ+wP)c

b [ L ¢
2 - (90)
€,5% | jwwpwp Wowp (J@ + 0g) (jo + @p)
_ 1k [
T eS + JOE,S + JOSSwowp
ja)( , 7/——C)+a)QwP(77+ /S )—-(a)Q—i—wP)C
k| : (91)
€,82wq0p (Jo + wy) (Jo + wp)
The sum of the second and the third terms of Eq. 91 is
1 1 1
the sum = oe, A N a4 N 4, joeR’ 92)
Ky Ky K,
where
R=% 4 %y b ' (93)
Ky . K [
Thus Eq. 91 is simplified to
e 1 1
d &5 + Jjwe,R
]w(wQG)P’?_kbC)+waP(kb72+C)_ (wQ+wP)kbC (94)

€,8%wowp (jo + wo) (Jo + @p)

Each term in the numerator of the third term of the right side of Eq. 94 is rearranged
respectively to

- Jo (@qwpn — /be)
zij I( k,, = ko kp050, + (ks — K Y2ko0s0r + (ko — Fr)2ks0,0r], (9%)
= j00.
wowp (ki + L) — (wg + wp) ks £
= % [ ks — ko )%kP 0,0, + (ks — kp)2k,20,0; + (ko — kp)2k,20,0,]. (96)

= A.

Thus Items vi and vil in subsection 2.2 are all completed.
In a similar manner, Eq. 84 yields the same expression as Eq. 94, if Eq. 77 for Q,
and Eq. 80 for i, are substituted in Eq. 84.
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2.8 Concluding Summary of the Theoretical Development based on
Electrostatic Field Laws

The expressions derived and the associated conclusion are summarized as follows:
From Eq. 94, the complex relative permittivity ¢* for the whole system in
terlamellar structure is given by '

«_ _d d jo® + A d

¢ €S + eS0wp  (Jo + @) (Jo + wp) | joe,R’ ©7)
Alternatively, by use of Eq. 70, Eq. 97 is rearranged as
A A
e = E{S + e,,Sszwpzin— wp) lwiji + 1_{_]._(3)?_
wp o
tot (98)

In the right side of this Eq. 98, the first term means the limiting permittivity at high fre-
quencies, &/R in the third term giving the limiting conductivity at low frequencies. The
second term is composed of two single relaxation terms: 1/(1+jw/wp) and 1/(1+jw/wy).

Hence it is concluded that Eq. 98 for the terlamellar system shows two dielectric
relaxations due to the interfacial polarization. The quantities appearing in Eq. 98 are
summarized as follows:

S=b;+ 0+ 8, = —2 4 G4 G
€,8; eusf €,8,
S U T
_F(cb+cf+ca)’ (99)
=0 O 0 _dy &y (11

R= k[, + /Cf + ka Ky + /ff + K, F( Gb + Gf + Ga )’ (100)
® = % [k — ky )2R0s0, + (ks — ky)2kal40; + (ko — k) k007 ], (101)
D = waP}? — kbc, (102)
A =% [(ky — ko )2kR 3400 + (ky — k)?k 2040 + (Ko — Ky )Re?0.0/], (103)
A = wqop(ky +8) = (0o + 0p) kL, ‘ (104)
n=~[(k— k)8 T (b — k) o], (105)
(= [k — k) KO, + (ks — k) kidr], (106)
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wy + wp=%[/c,,(5a+5f)+kf(5,,+5,,)+ka(5b+5f)] | (107)
= — (4 tE), '
wqop = ¢ (kikidy + bk, + hkdy) (108)
— AE — BD,
wgzé[—(A +Ey+ (A= EY ¥ 48D, (109)
wp=%[—(A+E)—«/(A—E)2+4BD], | (110)

The expressions for A+ E, A—E and BD are already given in Eqs. 24, 25 and 27.

