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  Coupled Motion in Alternating Phase Focused Linacs 

                         Hiromi OKAMOTO* 

                          Received February 5, 1991 

   Synchrobetatron resonances in alternating phase focused (APF) linacs are studied with the 
equations of motion obtained by the stepping field approximation method. It is shown that symmetric 
phase alternation patterns cause the lowest order resonance which is the most undesirable. The width 
of the unstable region corresponding to this resonance is evaluated approximately. 
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                       1. INTRODUCTION 

   An  APF linac is a modified version of usual drift tube linacs (DTL) and can 
achieve three-dimensional focusing without the installation of quadrupole lenses into 
the drift tubes. This fact means that it is possible to operate an APF linac at higher 
frequency or in lower energy region compared with normal type DTLs. The APF 
acceleration method was discovered about forty years ago') and has been developed 
mainly by Russian researchers. Although the initial investigation of an APF linac 

concluded that the APF structure may not be practical because of its small longitudi-
nal acceptance, further studies showed the possible APF designs called asymmetric 
APF (AAPF) and modified APF (MAPF)2' which can realize larger acceptance compa-
rable to normal DTLs. Various theoretical approachs to understand the beam 

dynamics of AAPF and MAPF have been proposed and APF linacs are now thought 
to be useful in the energy region below around several MeV/u.31'6) 

   In APF linacs, intergap rf fields are used to achieve not only acceleration but also 
beam focusing, so, in the design stage, the consideration of the synchrobetatron 

couping becomes more important than that in normal DTLs". The smoothed trans-
verse phase advance O.,"` in a normal DTL is separated into the two parts, i.e. o.DTL 

crtQM—D.tRFDot'M is the phase advance of quadrupole focusing channel while 6.t5FD 
comes from intergap rf fields. Because the strongest resonance occurs when 4(atDTl)2 
,"(6.1D fL)2_2(RFD)2and, in recent DTL designs,C.QM makes a dominant contribution to 
~tDTLit is usually unnecessary to worry about the synchrobetatron couping effects. 
However, there is no o M part in the APF phase advance and we must pay much 
attention to the coupled motion in APF structures. In the present paper, we investigate 
the synchrobetatron coupling effects in APF linacs, starting with the same type of 
equations presented in Ref. 3. The width of the unstable region around the lowest order 
resonance is also described. 
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               2. COUPLED EQUATIONS OF MOTION 

   The equations of motion of an APF linac with axisymmetric accelerating field can 

be represented as follows (see APPENDIX A and B); 

      d2x+  2A  I
I(xx)2; V,TkAk(r)sin(LS,cb+ OM= 0(1.a)     dr2 x k=1 

                  N       d2(6,95)
+2A E VkTkAk(r) [10(xx)cos(A0+0ks)—coschks]=0 (1.b)      d

r2 k=1 

where 

,regLN 
A=---------- 

mpc2/33y3/1.. 

Eqs.(1) show the strong coupling between transverse and longitudinal particle motion. 
If we keep only the linear terms in x and AO, these equations agree with those 

presented in Ref.3. Expanding the Bessel functions, sine and cosine functions in eqs.(1) 
into power series, we obtain 

   d2xco(jay,/0ooo (xx)21n-1 
       +KK(r)x=8P2(r) I nhn-------—4 I Pn(r)(64)° E mh,,, d

r2n=2 xn=1m=1x 

                                                       (2. a) 
and 

d2(Acb)  L2K s(r)(6,0)= —2 Eoo  nPn(1-)(6,0)n-1 d
r2n =3 

                                                      coon 

—2 E nPn(r)(60)n-1 E hm(xx)2m (2. b) n=1m=1 

where 

(-1)n/2 
                2n-•Ks(r) for n= even 

la„—-------------
n!r(n+1) 2),Pn(r)— (-1)cn—v/2 --------------•KK(r) for n= odd, 

                                  n! 
and 

                                 N 
                      KS(r)=A~

k=1VkT/Ak(r)SinCbks 

N Ks(r)=AI VkTkAk(r)cos0ks. 
k=1 

Ks(r) and Kc(r) are rewritten as 

Ks(r)=B+ E Cn sin (2n7rr+On) 
n=1                                                          

^ 

KK(r)=B'+ E Cn' sin (2n,rr+B'n) 
n =1 

where On and On' are constant, 

(2)
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 B=EAk=EA Val  sin  .751,8, 
                 k=1 k=1 

     N2N2ll2 Cn=2 { [f .kSnk sin (2nlrrk)]+[~AnSnk cos (2nnrk)]}, 
k=]k=1 

       and B' and Ck are obtained by replacing An in the above formulae by ok=AVkTk 

coschks. In the following calculations, we consider only the second order terms in x and 
AO in the r.h.s. of eqs.(2), i.e. 

