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   The authors calculated the multipole field coefficients of the general RFQ potential by using 
boundary element method (BEM). The beam dynamics of the RFQ of Kyoto University was simulat-
ed by the computer code with the new accelerating field strength evaluated from BEM. The results 
were compared with those obtained from the simulation in which the two-term potential is assumed 
for the RFQ field. 
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                      1. INTRODUCTION 

   RFQ linacs can accelerate DC beams directly from an ion source, bunching them 
simultaneously. At the Facility of Nuclear Science Research, Institute for Chemical 
Research, Kyoto University, a 7-MeV proton linear accelerator is now being tested". 
This linac is composed of a 2-MeV RFQ linac and an Alvarez drift tube linac. 

   In the simulation code PARMTEQ2', the simple form of the RFQ potential, which 
is called the two-term potential, is assumed: 

                        2 

   U=-2L(ro) cos2B+AIo(kr) coskz](1) 
m2-1    A _

m2lo(ka)+I0(mka)(2) 

where A is an accelerating efficiency, m is a modulation parameter, a is the minimum 

bore radius, ro is the mean bore radius, V is the intervane voltage and k = 7r/Lc where 

Lc is a cell length. The vane geometry necessary to achieve the two-term potential 

field is 

   (y2    o)cos2B+AIo(kr) coskz=l(3) 
However, the actual potential of the RFQ linac of Kyoto Univ. is different from the 

two term potential, because the cross section of the vane tip has the constant curva-
ture. 

   In this paper, we present the results obtained by a program in which 3-D BEM is 
used to calculate the multipole coefficients of the general RFQ potential and the effect 
of the constant curvature vane tip on the RFQ potential is discussed. Using the results 
of BEM, the beam dynamics of the RFQ is also studied. 
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                          2. PROGRAM 

   To calculate the RFQ general potential, we solve the Laplace equation in each unit 

cell. For BEM calculation, let us express the Laplace equation as 

+.1. q5 ------a,9dS =fgandS(4)            on

where cd is the potential function of a specified cell, S is the surface of the vane tip and 

m=(4 7rr)-'. Eq. (4) can be transformed into a matrix formulation by subdividing the 
boundary into meshes. The LU expansion method was used to solve the matrix 

equation. We used a VAX station for the calculation. 

   The general RFQ potential is given as 

    U =-rE Aom(YO) 2 mcos2mO+ E E Attml2m(nkr) cos2m8 cosnkz] (5) n=1tt=1m=0 

where the summation in eq. (5) must be performed under the condition that cos (mp) x 

cos (np)= -1. We calculated the coefficients of four lowest order terms, i. e. A01, A1o, 
A0, and Al2. 

                        3. DISCUSSIONS 

   Table 1 shows the multipole coefficients and intervane capacitances evaluated 
from the BEM calculations with the design parameters of the specified cells of our 
RFQ linac. Figs. 1 (a), (b) and (c) show the values of A01, A10/A and intervane 

capacitance respectively corresponding to the various values of cell length and 
modulation parameter. As is clear from Fig. 1 (b), the value of A10 is rather different 
from the one expected in the PARMTEQ code. 

   Fig. 2 shows transmission efficiency as a function of input current. Two curves 

     Table. 1. Cell parameters and multipole coefficients of the specified cells of our RFQ. 

  Cell a m CL A01 A10/A A03 Al2 Capacitance 

number(pF/m) 

   20 0.299 1.007 0.357 0.983 0.586 0.031 0.004 27.69 

60 0.292 1.056 0.359 0.978 0.749 0.061 0.079 27.82 

   100 0.288 1.087 0.373 0.977 0.770 0.051 0.125 27.78 

   150 0.288 1.090 0.414 0.976 0.788 0.048 0.118 27.67 
   200 0.282 1.117 0.515 0.977 0.848 0.062 0.141 27.67 

   230 0.279 1.155 0.647 0.972 0.873 0.033 0.085 27.61 

   250 0.270 1.227 0.797 0.979 0.913 0.038 0.095 27.57 
   275 0.202 1.900 1.260 1.010 0.984 0.087 0.066 28.08 

   300 0.200 1.900 1.851 1.016 1.012 0.195 0.155 28.27 
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  Fig. 1. Variation of multipole coefficients and intervane capacitance as a function of cell length 
        and modulation parameter. 

        (a) A01. 
        (b) The ratio of A10 to the accelerating coefficient A. 

        (c) Intervane capacitance. 

in this figure correspond to the two cases below; 

   case 1: PARMTEQ simulation results with the two-term potential 

   case 2: PARMTEQ simulation results with the general potential 

In these simulations, the design parameters of our RFQ were used. It is shown in Fig. 

2 that the transmission efficiency of case 2 is a few percents smaller than that of case 

1 when input current is below 50 mA. 

   There are two possible methods to make sure the design transmission efficiency. 

The one is to increase the intervane voltage in the entrance region of the RFQ, the 

other is to change the modulation parameter and minimum bore radius to compensate 

the decrease of A10. Fig. 3 shows the design modulation parameter of our machine 

and the corrected modulation parameter to achieve the design transmission. Fig. 4 

shows the design intervane voltage of our machine and the linearly tilted intervane 

voltage to achieve the design transmission. By means of these procedures, we can 

make sure the design transmission efficiency obtained by PARMTEQ simulation with 
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             Fig. 2. Variation of transmission efficiency v. s. input current. 
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         Fig. 3. Variations of the design modulation parameter and corrected 
                one along the structure. 
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              Fig. 4. Intervane voltage v. s. longitudinal coordinate. 
                  (a) The design voltage. 

                  (b) A desired voltage for our RFQ to achieve the design 
                      transmission. 

the two-term potential. 

                   4. CONCLUDING REMARKS 

   When we use the constant curvature vane tip, the value of the coefficient A10 

becomes smaller than that expected in the usual PARMTEQ simulation in which the 

two term potential is assumed. This fact affects the beam dynamics, resulting in the 

reduction of the transmission efficiency. 

   To compensate the reduction of design efficiency due to the constant curvature 

vane tip, we may make the adequate correction to design modulation parameter 

obtained in the usual PARMTEQ simulation. As for our RFQ linac, to which no such 

correction is made, it will be necessary for the design transmission that the intervane 

voltage distribution should not be tuned flat but tilted to the amount of 15% as shown 

in Fig. 4. 
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