III. PHENOMENOLOGICAL REPRESENTATION AND DEVELOPMENT BY
MEANS OF THE LUMPED CIRCUIT MODEL

In this section, the theoretical expressions derived on the basis on electrostatic field
laws are connected mathematically with the phenomenological representation based on
~ the C-G circuit models.

3.1 Constitation of Dielectric Relaxations by Means of the Lumped G-C
Models? 9

So far, a heterogeneous dielectrics in terlamellar structure has merely been assum-
ed to be a series combination of three phases, each of which is represented routinely by a
lumped capacitance-conductance (C-G) model as shown in Fig. 4B.

In this instance, constituent phases 4, f and « are related to the respective lumped
C-G models by the following relations:

C=evs%=g, G=/:%=kc, %:%:%’ (111)
C, = evs% = gb = evsf% = 5%

C, = eusa—gj = g (112)
G, = f g = kG, G= Y = kCy,

G, = /cacl; = k,C,, (113)
c*=C+ j% = C —jC", G* =jwC* = G + joC = G + j&', (114)
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constituent
phases

(A) o—

electrode
area,

(B) o0— 0

|
lumped " |
C-G model G, Cs¢ Ca
G
(C) o—r IL -
for the whole system "C
P-relaxation Q-relaxation
Y

Gn

frequency

Fig. 4. (A) Dielectrics in-terlamellar structure, (B) three corresponding lumped C-G
circuit models, (C) apparent conductance G and capacitance C for the whole
system, and (D) two dielectric relaxations P and Q exhibited by the frequency
dependence of C and G.

C* =G+ -2, G =G+ b gr=g 4L (115)
Jo Jw J@

G* = G, + joC,, G =G +joC, G*=G,+j0C, 116
J f IO :

e*=e+‘jw€ . K¥=jwe et =k + jwe,e, (117)
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81,* =g + ]a)be S Ef* = €f+ _]_COGL {,‘a* =&, ]a/fae ,
c* = euE*I" =eg,/¢e+ L L,
d jee, | d

r . r
k kL -
G £ p ,(/c+]a)eps)d,

_ I
Cy" = €,8 d’ C* = €8y d’ Cu* - evsa*77
r r T
k ok L * * * %
G Ks 4 Gf f a}, Ga a d, P

(118)

(119)

(120)

(121)

(122)

For a series combination of three sets of lumped capacitances and conductances as
shown in Fig. 4B, the complex capacitance C*=C+ G/jo shown by Fig. 4C for the

whole system has already been presented as follows’: ®):

11 1 1
C* - Cb* + Cf* + Ca* )
C* _ Cb* th* Ca*

CrCF + CFC* + C*FG*’

_ (G + joGy) (Gt joCy) (G, + joC,)

Dja)(l +j~w—)(1 +_]—)
®q

@p
=g+ 8=G GGy e
1+7— 14y J@
Wp wg
— ( C !G)P Ch‘ @ L
=Gt Jjo + 0p j(l) + wg + Jo G
G*=joC*
.
(~CI‘“Gm)wp]—ZU“‘ (C Ch)a)Q]w—
=G+ —+ ——2 + juG,,
1+;— 14+;—
Wp (!)Q
G = Ll )
A
_ GGG+ GGGy + C (GyGr)?
Gl_ D2 s

. — WoWp . 1 1
c — C, Bzﬁjaj(zm—wﬁ+%@q; EFQQQ}

R O ) S S
Cp — G, D(wQ—a)P)(E ™ 0aGGC T G,,G,Ga),

(241)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)
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1
Co— Ch=—pr [GGR (GG, — GGy + CGA(C.Gy —

+ C.G2 (GG — GGy )],

Gl — GbGtga ,
D
G = G, (CLC, )2 + G (GG )2+ G, (CyCr)?
h T A2 5
o, B— /B~ 34D _ 2D
£ 24 B+ /B?—44D"
B + VB* — 44D 2D v
24 ~ B—/B’—44D’
D
(DQ"‘ Wp = A,(UQ(UP—“Z—,

4 = GG+ CC, + GG,

B= C,,(G)—l— G,)+ C(G,+ G+ C.(Gy + Gp),
D = GG+ GG, + GG,

E = C,CG, + CC,G, + C.G,C,

F = C,GG, + CG.G, + GGGy,

B — 44D = (GG — GGy 2 + (CGy — C,G;) + (CoGy —
— 2( GGy — GGy ) (GG — CoGy) — 2( GG, — C,Gy) (GG —

— 2( GG, — CG,) (GG — CGy).