d2x 

        dr2-----+Ks(r)x=—Kc(r)(A0)x(3. a)            ' d) 2Ks(r)(64)=KK(r)[(64)2_2)2--I(3. b) 

                                3. SMOOTHING 

           To obtain the smoothed equations of motion, we put 

x=x•(1+qt) and q q •(1+q1).(4) 

qt and q1 are periodic functions i.e. qt(r)=qt(r+1) and q1(r)=q1(r+1) with the 
        conditions 

<gt> = 0 = < 9 t> and <qt> = 0 = < 91>(5) 

       where • = d/dr and the r-dependent functions encolsed with < > indicate the 

        averaged values over a focusing period. For example, 

<qt> = f+1 qt(r)dr. 

       Substitution of eqs.(4) into eq.(3.a) leads to 

                (1+ qt) x +( <Ks>+gtKs)x +2g tx = -Kc(1 + qt)(1+ qt)xq,• (6) 

       Here, we have assumed that qt satisfies the differential equation 

t=—Ks+ <Ks> .(7) 

       Averaging the both sides of eq.(6) and using the conditions (5), we have the smoothed 
        transverse equation of motion as 

x+tst2x=-0'a2x9(8. a) 

        where 

0t2= <Ks>+ <gtKs> and o= <Kc(1+qt)(1+qt)> . 

       Similarly, eq.(3.b) is smoothed to give 

                                  1                       +
ot2q.)=2co2_ 2x2or2x2(8, b) 

         where 

6t2= -2(<Ks>+<q,K3>), 

(3)
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 ob2=<KC(1+qt)2> and o-c2=<KK(1+qt)2> • 

And q1 satisfies 

t= 2(Ks— <Ks>).(9) 

We can easily solve eqs.(7) and (9) under the conditions (5) and obtain 

qt=— 
                  1

qt=-----4r2E1 nZsin(2n~rr+Bn).(10) 
Making use of eq.(10), the phase advances are evaluated as follows; 

           1 
ot2=B+-----E ( Cn  )2(11 . a) 8x27,1 n 

                 1 °' Cn 
ot2=-2B+---EO2(11. b) 

27r2 n=1 n 
             1 °J Cn 21 CO CnCn'    6a2= [1—-----~()]•B'--~----(11. c) 

              16n°n=1 n28x2 n=1 n2 

    ab2= [1+-----1E,(Cn-----)42]•B'—-----1C„Cn(11. d) 
8n" n=1 n2 2n2 =i n2 

                                                                           nn'      0-2=-[1+1Cn)2•---1CC         ~]•B'+(11. e) 
               327r4n=i n247/.2 n=1 n2 

              4. SYNCHROBETATRON RESONANCES 

   Let us try to solve the coupled equations of motion eqs.(8) by using iteration 

method. We write the solutions as 

x =xa)+x(2)+••• and cp=q)(1)+q)(2)+..., 

Substituting these expressions into eqs.(8), the first two lowest order equations of 

transverse and longitudinal motion are represented as follows; 

co+0.,2xco=0(12 . a) 

(2)+6yt2x(2) —oa2x(l)q2(1)(12. b) 

cu+o12c2(1)=0(13 . a) 

                 ~(2)+Qi29(2)—.b2c0(1)2nx2oc2x(1)2(13. b) 
From eqs.(12.a) and (13.a), we haveG 

f x(l)=xlcos(otr+pi)(14. a) 
                                     QM= coicos(o-tr+gi').(14. b) 

Substitutions of eqs.(14) into eqs.(12.b) and (13.b) give the next order equations; 

(4)
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                         6a2x,~,         (2).+. tjt2x(2)= 2 {cos [(6t+6t)r+1c+] +cos [(6t—6t)r+,z_]} (15. a) 

      zzzzz         (2)+6tz~(z)= 6b21 [1+cos(26tr+2,(.t,')]—x64xt [1 +cos(26tr+2jt,)] 
                                                    (15. b) 

where /2+ =,(c, +,tt,' and /2---= 121—,u1'. 

