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   Novel functions of intranuclear myeloperoxidase (MPO), cleaving and shielding of DNA, 
have been proposed in this study. We investigated MPO-DNA interaction by using agarose 
or polyacrylamide gel electrophoresis, and firstly found paradoxical duplex effects of MPO on 
DNA molecules. Nucleotide sequence analysis and footprinting results showed that the clea-
ving and shielding of DNA by MPO is significantly dependent upon the concentration of the 
enzyme. At the high MPO concentration, intranuclear MPO protects DNA damage from 
oxygen radicals produced during myeloid cell maturation and its function is due to DNA 
binding ability of the enzyme. On the contrary, the considerable decline of MPO concent-
ration clearly induces the DNA cleavage by the enzyme. When the cells can't satisfactorily 
function as immunocyte under the condition of decreasing MPO concentration, therefore, 
MPO may actively lead to the death of cells 
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                         INTRODUCTION 

   Myeloperoxidase (MPO; EC 1.11.1.7) localizes in azurophil granules cytoplasmic 

structures of phagocytic cells. The enzyme plays an important role in the oxygen-

and halogen-dependent microbicidal system of leucocytes.t> During phagocytosis, 

MPO promotes peroxidation of Cl— to HOCI at the expense of H202 formed by 

the membrane-bound NAD (P) H oxidase2-4> during the respiratory burst. The 

product can cause rapid oxidative degradation of a wide variety of biological 
substances 5> Recently, it has been reported that the nuclei of different cell types 
such as human granulocytes and myeloid leukemia involve MP0.6,7> Huberman's 

group has proposed that intranuclear MPO may help to protect DNA against 
damage resulting from oxygen radicals produced during myeloid cell maturation 
and function.7> There is great interest in the relation between intranuclear and 

intragranular functions of the enzyme. 
   In this study, MPO-DNA interaction was investigated by using agarose or 

polyacrylamide gel electrophoresis, and we found that the enzyme significantly 
contributes to not only protecting of DNA but also cleavage of DNA, depending 

upon the concentration of MPO. Biological implication for these phenomena has 

been considered on the basis of the experimental results. 
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                    EXPERIMENTAL PROCEDURES 

   Enzymes and Chemicals. Myeloperoxidase, prepared from normal human leukocytes 
as described  previously,s> was offered by Dr. H. Iwamoto (Kyoto University). 
Methidiumpropyl-EDTA (MPE) was a kind gift of Prof. Peter B. Dervan (California 
Institute of Technology). Sail and DraII restriction endonucleases were obtained 
from Takara Shuzo (Kyoto, Japan). All other chemicals used were of commercial 
reagent grade. 

   DNA Cleavage Reaction. The reactions were carried out by incubating a mixture 

(total volume, 20 pl) of pBR322 DNA (20 pg/ml) and MPO in a solution of 50 
mM sodium phosphate buffer (pH 7.5) at 37°C for 20 min. The cleavage reactions 
were initiated by addition of NADH (1 mM) and H202 (3 mM), and allowed to 

proceed at 37°C for 60 min. The reactions were terminated by the addition of cold 
ethanol (60 pl) and 3M sodium acetate (2 pl) and then the samples were imme-
diately chilled at -70°C. Each lyophilized sample was dissolved in 20 al of loading 
buffer containing 0.05% bromophenol blue and 10% glycerol, and heated at 75°C 
for 1 min before electrophoresis. The electrophoresis was performed by using 1% 
agarose gel containing ethidium bromide (0.5 /tg/ml). 

   Gel Mobility Shift Assay. Mobility shift assay was carried out by combining the 

5'-end labeled 128-base pairs DNA fragment (pBR 322 Sall-DraII DNA), sonicated 
calf thymus DNA (20 ug/ml), and MPO in a solution of 4 mM Tris-HCI (pH 7.5), 
12 mM Hepes-NaOH (pH 7.5), 60 mM KCI, 0.5 mM EDTA, 0.5 mM dithiothreitol 

and 12% glycerol, and then the mixture (total volume, 10 pl) was incubated at 37°C 
for 20 min. Protein-DNA complexes were resolved from free DNA by electropho-
resis on 4% polyacrylamide gel with running buffer containing 90 mM Tris-borate 