(133)

(134)

(135)

(136)

(137)

(138)

(139)
(140)
(141)
(142)
(143)

(144)

In connection with the symbols used in the preceding section II 2.3, we have the

following formulas:

Szab+5f+5a=r( +Ff+ca)

I_: GbCfCa CbCfCa — C

S GG+ e, +C G, A ks
= 4  d _ (1 1 1

R= i+ F(Gb+cf+ ),

L — GbeGa — GbeGa — G

S GG+ GG, + GG, D b

(joGC, + Gy) (joCs + Gp) + (joCp+ Gy) (joC, + G,)
+ (joC, + G,) (joCy + G;)

= A(jo )+ Bo+ D= A(jo ) + o + 2],

(242)

(145)

(146)

(147)

(148)

(149)
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=A[(jo Y + (wg+ wp)jo + wewp] = A (Jo + W) (Jo + wp). (150)

It is readily seen from Eqs. 126 and 128 that the whole circuit system consisting of
three lumped C-G models shown in Fig. 4B has two dielectric relaxations, the frequency
profile of C and G being shown schematically in Fig. 4D. )

3.2 Equivalence between the Field Theory and the Circuit Model—Proof I

In the first instance (Proof I), a proof will be shown that ¢* derived in the field
theory leads to C* defined in the circuit model. '
By use of Egs. 83 and 85 in turn, Eq. 119 is rearranged as

o x &L _ jotk
C* = e =2 FL—J.G)V Q. (151)

Substituting Eq. 76 for O, Eq. 67 for g,, and Eq. 146 for I'/S in Eq. 151, and rearrang-
ing the subsequent formulas with perseverance, we have the following.

R A B |
¢ =D L (8t 90— 8.0, + V] (152)
L jothy (GutiNh—k)(oth),
ST jov S(jo + 0g) (Jo + wp)
0o (ke — k)0 + k) 1\ (153)

S(jo + wg) (jo + wp)

o+ k) (o + k) (o + &)
JoS(jo + wg) (jo + wp)

_ GGG, (jo T k) (o + k) (o + k)
Ajo (jo + wy) (jo + op)

— (590G, + Gy) (JoGr + Gy) (joC, + G, )

- - : 154
JOA (jo + wp) (jo + wp) (154)
By use of Eq. 150, Eq. 154 is rearranged to
* vk oy K
c* Cb Cf Ca (155)

T GRGFF GFCF T GG

This final Eq. 155 is the same as Eq. 124 which is derived for the circuit model shown in
Tig. 4B.

3.3 Equivalence between the Field Theory and the Circuit Model—Proof II

In the second instance (Proof II), a different proof will be shown by way of a double
relaxation term 1/[(jo -+ wg)(jo+ wp)].
3.3.1.  Rearrangement from the circuit model

Equation 126 containing two single relaxation terms is rearranged to the following
expressions with a double relaxation term by assuming two undetermined parameters
¢ and 4, which are to be determined in Egs. 163 and 164 later on:
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* C ap 1 ‘ .
C* =G, + i———L~w . i—Lﬁjw Pl 4 2o (156)
= C, + Jog + A 1

Go ¥ o) Go +ap) | ju O (157)

_ Gijo (o + 09) (jo + wp) + jo (jog + 2) + G, (jo + wy) (o + wp)
JO(Jo + wg) (o + wp)