The solutions of eqs.(15) which are zero and have zero derivatives at r=0 are 

   (z——6Q2fitr0'12"x
266 ------- X'P'{ 2 sln(6tr+,u,)sin(-------2)cos(-----2+jz,') 

              tt 

         61(26~+6t)rcr  

26t+6tsin[2sin(2+u+)        
+--------6t sin [ (26t-26t)r  Jsin(~tr—g ) } (16. a) 

    26t-6t22 

and 

      r1 6, 2                                                 6y612-     9(2) =I912_n( (lb611 (.--------6tsin------2 
  6t 2) 

            L 

a-t r 3 6tr1 3 a'tr or       + 2o-2  qP,2 {sin(------2)sin(2+41')—3sin(2)sin(-----2+2;0} 
       2(26 t+6t)r(26t—dt)r         +6~X2~,12 {2~t  sin [sin [------+2~t, ]     20-126t+6122 

The coupling terms in eqs.(8) yield synchrobetatron resonances. As is shown in eqs.(16), 

a resonance condition is written 

26t— 6t=0.(17) 

We see from eqs.(2) that the synchrobetatron coupling terms have the coordinate 

dependences like (.(6)nx2m (n,m=integer) which result in the various resonance condi-

tions given generally by 

nt•6t±nt•6t=m 

where nt, n, and m are integers. However, eq.(17) corresponds to the lowest order 

resonance which is the most severe one. Furthermore, as is mentioned in the next 

section, this resonance have the largest unstable region around the condition (17) 

compared with the other resonances. Using egs.(11.a) and (11.b), eqs.(17) is shown to be 

equivalent to B=0. This means that an APF linac having symmetric phase sequences 

must be avoided to eliminate the lowest order resonance. 

                    5. UNSTABLE REGION 

   In this section, we estimate the width of the unstable region around the resonance 

given by the condition (17). Making use of the expression of co") instead of 9 in r.h.s. 
of eq.(8.a), we have 

(5)
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                                     sa2              x+6t [1+()cp,cos(6yr+u,'] x=0. (18) 
6, 

To calculate the unstable width around the 26t=6, resonance, we put 61=26t+6' to 
rewrite eq.(18) as 

x+ 6t2 [1+77,cos(2at+6)r] x=0(19) 

where 771=-- (6a/6t)2c1. 

Now, we try to find an approximated solution having the form 

           x(r)=ac(r)cos(6t+----2)r+as(r)sin(6s+----2)r(20) 
where ac(r) and as(r) are slowly varying functions whose first r-derivatives are the 
same order as S. Substitution of eq.(20) into eq.(19) with the neglection of the second 
derivative terms leads to 

                                    1vo't 
               pac+2(0+2)as=0(21. a) 

1770.,
2----- (S—-----2)ac—pas=0.(21. b) 

Here, we assumed the exp(pr)-dependence for ac(r) and as(r). The condition that the 

set of equations (21) have non-trivial solutions are given by 

p2=----1[(Zt)s2](22) 
Since the particle motion becomes unstable if p2> 0, the unstable region is evaluated 

from eq.(22) as 

         1 sa26t16a 2 
        1--191 I <----<1+—( ) I q1 I . (23) 

        4st2 6t 4 st 

This is the unstable width corresponding to the lowest order parametric resonance 

derived from the approximated solution (20) with the assumption 61= 26t+ S. This kind 

of resonances also occurs when o = 26t/n, but the unstable width of the n-th order 

resonance is proportional to 7i„ and the beam growth rate becomes smaller with 

increasing resonance order. Furthermore, in an usual APF linac, we generally set al 

26t to make the longitudinal acceptance as large as possible, so the resonance (17) 

is the most dangerous one. 

                   6. CONCLUDING REMARKS 

   Coupled motion in APF linacs has been described, starting with the smoothed 

equations of motion based on the same type equations presented in Ref. 3. The 

equations of motion analyzed here are obtained by using the stepping field approxima-

tion method, generalizing the usual equations for normal DTLs. In fact, if we put N =1 

and C„ = 0= C„', we can easily show that all equations in this paper agree with those 

(6)
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describing the synchrobetatron motion in normal DTLs. (However, in this case, it is 

necessary to add the contribution from external focusing elements to the transverse 

phase advance  at.) 
   It has been shown from the smoothed equations that particle motion in a symmet-

ric APF (SAPF) linac may be affected by the lowest order coupling effect because the 

longitudinal phase advance in SAPF is twice as large as the transverse one. In usual 

designs of AAPF and MAPF, we generally choose phase sequences so that al 2ot, to 

make the longitudinal acceptance as large as possible. Therefore, in practical mean-

ings, the lowest order synchrobetatron resonance imposes a severe restriction to APF 

phase sequence designs and, from eq. (23), the relation 

aa cri>2ait• [1+k 20.t ) i pi i 
must be satisfied to avoid the resonance with the simultaneous achievement of the 

large longitudinal acceptance. In this formula, (p, is approximately equal to the 

half-width of the longitudinal phase acceptable region evaluated graphically from the 

effective potential presented in Ref. 3. 
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                       APPENDIX A 

                        NOTATIONS 

13,y = relativistic parameters 
c= speed of light 

mo = particle mass 

e = electron charge 
 =rf wavelength 

q =charge state of ion 
-(S'Chks =equilibrium phase 
V, Vk = intergap voltage amplitude 

T. Tk = transit-time factor 
N = number of gaps in a focusing period 

L = cell length 

LN= total length of a focusing period 

g, gk=gap width 
x = transverse coordinate of particle 

ch =phase difference of non-equilibrium and equilibrium particle 

(7)
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All the above symbols with subscript k represent the values of the k-th cell in a 

focusing period. 

