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   A program is presented for the construction of symmetry-adaped basis functions for molecular 
orbitals, employing the projection operator technique. It is written in a language of Mathemeatica and 
the way of using the program is described. A line of input data produces the symmetry orbitals for 
the point group of molecule and an input file for a program named "SCAT" which puts the discrete-
variational  Xa molecular orbital method into practice. 
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                       I. INTRODUCTION 

   One of time-consuming parts in the molecular orbital calculations is to obtain 
matrix elements. The matrix can be reduced in a way based on symmetrical properties 
of the molecule. The group theory is applied to handle the properties. The basis 
functions for the irreducible matrix are called symmetry orbitals. They are useful not 
only to reduce the number of integrations for the matrix, but also to characterize the 
spatial distribution of electrons and the interactions between the molecular orbitals. 

   There are two categories of algorithms to construct the symmetry orbitals for the 

point group. Tools of the group theory such as a projection operator are used directly 
to get the relevant quantities of symmetry orbitals."2l In the other technique, the 
symmetry orbitals are derived with the orthogonal transformation matrices for atomic 
orbitals (AO's) which are found on the process of reducing the matrices of overlap 

between the AO's.3' The latter technique is suitable for numerical calculation in 
FORTRAN. The former technique can specify the common symbols of representations 

for the symmetry orbitals and produces a simpler form of symmetry orbitals, because 
the axes are prescribed in space. Therefore, the symmetry orbitals generated by the 
former technique are convenient for analyzing spatial features of the molecular 
orbitals (MO's). However, the implementation of the technique requires programming 
for mathematical symbolic operations. 

   In the present paper, a procedure for constructing the symmetry orbitals by the 

projection operator is described, followed by explanation how to use the program 
employing the operator. A line of input data gives the symmetry orbitals and an input 
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file for a program  "SCAT") based on the descrete-variational Xa (DV-Xa) molecular 
orbital method. As the projection operator technique needs the symbolic operations 

and a check on the results needs numerical calculations, the present program has been 

written in a language Mathematica (Wolfram Research, Inc.)5> which runs on a lot of 

computers from personal computers to workstations and mainframes. Test runs of the 

program were done on Macintosh IIcx and Sun 4/1. 

                 II. COMPUTATIONAL METHOD 

2.1 Generation of Symmetry Orbitals 

   The projection operator for the fcth irreducible representation of a point group is 

defined as follows: 

n h                 P,;st=----hr;(R1)stR=;(1) 

where n4 is the dimension of yth representation, h is the order of group and r„*(R,)st 
is the complex conjugate of matrix element ofr the sth row and tth column of 
representation for the oprator P,. An arbitrary function t.(r) operated by the P gives 
a symmetry orbital f : 

fp;st=Yp;st 0(r).(2) 

If the function 0(r) has no components of the symmetry orbitals belonging to the 
representation rt, the operation results in zero. Reference 2 provides a proof that the 

fps„ is one of the functions of irreducible basis. 
The transformation of function by a spatial operator is perfomed in the following 
equation: 

Rq(r)= 0(R-1r).(3) 

A general form of expression is used in the case where the function q(r;S1) has the 
origin of coodinate system Si differing from the origin of symmetry operation: 

1?"4.(r; St)=¢(R-'r; RS,).(4) 

This relation is illustrated with the aid of Fig. 1. A site S, is transferred to S2 by the 
operator P and the axis X, for the site Si is transformed to X 2. The axis X', should 
be transformed to X2 which is in the same direction as the original axis is. This 
transformation is done at the local origin S2 by the inverse operator R—'. 

   The following atomic orbitals (Pntm are often adopted in the linear combination of 
AO (LCAO) approximation: 

cvntm(r; v)=una(r; v) Ytm(8, 0; v),(5) 
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                       Fig. 1. Symmetry operation for a function located at the 

                              origin different from that for the symmetry. 

       where tent is a radial function, functions Yim are the spherical harmonics and v is used 
      instead of Si for simplicity of typography. The radial function is a numerical solution 

      of atomic calculation in the DV-Xcr method and a power of r multiplied by an 
      exponential function for the Slater-type orbitals (STO's). It has a spherical symmetry 

      and can be omitted on handling the symmetrical properties. The symmetry orbitals f 
        without the radial parts are given by: 

l i;l=Pjrst Ylm(B, 4.; v),(6) 

_ w,»„i 1'tm(B, c6; v),(7) 