(pH 8.0) and 2.5 mM EDTA at 250 V. 
   Nucleotide Sequence Analysis and MPE-Fe(II) Footprinting. Nucleotide sequence 

reactions were carried out by combining the 5'-end labeled 128-base pairs DNA 
fragment (pBR322 Sall-DraII DNA), sonicated calf thymus DNA (20Ftg/m1), and 
MPO in a solution of 50 mM sodium phosphate buffer (pH 7.5), and then the 
mixture (total volume, 20 p1) was incubated at 37°C for 20 min. The reactions were 

initiated by addition of NADH (5 mM) and H202 (10 mM), and allowed to proceed 
at 37°C for 120 min. Cold ethanol was added to the sample solutions to stop the 
reaction. The MPE-Fe(II) footprinting reactions were performed by combining a 
mixture (total volume, 20 pl) of the 5'-end labeled 128-base pairs DNA fragment 

(pBR322 SaII-DraII DNA), sonicated calf thymus DNA (20pg/ml), and MPO in 
a solution of 20 mM Tris-HCI buffer (pH 7.5), and then by incubating at 37°C for 

20 min. The reactions were started by addition of MPE-Fe(II) reagent (20 ftM) 
and dithiothreitol (2 mM), and then allowed to proceed at 37°C for 10 min. In 
order to stop the reaction, cold ethanol was added to the sample solutions. Elect-
rophoresis was performed in a 10% polyacrylamide/7 M urea slab gel at 2000 V for 
2 hr. DNA sequencing (G-FA) was carried out by the Maxam-Gilbert method 9) 
The amount of radioactivity of each samples subjected to electrophoresis was app-
roximately 10,000 cpm. 
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                       RESULTS AND DISCUSSION 

   Figure 1 shows typical gel electrophoretic patterns of covalently closed-circular 

(form I) pBR322 DNA treated with the MPO-NADH-H202 system (lanes 2-7). 
In compared with control (lane 1), the MPO-NADH-H202 system significantly 
caused single- and double-strand breaks of DNA to form nicked circular (form II) 
and linear (form III) duplex.  In lanes 6 and 7, despite careful experiment, a part 
of DNA seems to be lost due to physical adsorption by excess amount of the 

protein during ethanol precipitation step. Table 1 summarizes the quantitative 
relationship between MPO concentration and DNA cleaving activity. The DNA 
cleavage activity was estimated by microdensitometer. Of special interest is diffe-
rent duplicate effect of MPO on DNA, namely the induction of DNA breakage 
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             Fig. 1. Agarose (1%) gel electrophoretic patterns of ethidium 

                    bromide stained pBR 322 DNA after treatment with 
                     the MPO-NADH-H202 system. The samples contained 

                     the following concentration of MPO: lane 1, none; 
                    lane 2, 1 nM; lane 3, 10 nM; lane 4, 50 nM; lane 5, 

100 nM; lane 6, 200 nM; and lane 7, 300 nM. Lane 8 
                     shows intact DNA alone. The positions of forms I-III 

                     DNAs were indicated. 

          Table 1. Dependency of MPO concentration for DNA cleavage by 

MPO-NADH-H202 system 

                                       DNA cleavage activity (%) MPO 
concentration (nM) 

                           form Iform IIform III 

       blank (intact DNA)79.120.90.0 

       031. 867. 11. 1 
       132. 166.51 . 4 
      1037.258.64.2 

       5014. 877. 27. 9 
       1009. 978.012. 1 

       20020. 073. 26.8 
      30038.157.94.0 
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at low concentration of MPO and the depression of DNA strand scission at high 

concentration of the enzyme. Typical inhibitors of MPO, sodium azide and  defero-

xamine,10) strongly suppressed the DNA cleavage reaction by MPO. Evidently, 

fully desalted sample of the enzyme possessed reproducible DNA breakage activity 

(data not shown) . 
   In order to confirm MPO interaction with DNA, we performed mobility shift 

DNA binding assay using gel electrophoresis. Figure 2 shows the dependency of 

MPO concentration for DNA binding of MPO. The shielding of DNA by MPO 

was evidently observed at high concentration (300 nM) of MPO. The result is 

correspond with the following DNA footprinting result for MPO by using MPE. 
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             Fig. 2. Autoradiograms of DNA binding of MPO by gel mo-
                     bility shift assay. The samples with radioactive DNA 

                     fragment (128-bp) contained the following concentra-
                     tion of MPO: lane 1, none; lane 2, 300nM; lane 3, 

100 nM; lane 4, 50 nM; lane 5, 10 nM; lane 6, 5 nM; 
                      lane 7, 1 nM; and lane 8, 0.5 nM. The arrows indicate 

                      protein-DNA complex or free DNA. 