                       APPENDIX B 

            SINGLE PARTICLE EQUATIONS OF MOTION 

                       IN APF LINACS 

   First of all, we try to obtain the electromagnetic field in a drift tube structure 

whose periodic length is  LN. Here, we consider an even-7r mode DTL with axisym-

metric intergap field. The notations of the symbols in this paper are listed in APPEN-

DIX A. Using the cylindrical coordinate system, the Maxwell's equations are represent-

ed as follows; 

                      1  a(rEr) aEz 
+—=U               r a

r az 

aEr _  aEz   aB,  
             az ar at 

                        aB,   1 aEr  

                    az c2 at 

                     1 a(rB8) 1 aEz  

                    r ar c2 at 

E,= Br= Bz=0 

Then, the axial electric field Ez satisfies 

             1  a~
r aEz )+a2Ez=_(-----~2E=(B. 1) 

          r arar az2c 

with a standing wave expression 

Ez(z,rt)=Ez(z,r)cos cot. 

Since Ez can be expanded as a Fourier series 

2nirz Ez(z,r)= En(r)cos(----), 
n =0LN 

eq. (B.1) reduces to 

a2En 1 aEn                        + — — kn2En=0                       a
r2 r ar 

which has a solution E„ (r)=AnI0(knr) where In(x) indicates the modified Bessel function 

of n-th order and kn2=(27r/2 )2 [(nX./LN)2-1] . Accordingly, we get the electromagnetic 

fields 

(8)
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 2  n7rz 
EZ(z,r,t)= I oAnlo(knr)cos(L)coswt(B.2a)                                                              .v 

x 2n7rA n2 n7rz       Er(z,r,t)= 1orknLv-------- I,(knr)sin(LN)coswt(B.2b) 
x Anw 2ma  

      B9(z, r, t) = — I o kc2I, (knr)cos(LN)sin wt(B.2c) 
                                   n by using the Maxwell's equatins. If we use the averaged Lorentz force over single 

structure period, the transverse equation of motion is given by 

                    dpx _eq VT  I , (xx)sin4,(B.3)               d
r c/3y 

from eqs.(B.2) under the assumption that LN=NPA, and cot= (27r/fl )z+q. In eq.(B.3), 

we put AN = 2VT/LN, x=27r/fyA. and r=/3ct/LN. Now, putting 0 =AO +Os and 

applying the stepping field approximation method proposed in Ref. 3 to eq.(B.3), we 
obtain the transverse equation of motion in an APF structure

N dpX-----
=—-----eqIi(xx)2 VkTkAk(r)sin(A0+Ohs) (B.4a) d

r cfly k=1 

where 

sin(n7rgk/LN)  
          Ak(r)=1+21Snkcos [2n—                                7r(rrk)] , Snk 

      1nxgk/LN 

and 

if3,  k—I rk(k * 1)= E (Om+ls— .95ms+Yf7r) with r1=0. 2 
7rLN m=1 

77 is an accelerating mode number and, for example, 77=2 for a 27r- mode DTL. The 
momentum px is related to the transverse coordinate x as 

             dx LN ----------- • Px.(B. 4b)                    d
r mocfy 

If we assume that /3 is approximately constant through single focusing period, eqs. 

(B. 4) give 
     2g           x + eLNN                          I

1(xx)1 VkTkAk(r)sin(AgS+ks)=0.             dr' moc2a32y2 k=1 

From eq. (B. 2a), we see that the energy difference between non-equilibrium and 
equilibrium particle satisfies the equation 

d(OW)  =egVT [I0(xx)cos¢—cosOs] ,(B. 5) 
dr 

assuming that the change of radial particle position in a gap is small enough to be 
neglected. Again, we apply the stepping field method to eq.(B.5) to obtain 

(9)
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 d(A  4i')  —eq VkTkAk(r) [Io(xx)cos(A + OM— coschks] . (B. 6a) d
r k=1 

The r-derivative of Aq5 approximately satisfies 

d(Aq5) 271LN OW  (B
. 6b) d

r A moc2fl3y3. 

Then, we have from eqs.(B.6) the longitudinal equation of motion of an APF structure 

d2(Ach) 2negLN  

                         N 

      dz2+mc2g3E VkTkAk(r) [I0(xx)cos(A¢+Oks)—cosgks] =0.                 oNy3~k=1 

We can easily obtain the same equations of motion also in an odd-n mode structure, 
following the similar procedure described above. 

                            (10)