      The summation is carried out over v and m except for l because the spatially 
      transformed Ytm is expressed in terms of the Yon with the same 1 value: 

RYim(9, q; v)=E c,,..1,,, Y1, .(B, 0; v).(8) 

      The symmetry-adapted basis functions xi;nt for the LCAO are finally expressed with 
      the av i derived in Eq.(7): 

xi;.= wom;i unl(r; V) Ylm(B, CI); V).(9) 
                                                                  +tm 

          Using a close relation between Ytm and Y1_ ,, real forms of spherical harmonics ylm 

      are derived by: 
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 Yon=---- j(Ytm+(-1)mYi-m) ;m>0,(10) 

—
2( Yon —(-1)mYt-m) ;m<0,(11) 

= Yon;m=0 .(12) 

     In the present program, the yim with the equal 1 are multiplied by a constant for 
    simplicity of symbolic operation without affecting the results and defined in an initial-

     ization routine of the program. The f,i with the yim is produced in the present program 
    and the x,.„i is constructed in the DV-Xa program SCAT according to the Av. 

    2.2 Classification of Symmetry Orbitals 
       The symmetry orbitals are derived from the yim located at one of the equivalent 

    atomic sites by the projection operator. During the process, duplication of the symme-
    try orbitals takes place. After eliminating the duplicates, it is confirmed that the 

    number of symmetry orbitals is equal to the number of original ytm's for all the atoms. 

       The derived orbitals in a degenerate representation are classified in order to be 
    orthogonal to the orbitals in the other blocks. Overlap integrals <g,1 xi> are evaluat-

    ed to judge the orthogonality. Test functions g; are defined in the program and when 

    the overlap integral is not zero, the function f belongs to the same block as the test 
    function. It is requested only that the symmetrical properties are reflected in the 
    integral values. The integrals are replaced by the following summation: 

<g; xi> gg(rk)x'i(rk),(13) 

x'i(r)=w,,,,,:i(r— r~ )Ytm(r— r~ ), (14) 

    where a simple radial function (r—r„) located at the atom site v is introduced into the 

z which is used instead of xi. The points rk arise from transformation of a point at 
    a general position by all the operations in the point group. This classification technique 

    with overlap integrals is useful for checking the results in a way independent of the 

    group theory tools, though the projection operator can be utilized for the classification 
     and checking. 

                    III. DESCRIPTION OF INPUT DATA 

       The program is called symOrb, which is read into Mathematica with a command 
"<<symOrb” . When a command "?symOrb" is inputted, a help message is returned 

    which contains a format of input data, explanation of the parameters and examples. 
    The program is in a form of function: symOrb ["group name", sites, {linit, lfin}, "file 

     name", start number] . The input parameter of group name means the name of point 

    group and is specified by the Shonflies symbols such as C3, C3v, Oh, etc. The parameter 
    of sites needs the coordinates of representative points which are defined later. The 

                                (345)



                           H.  NAKAMATSU, H. ADACHI and T. MUKOYAMA 

z 

                         y (0,0,1) 

(-1,a,0) 

        ID 

•(2,0,0) 
(-1,-'T,0) 

                        Fig. 2. Example of atomic positions. 

format is {x, y, z,} and for two or more representative points, the sets of coordinates 
are listed in a pair of braces, e.g., {{xi, VI, z1}, {x2, Y2, z2},...}. (Default= {0, 0, 0}) The 

parameter {lint, lfin} indicates the range of angular momentum quantum number 1. A 
value {0, 1}, for example, results in the symmetry orbitals with the s and p orbitals. 
A value {0, 3} denotes the quantum numbers for s, p, d and f states. (Default= {0, 1)) 

The input of file name causes the output of results to the file. When the name is not 
specified, nothing is written in any file. The numbering of sites begins at the parameter 
of start number. This is used to get additional symmetry orbitals for the existing 
symmetry orbital file. (Default=-1) 

   The representative points are explained for a tetratomic molecule with C,,, 
symmetry as shown in Fig. 2. Four atomic sites in the molecule are classified into two: 

{0, 0, 1} and the other. The latter three sites are equivalent, which means that 
permutations occur among them when the group operations are carried out. One of the 
equivalent sites is called a representative point in the present program. A list {{0,  0, 11, 

{ 2, 0, 0}1  is specified as the input of representative points for the function "symOrb". 
It is sufficient that the set of atom sites has the same symmetrical properties as the 
molecule has. The present example of representative points is applicable to various 
NH3-shaped molecules such as NF3i PC13. When the actual coordinates of molecules 
are used in place of the { { 0, 0, 11, { 2, 0, 0}1,  the same results will be obtained in a longer 

calculation time. 
   The principal axis of symmetry operations is taken as the z axis, which agrees 

with the common usage. The way of taking the x and y directions follows the custom 
usage according to a character table in Ref. 6. Some different definitions of the x and 

y directions are encountered in the papers. For example, the coordinate system for the 
HZS molecule adopted in the present program is different from the usage in Ref. 7. The 
reverse definition of B1 and B2 representations appears. 