    Figure 3demonstrates the nucleotide-sequence cleavage modes on the DNA 

fragment (128-base pairs) by MPO-NADH-H202 system (lanes 6&7), together with 
the DNA footprinting results for MPO by using MPE (lanes 3-5). The result 

also shows that the inhibition of DNA strand scission occurs under the condition 

of high MPO concentration, and that MPO shields the DNA molecules from the 

DNA cleaving reagent (lane 4). At the same concentration of the enzyme in 

which DNA was strongly cleaved (lane 5), the clear shielding of DNA molecules 

by MPO was observed in contrast with MPE control (lane 3). Similar inhibition 
of the DNA cleavage induced by MPE was not observed in the presence (300 nM) 

of another protein such as serum albumin. The ability of any protein to induce 
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             Fig. 3. Autoradiograms of a10% polyacrylamide gel for the 
                     cleavage reactions by MPO-NADH-H202 system (lanes 

                   6&7) and for the MPE-Fe(II) footprint of MPO (lanes 
                     3-5). The samples contained the following concentra-

                    tion of MPO: lane 3, none; lanes 4&6, 300nM; and 
                      lanes 5&7, 100 nM. Lane 1 shows intact DNA alone. 

                    Lane 2 exhibits DNA sequencing (G+A) by the Maxam-
                      Gilbert method. 

a footprinting depends on the strength of interaction and slowness of protein-DNA 

dissociation. 

   Herein, we firstly demonstrate important paradoxical function of MPO on 

DNA: the cleaving activity for DNA and the protection from DNA damage. 

Probably, the DNA shielding is attributable to DNA binding properties of the 
basic protein MPO, and the DNA breakage to active oxygen species produced by 

MPO enzyme system. It is of special importance to note that the paradoxical 

effect results from imbalance depend upon the concentration of MPO. Indeed, the 

present data indicate that at high concentration of MPO the enzyme shields DNA 
by its binding without active oxygen production from MPO enzyme system. Two 

distinct papers have been reported: MPO is present in the nuclei of human 
monomyelocytic cells7 and MPO activity is not shown in the nucleus of human 

monocytes.l1D These observations appear to support our hypothesis: the different 
duplex actions of MPO depend upon the enzyme concentration, and MPO may 
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usually protect DNA molecules from active oxygen damage via shielding of DNA 

in the nucleus of the cells. The considerable decline of MPO concentration, may 
lead to the DNA cleavage by the production of active oxygen species. When the 

cells can't satisfactorily act as immunocyte by decreasing of MPO concentration, 

that is, the enzyme may positively induce the death of cells by DNA cleaving 

damage. 

   Many T cells bearing self-reactive receptors are selectively deleted during thymus 
 development.12) The phenomenon is very important for organisms to maintain its 

immunological mechanism. Several groups have reported that T cell receptor 

plays significant roles to lead to programmed cell death.12-I5> Furthermore, Mac-
Donald et al. have described that self-reactive population in vitro includes at least 

some cells with a mature (CD4+CD8-) surface phenotype, and they proposed the 
mechanism of death—i.e., contact with self-antigen, influx of extracellular Ca2+, 

and activation of endonuclease.15) In phagocytic cells which actively play cell 

functions through immense oxygen metabolism, on the other hand, the decrease 

of intranuclear MPO concentration would elevate a probability of DNA mutation 

in nuclei. Under the condition of high probability of DNA mutation, one important 

role of the enzyme may be to guide actively these cells to death by its endonuclease-

like activities. This difference of mechanisms of cell death appears to be associated 

with the evolution level of these cells as immunocytes. 

   Our present finding clearly indicates the concentration-dependent paradoxical 
action of MPO for DNA. The protection of DNA damage and the induction of 

cell death by direct shielding and cleaving of DNA respectively, seem to be biolo-

gically significant as the functions of intranuclear MPO. 
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