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   A simple apparatus has been fabricated to measure the resolution of backgammon patterns, 
which are usually used to produce position signals with the charge-division method and often 
employed as a read-out system of position-sensitive proportional counter (PSPC). The present method 
is available to estimate the position resolution of practical PSPCs. 

KEY WORDS: Position-Sensitive Proportional Counter/PSPC/Position 
             Resolution/Charge Division/Backgammon. 

                      1. INTRODUCTION 

   In the high-resolution X-ray crystal spectrometer, gas-filled proportional counters 
are often employed to measure precisely the position of X rays detected. Several 
methods were proposed for determining the position of ionizing events in the propor-
tional counter'-4). In one of the simplest methods, so-called "backgammon" pattern is 

used for one-dimensional position sensing, which consists of two adequate geometrical-
ly shaped electrodes2l. The Wedge and Strip pattern, which were naturally developed 
from backgammons-7>, are used for two-dimensional position sensing. To obtain 

position signals, a part of cathode of proportional counters is formed by electrodes of 
backgammon or Wedge and Strip pattern printed on the insulating substrate. The 

partition of charges induced on the electrodes is available for determining the gravity 
center of the charges produced during the electron avalanche around the wire (charge-
division method). 

   The position resolution depends on performances of proportional counter itself, 
read-out electrodes described above and electronics employed. For design of position-

sensitive proportional counter (PSPC), it is important to examine the performance of 
read-out electrodes. The intrinsic resolution of read-out electrodes with the printed 

patterns can be easily determined by the charge inductive method, in which the 
electron avalanche in the proportional counter is simulated by a charged needle. We 
here describe our recent measurements on the intrinsic resolution of read-out elec-
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 trodes with the charge inductive method. 

                         2. APPARATUS 

    The present apparatus for the charge inductive method is shown in Fig. 1, which 
 consists of an needle, an X-Y slider to move it and a box to mount the read-out 

 electrodes. Two boxes are prepared, 17 x 13 x 2 cm2 and 17 x 13 X 3 cm2. The read-out 

 electrode is set at the bottom of the box. The movable length of the slider is 10 cm in 
 X-direction and 6 cm in Y-direction. Voltage pulses of 1-9 V is applied to the needle. 

 The strong electric field at the top of the needle results in inducing electric charges on 
 the read-out electrodes to be examined. The needle is mounted in a metal sheath of 6 
 mm diameter. The total charges induced on the electrode are adjusted by changing the 

 part of needle outside the sheath. The sheath can be moved up and down to change the 
 distance between the top of needle and the cathode. The signal from the electrodes are 
 fed to preamplifiers through BNC connectors on the side faces of the box. For electric 

 shielding, the top of the slider is covered with a metal plate. 
    The charge induced on the read-out electrodes strongly depends on the length of 
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the needle (L as defined in Fig. 2). We measured the charge induced in the circular 
region with a radius of 20 mm as a function of the length L. The results are given by 

open circles in Fig. 2; the induced charges increase as the length L increases. From 

practical reasons, the length L was set at 5 mm in the present measurements described 
below. 

   In gas-filled proportional counters, electrons produced by the primary ionization 

process, i. e., the ionization of filled gas by incident radiations, are attracted to the 
anode wire at the center of the counter. Since the electric field becomes steeply 
stronger near the center, those electrons successively ionize the filled gas near the 
anode wire. A lot of electrons and positive ions are produced in this secondary 
ionization process, which is usually called electron avalanche. The mobility of positive 
ions in the gas is much slower than that of electrons. The positive ions do not part so 

much from the anode wire when the electrons arrive at the anode. The charge induced 
on the cathode is caused by the removal of the positive ions from the region quite near 
the anode wire. When the cathodes of the counter can be approximated by parallel 

plates with infinite areas, the charge induced on such cathodes can be easily estimated 
from a simple theoretical model given in Appendix A. 