. . B\, . (B D D
(]w)3ch+(Ja))2(G,+¢+ cq)ﬂw(c,;l—%w cq)+ Gig

- 70 o T wg) Jo + 0r) - (159

In order to determine the two parameters ¢ and 4, the original Eq. 124 for the circuit
model is rearranged, by use of Eq. 150, as follows:

1. (oG + G) (oG + G (jol, + G.)
jo  (joGy, + Gy) (juGs + Gy) + (joGr + Gy) (juC, + G,) + (joC, + G,) (joC, + G;)

c* =

= (9G + G) (JoCr + Gp) (joC, + G,)

—b) . 159
jod (jo + og) (jotw,) (199
GCLC, , . E . F. GGG,
Gl oy + T o + S + GG o
N Jo (Jo + wg) (jo + 0p) (160)
Comparison between Eqgs. 160 and 158 leads to the following:
c, = C_bi&, ‘ (161)
G = M’ : (162)
D
E :
¢ A - ChA - Gl’ (163)
- £ _ D _ B
A= 1 C;,A GIA . (164)
3.3.2  Rearrangement from the field theory
By using Eqgs. 97, 146, 148 in turn, Eq. 119 is rearranged to the following:
« T r Jo® + A r -

== . 165
¢ S + Swowp  (jo + @g) (jo + wp) * JOR’ . (165)

_ r Jo® + A 1
=G Swgwp  (jo + 0g) (jo + wp) o O (166)

The former part of the second term in Eq. 166 is rearranged by use of Eqs. 101, 57, 13,
14 and 139-143 in turn as follows:
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Fig. 6. TFrequency dependence of the capacitance C and the conductance G for the
whole systems composed of the aqueous Phase & (DW) and the aqueous Phase a
(DW, 0.05, 0.1, 0.3 or 1 mM KClI solution).
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(ks = b Yhds0s + (ks — F)?ka0s0p + (kg — ke )*ki040r

Fokads + Fokda + hokis (167)
G Gy G Gy G, Gpy
(Cb Ca)Gf+(Cb Cf)G”L(Ca Cf)Gb
| (168)

GG, + GG + GG,

rearrangement, Eq. 168 is simplified to the following:

(3]
I

(=)

Capacitance , C/pF

| i | |
P-relax. Q-relaxation
fa
10} ! .
300k 1M Hz i
5| -
l ok M
0 [ | i 1 :
0 5 10 15 20 25
Conductance, G/pS

Complex plane plots of (A) the complex capacitance C* [C, AC"=(G— G)/(2xf)]
and (B) the complex conductance G* [G, AG"=2zf(C— C,)] for the whole system
composed of DW-Teflon film-0.3 mM KC1. The data referring to the part of
Fig. 6.
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Fq) _ EAD — CbCfChBD — GbeGaA2

Swgwp A2D (169)
E B ,

ZI_ChI_Gl:‘ZS' (170)
In a similar manner, the latter part of the second term in Eq. 166 is rearranged as
follows:

A
SZ(,!)Q(UP
_ T (k= 5 )kP040, + (ks — ke )°R040 + (ko — K )2ks*0,0; (171)
AY: kok0p -+ Kikid, + Kikidy
35
< 30F o e P 953 ‘.".. -
0 o n o
~ 251 .

S

c 201 ]
«©

>

O 15| Varied -
s RNy
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)]
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Fig. 8. Frequency dependence of the capacitance C and the conductance G for the
whole systems composed of Phase b (DW, 0.05, 0.1, 0.3 or 1 mM KCI) and
Phase 2 (1 mM KCI).
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(173)

(1749

To sum up Eqs. 174, 170, 166 and 155, the expression of ¢* derived on the basis of the
field theory leads to C* formulated for the lumped C-G model. It is thus concluded for

Loss factor |

~~
vy
N’

Imag. conduct., AG'/uS

Fig. 9.

