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            Visible absorption spectra of spread monolayers of cetyl orange on water at pH 2.8, 4.2 
        and 10.0 were recorded in situ at various stages of monolayer compression. The results indicate 

        that at pH 2.8 and 4.2 the molecules are in equilibrium between the azo and hydrazone forms 
        of the azobenzene moiety. Upon monolayer compression, the equilibrium shifted toward the 

        azo form which is originally in a more tightly condensed state than the hydrazone form. At 
pH 10.0, on the other hand, the cetyl orange molecules have the pure azo form, irrespective of 

        the degree of monolayer compression, and attain the H-aggregated state upon compression. 

       KEY WORDS: Spread monolayers on water/ Cetyl orange/ Visible absorption 
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                                 INTRODUCTION 

          Recently, an increased interest in the Langmuir-Blodgett (LB) films consisting 

       of well-organized molecular assemblies in the form of ultrathin films has provoked 

       much attention to the molecular structure and aggregation state in spread mono-
       layers on the water surface from which the LB films are fabricated. In a previous 

       paper, we reported resonance Raman spectra of LB films of cetyl orange (sodium 

       p-dicetylaminoazobenzenesulfonate) prepared from spread monolayers on water at 

       pH 8.7 and 1.5, which gave the azo and hydrazone forms (Fig. 1), respectively, of 
       the trans azobenzene moiety' . On that occasion, we felt the necessity of studying 

       the tautomeric equilibrium between the azo and hydrazone forms, as well as their 

        aggregation states, on the water surface. 

           In the present work, therefore, we measured visible absorption spectra of cetyl 

       orange monolayers on water at different pH values and at various stages of mono-

       layer compression, using a spectrophotometer equipped with optical fibers and a 

        multichannel detector2,3>. 

EXPERIMENTAL 

          Cetyl orange was kindly synthesized in Wako Pure Chemical Industries, Ltd, 

       Osaka by the method described previously4,5>. A Kyowa Kaimen Kagaku Model 
       HBM-AP Langmuir trough with a Wilhelmy balance was used for 7r-A isotherm 

       and visible absorption measurements. Water used as a subphase was purified by 

         * °.:J= /~j $ : Laboratory of Surface Chemistry, Institute for Chemical Research, 
           Kyoto University, Uji, Kyoto-Fu 611 

        ** J A uJ : Present address; Faculty of Engineering , Science University of Tokyo, 1-3 
           Kagurazaka, Shinjuku-Ku, Tokyo 162 

(241)



                                      J. UMEMURA, T. KAWAI and  T. TAKENAKA 

C16 H33\ 

              NNNN SO3Na                                     Na 

Azo form 

~H+1 L~.H+ 
C16 H33\ 

         N N~ 
            C16H33/ H/N O SO3Na 

                            Hydrazone form 
                               Fig. 1. Tautomeric equilibrium of cetyl orange 

          a modified Mitamura Riken automatic lab still consisting of a reverse osmosis 
          module, an ion exchange column, and a double distiller. It was adjusted to pH 2.8 

          and 4.2 by aqueous HCl solution, or to pH 10.0 by aqueous NaOH solution. The 
          temperature of the aqueous subphase was controlled to 20±0.3°C by a Neslab Cool-

          flow-25 refrigerated circulator. The monolayer of cetyl orange was spread from 
          1.34 x 10-3M chloroform solution on the water surface. After 20 minutes for solvent 

          evaporation, the monolayer was compressed at a constant rate of 10 cm2/min for 
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                       Fig. 2. Experimental setup for obtaining visible absorption spectra 
                                of spread monolayer of cetyl orange under compression. 
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   the  A isotherm measurements. 
       For visible absorption measurements, the monolayer was compressed at the 

   same rate to a planned surface area and kept constant during the measurement, and 
   then compressed again to the next surface area. Visible absorption spectra of the 
   spread monolayers of cetyl orange on the water surface were recorded on an Otsu- 

   ka Electronics Model MCPD-100 multichannel detector system shown in Fig. 22,3). 
   The light from the source was introduced through a branch of a Y-shaped optical 

   fiber bundle to the surface of the spread monolayer. After passing through the 
   monolayer the light was reflected back by a mirror placed horizontally in the water. 

   After passing the monolayer again, the reflected light reentered the edge of the 
   optical fiber and was led through another branch of the Y-shaped optital fiber bun-

   dle to a monochromator equipped with a multichannel detector. Reference spectra 
   were obtained on the pure water surface. 

                         RESULTS AND DISCUSSION 

      Figure 3 shows surface pressure (7r)-area (A) isotherms of the cetyl orange 

monolayer spread on water at 20°C and at pH 10.0, 4.2 and 2.8. The curve shifts 
   to a larger area side with the decrease in pH value. To understand the reason of 

   this shift, the visible absorption spectra of the spread monolayers with the surface 

   area of 66 A2/molecule were measured at pH 10.0 and 2.8. The results are shown 
   in Fig. 4. At pH 10.0, a broad band with its center locating at about 440 nm 

   appears. This band is typical of the `K band' which is ascribed to the 7r-7r* transi-
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            Fig. 4. Visible absorption spectra of spread monolayers of cetyl 

                    orange on water at pH 10.0 and 2.8, 20°C, and at surface 
                    area of 66A2/molecule. 