   The charges of positive ions produced in the electron avalanches are simulated by 
the charges on the needle in the present apparatus. We measured the charge induced 
in the circular region on the read-out electrode as a function of the radius of the region 
R. Results are shown by open circles for d2/c4 =0.85 and triangles for d2/d, =1.85. 
Theoretical estimates according to Appendix A are given by solid and dashed curves. 

The agreement between measured and calculated data are fairly good. This result 
indicates that the present method with the charge induced on the top of the needle can 
be used for simulating the cahrge induction in the proportional counter. 

                     3. MEASUREMENTS 

   In Fig. 4 are shown the read-out electrodes with backgammon pattern. The pattern 

(I) was used in the counter with a cylindrical shape (30 mm diam. x 150 mm)81, while 
the pattern (II) was used in the counter with a thin rectangular shape (20 mm X 
100mm x 8 mm)9'. The block diagram of the electronics for the measurement of the 

position resolution of the backgammon patterns is given by Fig 5. Signals from both 
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            125 mm. 

electrodes on the backgammon pattern are used for the position measurements with 

the charge division method. The electric charges Q, and Q2 induced on two electrodes 

are given by 

QI = Q • (1-x)/1,(1) 

Q2=Q • X/l, -(2) 

where 1 is the length of electrode in X-direction and Q(= Q1 + Q2) is the total charge 

induced on both electrodes. Therefore, the position of the needle can be determined by 

the ratio of Q1 or Q2 to the total charge Q. Outputs of preamplifiers (P1 and P2) are 

processed with spectroscopy amplifiers (AMP1 and AMP2); the output voltage from 
AMP1, V1, is proportional to the length (l-x), while that from AMP2, V2, is propor-

tional to the length x. To produce signals proportional to the sum of (Q1 + Q2), outputs 

from the amplifiers are fed to to a sum amplifier. The divider is used to perform the 

division of QI/(Q1+Q2) with the signals from SUM-AMP and AMP2; the output from 

the divider is then proportional to the length x. In the present work, we employed 

commercially available electronics of low noise preamplifiers designed for surface-

barrier semiconductor detectors (Canberra 2003T) and a analog divider (Ortec 464). 

   The position linearities of both patterns (I) and (II) were examined with the 

present apparatus. Results for X-direction are given by Fig. 6. For the design of PSPC, 
we should always be careful to the distortion at the end of electrodes, which cannot be 

avoided as long as the printed patterns are employed as read-out electrodes. The only 

way to make the distortion smaller is to bring the needle closer to the cathode; the 

distance between the anode wire and cathode should be reduced for the proportional 

counter of rectangular shape. Results for the position linearity in Y-direction are given 

by Fig. 7, which also show the distortion near the end of electrodes. This distortion for 
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                 Fig. 8. Position resolution as a function of the charges 
                       induced on the needle: open circles, L=5 mm 

                         and d1=10 mm; closed circles, L=5 mm and 
d,=5 mm. Backgammon pattern (I) given in 

                         Fig. 5 was employed in this measurement. 

pattern (II) is more serious than that for pattern (I); this is caused by the length in 
Y-direction much shorter than that of pattern (I). However, the distortion in Y-

direction does not affect so much the linearity in X-direction. 
   In Fig. 8, the position resolution measured for the pattern (I) are plotted as a 

function of the total charges induced on the pattern; open circles were obtained with 

conditions of d, = 10 mm, while closed circles were obtained with d, = 5 mm. The 

resolution is clearly more improved as the total induced charge is increased. 
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                        4. DISCUSSIONS 

   According to previous works6'7"0-15' some relations between position resolution 

and noise sources are discussed is Appendix B. When it can be assumed that the 

broading in position sensing is caused by the electronic noise from preamplifiers, a 

theoretical expression for the position resolution is given by Eq. (B1) in Appendix B. 