I I { | ]
P-relaxation
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100 k mM
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0 !
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Conductance,G/pS

Complex plane plots of (A) the complex capacitarice C* [C, AC"=(G— G)/(2rf)]
and (B) the complex conductance G* [G, AG"=2zf(C— C})] for the whole system
composed of 0.05 mM-Teflon film-1 mM KCI. The data referring to the part
of Fig. 8.
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the terlamellar structure that one can choose either ¢*-representation or C*-representa-

tion at one’s convenience.

IV. OBSERVATION OF DIELECTRIC RELAXATIONS FOR TERLAMELLAR
SYSTEMS AND SOME ANALYSIS BASED ON THE LUMPED C-G MODELS

4.1 Measurement for Triphase Systems

By use of an I.F Impedance Analyser Model 4192A made by Hewlett-Packard Co.,
Ltd., dielectric measurements were carried out at 25°C for the systems in which a
Teflon film is sandwiched between two aqueous phases b and a as depicted in Fig. 5.

Table 1. Dielectric Parameters Observed and Phase Parameters Calculated for KCl(b)-Teflon(f)-
KCl(a) Systems at 25°C

Constituent : .
Specimen Phase b, Phase a Dielectric parameters observed
name Q C, Cy G, Gy f, fo
KCl/mM pF PF PF S 28 kHz  kHz
DTD Dw DW 31.2 10.9 2.60 19.8
DTKO0.05 Dw 0.05 31.3 15.1 10.9 2.72 5.81 29.8 123.
DTKO.1 Dw 0.1 31.5 15.5 11.0 2.76 9.69 28.9 235.
DTKO0.3 Dw 0.3 31.4 16.2 11.0 = 2.72 20.9 29.8 537.
DTK1 DwW 1.0 31.4 16.2 11.2 2.60 58.6 27.7  1460.
K0.05TK1 0.05 1.0 31.3 16.0 11.3 11.2 58.8 120.0  1911.
K0.1TK1 0.1 1.0 31.3 16.1 11.2 20.4 68.6 224.0  1542.
K0.3TK1 0.3 1.0 31.3 15.9 11.2 51.1 84.6 539.0  1214.
KI1TK1 1.0 1.0 31.2 11.1 141.0 1257.
Compoéite Phase ba Phase parameters calculated

Cut Chpy Gt Guw & & G & G G L _f
pF pF “S #S pF ©S pF #S pF ©S kHz kHz

DTD 16.8 6.14 31.22 0.00 33.6 12.2  33.6 12.2  20.4

DTKO0.05 23.9 16.9 8.32 13.6 31.22 0.00 35.7 10.5 32.1 40.5 23.3 141,

DTKO.1 26.9 169 = 9.68 22.6 31.22 0.00 346 11.1 33.0 76.3 259  255.
- DTKO.3 31.0 169 10.6 50.5 31.22 0.00 34.7 11.2  33.1 182 26.6 595.

DTK1 33.0 175 11.0 140 31.22 0.00 35.7 11.2 343 572 26.6 1783,

K0.05TK1  30.3 17.6 44.2 148 31.22 0.00 35.8 48.2 34.6 529 112 1676.
K0.1TK1 27.6  17.6 754 173 31.22 0.00 354 86.2 349 598 199 1912.
K0.3TK1 21.7 176 169 212 31.22 0.00 415 254 30.7 502 492 1870. -
K1TK1 17.3 e 349 31.22 0.00 346 699 34.6 699 1121.

Teflon film thickness, d/=0.193 mm; film area, I'=3.142 cm?; compartment depth, d,=6.60 mm, d,=
© 6.73 mm. Values of G, were too small to be observed with accuracy.
By use of Eq. 112, capacitance values lead to the associated permittivities as follows:
C=31.22 ; 6,=2.167
C,=33.6—35.8 ; ¢=79.8~85.0
C.=32.1-34.9; ¢,=77.7~84.5
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Fig. 10. Frequency dependence of the capacitance C,, and the conductance G,, for the
composite Phase ba composed of Phase 4 (DW) and Phase 4 (0.3 mM KCI).
Valués of C, and G, were calculated from observed values of C/* and C* at
each frequency by use of the expression C,,*= C*C*/(C*—C™).