tion of the azo form of the trans azo-benzene moiety(Fig. l)16-$).At pH 2.8, on 
the other hand, a peak at 519 nm is observed with a shoulder at 552 nm. This is 
typical of the `Q band' which is ascribed to the same electronic transition of the 

protonated hydrazone form (or the quinoid form if the dicetylaminoazobenzene 
ring, i.e. N'-ring, is referred, Fig. 1)1,7-9). The peak at 519 nm is ascribed to the 
vibronic 0-1 component, while the shoulder at 552 nm to the 0-0 component". 
Thus, the results of Fig. 4 indicate that the cetyl orange molecules at pH 10.0 and 
2.8 are predominantly in the azo and hydrazone forms, respectively. Therefore, 

the ithotherm shift to the larger area side with decreasing the pH value can be 
interpreted by the equilibrium shift to the side of the hydrazone form which is in 
a more expanded state than the azo form on the water surface. This may be due 
to the fact that the hydrazone form has a positive charge on the nitrogen atom 

and therefore the repulsive forces between these charges may compel the distance 
between the neighboring molecules to be larger. At pH 4.2 the 7-A isotherm in 
Fig. 3 falls between the above-mentioned two curves. This may suggest that both 
azo and hydrazone forms coexist at equilibrium on the water at this pH value. 
Actually, the visible absorption spectra of cetyl orange monolayers at this pH value 
show both azo and hydrazone bands, as will be described later. 

   Next, we will deal with spectral changes upon compression of the monolayers 
at various pH values on water. Figure 5 shows visible absorption spectra of the 
spread monolayer of cetyl orange at various surface areas at pH 10. At large sur-
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                      Fig. 5. Visible absorption spectra of spread monolayer of cetyl 

                             orange on water at pH 10.0 and 20°C at four different 

                                  surface areas. 

       face areas of 101 and 84 A2/molecule, the peak maximum is observed at ca. 450 
       nm, but at a small surface area of 48 A2/molecule, it shifts to 425 nm. Similar 

        blue shifts by monolayer compression were observed for the same r-r* transition 
       band of spread monolayers of azobenzene-containing long-chain fatty acidss>. 

       According to the molecular exciton model proposed by McRae and Kasha10>, these 
       blue shifts were understood as due to the formation of the H-aggregates which 

       are the linear aggregate of chromophores with their transition moments parallel to 
       each other and ordered perpendicular (more precisely, with an angle greater than 

       54.74°) to the stacking direction. Therefore, the above-mentioned facts indicate that 
       the degree of H-aggregation is gradually improved upon monolayer compression. 

       In this regard, the bulk sample of cetyl orange consisting of microcrystallites with 
       highly ordered molecules, exhibited an absorption maximum at ca. 400 nm, when 

       measured as a KBr pellet. In a previous paper, we have also shown that the 10-
       monolayer LB film of cetyl orange prepared from a spread monolayer on water at 

       pH 8.7 and 10°C and at the surface pressure of 40 mN/m showed an absorption 
       peak at 415 nm. Since the absorption maximum (425 nm) of the compressed mono-

       layer at 48 A2/molecule in Fig. 5 are higher than those (400 or 415 nm) for the solid 
       states, the degree of H-aggregation may be lower in this compressed monolayer. 

          At pH 4.2 (Fig. 6), besides the azo band around 425 nm, the hydrazone bands 
       at 519 and 552 nm also appear with the similar intensity to the azo band. There-

       fore, both tautomeric forms are highly in equilibrium with each other at this pH. 
       In other words, pH 4.2 is within the transition interval of cetyl orange, and it 
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                     Fig. 6. Visible absorption spectra of spread monolayer of cetyl 

                            orange on water at pH 4.2 and 20°C at four different 
                                 surface areas. 

       corresponds with that (pH 3.1---4.4) of methyl orange". Although the hydrazone 
       bands in Fig. 6 do not show any marked spectral change upon monolayer compres-

       sion, the azo band shows similar blue shift to that in Fig. 5. Difference spectra 

       (not shown here) suggested that the relative intensity of the azo band to that of 
       the hydrazone band increased with decreasing surface area. 

         At pH 2.8 (Fig. 7), the hydrazone bands at 519 and 552 nm appear with a long 
       tail toward shorter wavelengths. With decreasing surface area (upon compression), 

       the azo band around 425 nm increases in intensity. Therefore, the equilibrium 
       slightly shifts from the hydrazone form to the azo form upon compression. This 

       equilibrium shift is considered to occur following the Le Chatellier-Braun's law, 
      since the azo form is principally the more tightly condensed state than the hydra-

       zone form, as mentioned above. It should be noted that the equilibrium shift 
       occurs against the increase in local pH value around the azobenzene chromophore, 

       since the proton is released by the transformation from the hydrazone to azo forms. 
          Furthermore, we prepared LB films consisting of cetyl orange in the hydrazone 

       form from aqueous HCl subphases at low pH values, but they changed spontane-
       ously to the azo form, loosing HC1. When we used H2SO4 instead of HC1, the 

      stability of the hydrazone form in the LB film was improved without appreciable 
       change in spread monolayer properties. These results will be reported elsewhere12>. 

          Finally, we must add that properties of the cetyl orange monolayer on the acidic 

       subphases reported here are short-lived within a couple of hours after spreading 
       the cetyl orange monolayer. When these monolayars are allowed to stand for 
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             Fig. 7. Visible absorption spectra of spread monolayer of cetyl 

                    orange on water at pH 2.8 and 20°C at four different 
                        surface areas. 

more than several hours in the atmosphere, they showed complex spectral changes 

which await further clarification. 
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