This equation suggests that the position resolution p is proportional to the signal to 

noise (S/N) ratio of output signals from preamplifiers: 

 P cr (Q/N)-1.(3) 

   Assuming that the electric noise does not depend on the total charge induced on 

electrodes in the present work, we obtain a relation of 

 P « (Q/N)-°.7'(4) 

from Fig. 8. The resolution presently measured deviates from the simple theoretical 

model given by Eq. (B1). The origin of this deviation has not been revealed in the 

present work. The performance of the analog divider employed (Ortec 464) is now 
examined in detail. 

   The present result given by Fig. 8 can be applied to roughly estimate the practical 

resolution of PSPCs with the same electrodes and the same electronics. The total 

charges of positive ions produced in electron avalanches are given by 

 QT =e • E • G/W,(5) 

where e is the electric charge of an electron, E is the energy of incident radiations, G 

is the gas multiplication factor and W is an average of energies to ionize atoms and 
molecules in the filled gas. The charge induced on read-out electrodes is formally given 

by 

Q—E • QT.(6) 

where E is a geometrical factor to express the ratio of the induced charge to the total 

charge, which is a complicated function of the position on the electrodes. 

   The position resolution was R=---100 pm in our separate measurements with the 

read-out pattern (II)8), where 8.0-keV Cu KX rays were detected by a cylindrical 

proportional counter filled with 7-atm Ar+1O%CH4. Since W for Ar+1O%CH4 is 26. 
5 eV. M is 2 x 10' and e is —75% in this case, the induced charge is estimated to 0.72 

pC. It is seen from Fig. 8 that this value corresponds to the resolution of ^-90 pm. Thus, 
the present charge inductive method to measure the resolution of read-out electrodes 

are useful to predict the position resolution of PSPCs. 
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                          APPENDIX A. 

           ELECTRIC CHARGES INDUCED ON PARALLEL 
                     PLATE ELECTRODES 

   When electric charges are produced in the space between infinite parallel plate 

electrodes as shown in Fig. 2, the same amount of charges with opposite sign are 
induced on the electrodes. The charge induced on the lower plate C, is given by 

Qd,+2n(d,+d2)d,+2n(d,+d2)+2d2 

         2mV {d,+2n(d,+d2)} 2+R2 V {d,+2n(d,+d2)+2d2} 2+R2 

                                             (Al) 

where Q° is the supplied charge, d, and d2 are distances from the supplied charge and 

plate electrodes C, and C2, respectively, and Q, is the charge induced in the circular 
region with a radius R on the electrode C,. A part of results estimated for the induced 
charge are given by curves in Fig. 9. 

                         APPENDIX B. 

       THEORETICAL EXPRESSIONS OF POSITION RESOLUTION 

   There are two noise sources which contribute to the position resolution obtained 
with read-out electrodes such as backgammon and wedge and Strip patterns6'74°-'5) 
One is electronic noise mainly caused by preamplifiers. The other is partition noise, 
which is a fundamental limit to the resolution due to the statistical fluctuations in the 

distribution of discrete charges among electrodes. The FWHM resolution components 
caused by electronic noise and partition noise, i. e., PE and PF, are given by 

2.36•L N ---------- 
PF-{/~-f)2+f2,(Bl) 
            Jmax —fain Q 

(41)
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  P_2.36 • L If • (1—f)(B2)      / f
max—fminQ 

where Q is the total charges induced on electrodes, N is the rms noise of preamplifiers, 

L is the length on a side of the read-out, f is the fractional area of an electrode and 

fmax—fmin are the upper and lower limits on f. 
   As discussed by Thornton15', the partition noise is important when read-out 

electrodes are used as anodes of multichannel plate device (MCP) or parallel plate 

proportional counter (PPAC). Since electrons are collected by read-out electrodes in 
both cases, the signal amplitudes from the electrodes are proportional to the number 

of electrons collected. This number of electrons is subject to chance; the statistical 

distribution is binomial because an electron can be collected in two ways, by one 

electrode or the other one. On the other hand, read-out electrodes are used as cathodes 

in the present charge inductive method or ordinary PSPCs. The signal amplitude from 

electrodes depends on induced charges which are not subject to chance. Thus, the 

partition noise can be neglected in the present work. 
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