The first series of observations is that the left side aqueous (aq) phase & is kept
distilled water (D.W.) and the right side aq phase a is changed from D.W. t0 0.05, 0.1, 0.
3 and 1 mM KCI solutions.in turn. The observed results are shown in Fig. 6, the com-
plex capacitance and conductance plane plots being shown in Fig. 7. Two dielectric
relaxations P and Q are found in common. A system with D.W.-D.W. aq phases (ab-
breviated to DTD) keeps a single relaxation profile. - When the right side aq phase of the
cell is changed to 0.05, 0.1, 0.3, and 1 mM KCI solutions in turn, Q-relaxation shifts
to higher frequencies, P-relaxation remaining unchanged.

The second series of observations is that the right side aq phase « is kept a. 1 mM
KCI solution and the left side aq phase 4 is changed from 1 mM to 0.3, 0.1, 0.05 mM
KCl and D.W. in turn. The observed results are shwon in Fig. 8, the complex
capacitance and conductance plane plots being shown in Fig. 9. In this series, a system
with 1 mM-1mM aq phases (K1TK1) keeps a single relaxation profile. With the
decrease in the KCl concentration in the left side aq phase & of the cell, P-relaxaton shifts
to lower frequencies, Q-relaxation remaining unchanged.

The values of C, C,,, C, G, G, G, fpand fy are obtained from Figs. 6-9 of the
observations, being listed in Table 1.

4.2 Numerical Analysis based on the lumped C~G Model

The Teflon film intervening between Phases 4 and a is perfectly insulating, the
capacitance Gy being very stable and G;=0 irrespective of ambient aq phases. Hence
the following simplified analysis is admissible.

Following the viewpoint of the lumped C-G circuit models, the D.W.-Teflon film-
D.W. system (DTD) with the cell shown in Fig. 5 is understood to be a series combina-
tion of two phases: one is a Teflon film phase f, another being a composite aq Phase
(termed ba) of two Phases b and a. Hence a single relaxation is reasonably observed as
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seen in Fig. 6. Capacitance Cy, and conductance G, for this Phase ba is readily
evaluated by use of the formulas and the procedure explained in Appendix I. Thus, we
obtain C;=31.22 pF, G;=0 S, C;,=16.81 pF=Cy/2=C,/2, and G,,=6.143 ¢S, provid-
ed the two compartments b and a are of the same size as each other.. It is assumed
hereafter that the values obtained for Gy and G of Teflon Phase f hold also for other
systems.

Two dielectric relaxations P and Q are observed in the systems where Phases » and a
are different from each other in KCI concentration. Complex capacitance Cy.* of the
composite Phase ba of two Phase 4 and a can be expressed as

1 1 1 11
Cb* + C,* o C/,a* —F C’f*' (175)

W(A) . . .
ey
) 0.3mM
< KCt

- 5+ -
‘9 00kHz
QO
S
u I i |
w0
S | 2 25 30]

Cba,h . Cba,l
" Capacitance Cw/pF

(B)
% T T I T | T | T |
B 0l _
a 20
_’g‘: = -
© 10} -
C

O —
U e

o Q

e 10 20 30 40 50|

Conductance Ge/uS _
Fig. 11. Complex plane plots of (A) the complex capacitance C,,* [Cy,, ACH,=(Gh—
Gy, )/(27f)] and (B) the complex conductance Gs* [Grar AG3=27f (Cypo— Ciy )]
for the composite Phase ba composed of Phase 4 (DW) and Phase ¢ (0.3 mM
KCl). The data referring to Fig. 10.
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Fig. 12. Comparison between the theoretical curves and the observed values of
‘ capacitance C and conductance G for the whole system consisting of DW-
Teflon film-0.3 mM KCIl. The curves are calculated from the phase
parameters Gy, Gy, Gy, G,, C, and G, tabulated in Table 1 by use of Eq. 126.

Using Eq. 174, values of Cj,*= Cy(0)+ G,(w)/(jo) are calculated from observed
values of C*=C(0)+ G(w)/(jw) and Cy=31.22 pF and Gy=0 ¢S at each frequency. The
results of C;,* obtained for the D.W.-Teflon-KCl (0.3 mM) (abbreviated to DTKO.3)
system are shown in Figs. 10 and 11, in which one finds a single relaxation ascribable to
series combination of G,* (Phase 4) and C,* (Phase a).

Inspection of these C,,*-profile yields values of Coo, s Cia iy Goa o Gion and fi, o,
where the subscripts / and & mean the limiting values at low and high frequencies respec-
tively. By means of the procedure explained in Appendix I, values of C;, C,, G;, G, and
S, 0 are readily calculated from Cy, ;, Cps 4, Gua,1 and G, 4, the values being listed in
Table 1.

In the last instance, frequency dependence of C and G for the whole system can be
calculated from C;, C, C; G, G, and G;listed in Table 1 by use of Eq. 124 or Eq. 126.
Examples of the calculation are shown in Figs. 12 and 13, where satisfactory agreements
are seen among the calculated curves by Eq. 126 and the values observed. Hence it is
concluded that the profiles of frequency dependence of dielectric materials processing
conductive properties are well simulated by the lumped C-G circuit model of Fig. 4B.

The values of ¢, ¢, and ¢, calculated from (), C; and G, are in conformity with those
of Teflon and water as shown in Table 1.

4.3 General Conclusion and Future Problems

It has now been shown in the present study that the dielectric relaxation pattern of
Eq. 97 based on the electrostatic field laws is equivalent to that of Eq. 124 developed
by means of the lumped C-G circuit models.

As a matter of data analysis, the lumped C~G circuit model is more comprehensible
and miore effective to treat the observed data than the electrostatic field constitution.
Underwater membranes of simple nature like Teflon films are conveniently analysed by
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Comparison between the theoretical curves and the observed values on the
complex planes of (A) C—AC" and (B) G—AG" for the whole system of DW-
Teflon film-0.3 mM KCl. The curves are calculated by use of Eq. 126. The
data referring to Fig. 10. .

means of the equivalent C-G circuit model.

On the other hand, membranes of industrial importance such as ion-exchange
membranes and reverse osmotic membranes have been investigated extensively from
electrochemical and dielectric points of view. . Ion selectivity and substance separability
of these functional membraes are discussed by measn of the microscopic structure and

models have been shown for these membrane phenomena yet.. The circuit-modeling of
these functional membranes remains a problem for future exploration
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APPENDIX

I. CALCULATION OF PHASE PARAMETERS FROM THE DIELECTRIC
PARAMETERS FOR BILAMELLAR STRUCTURE! 1)

A diphase system consisting of Phases 4 and ¢ in bilamellar structure is depicted in
Fig. Al with a series combination of the lumped C,-G, and C,-G, circuit model. The
diphase system shows a single dielectric relaxation profile as shown in Fig. Al. According
to a previous investigation, the phase parameters such as G, C, G, and G,
are readily calculated from the observed dielectric parameters such as G, C,, G, and G,
by means of the following expressions:

R E SR
ned- (2T 82
=5 (43)
C=T (a%)
Xazy,,+[y,,<1—m(%—1>]“ for 4>0, (A5)
Xa=n—[,Ya(1—Ya)(%—1)]”2 for 4<0, (A6)
Gp Ga
N -
f 1
C, Ca
C|Ci o
G‘ G, Ch
3
frequency

Fig. Al. A series combination of parallel C-G circuit models (upper part) and the
frequency dependence for the whole system (lower part).
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-G
G.= %> (A7)
G
G, = I—JX,Z’ (A8)
Gi— G
wy = 2fy = cf— Chl' (A9)
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