   Examples of input data are shown below. 

symOrb["C3v", { 1, 0, 0}, { 0, 1}] 

                            (* These three input lines result in the same symmetry orbitals *) 
  symOrb["C3v", {-1, Sgrt[3], 0), {0, 1}] (* Sqrt[3] means 1 *) 

   symOrb["C3v", {1.23, 0, 1.5}, {0, 1)] 
  symOrb["C3v", {{1, 0, 0), {0, 0, 0}}, {{0, 1}}, "symC3v"] (* NH3 *) 

      (* This input makes the results written in a file "symC3v" *) 

                           (346)



                                 Computation of Symmetry Orbitals for Point Groups 

          symOrb["C2v", {{1, 0,  0}, {0, 0, 0}}, {{0, 1}}]; (* H2O *) 
           symOrb["C3v", {{0, 0, 0}, {1, 0, 0}, {1, 0, 0}, {2, 1, 0}}, {0, 3}, "symC3v"]; 

             (* P(CF3)3 *) 
svmOrb["C3", {{1, 0, 0}, {1, 1, 0}, {0, 0, 0}, {0, 0, 0}}] 

              (* C2H6i HCCH twisted angle*nnc/6 *) 

                                IV. TEST RUN 

            Figure 3 shows a test run to construct the symmetry orbitals for a NH3-shaped 
        molecule with the s and p orbitals. The first line(a) is necessary at the beginning of 

        using the program "symOrb". The next line(b) is the input data. The messages(c) 
         appear during the calculation and include the correspondence between the atom sites 

        and the coordinates. The lines in the example mean that the site a01 is located at (1, 
        0, 0), the site a02 (-1/2, ,T372, 0) and so on. The first three sites a01, a02, a03 are 

        equivalent and make up one group. The site a04 alone forms the other group. The 
        lines(d) show the symmetry orbitals without the radial functions and have a structure 

(* Ammonia-type 20sec. SUN 4/1 *) 
<<symOrb(A) 

           symOrb["C3v", {{1,0,0},{0,0,0}},{0,1}, "file-NH3" ] ---- (B) 
             End of rSA 

             End of setProj 
        Atomic positions: {{a01, a02, a03}, {a04}} ->C 

                    1 Sqrt[3]1 -Sqrt[3] 
            {{{1, 0, 0}, {-(-), -------, 01, {-(-), --------, 0}}, {{o, 0, o}}} 

       2 22 2 

             End of sym 
              End of remoDup 
            Generated SO's: 16, Expected SO's: 16 

             Normal End. 

                            - 

            {{{al /z C3v}, {a2}, {e/x, a/y}}, 

              {{6 a04 y00, 2 a01 y00 + 2 a02 y00 + 2 a03 y00, 

           6 a04 y10, 2 a01 y10 + 2 a02 y10 + 2 a03 y10,(D) 
Sqrt[3] a02 yl-1 - Sqrt[3] a03 y1-1 + 2 a01 yll - a02 yll - a03 y11}, 

{2 a01 yl-1 - a02 yl-1 - a03 yl-1 - Sqrt[3] a02 yll + Sqrt[3] a03 yll}, 

{4 a01 y00 - 2 a02 y00 - 2 a03 y00, 4 a01 y10 - 2 a02 y10 - 2 a03 y10, 

                6 a04 yll, 

-(Sqrt[3] a02 y1-1) + Sqrt[3] a03 yl-1 + 4 a01 yll + a02 yll .+ a03 yll, 

Sqrt[3] a02 yl-1 - Sqrt[3] a03 y1-1 + 3 a02 yll + 3 a03 yll}, 

{2 Sqrt[3] a02 y00 - 2 Sqrt[3] a03 y00, 6 a04 y1-1, 

               2 Sqrt[3] a02 y10 - 2 Sqrt[3] a03 y10, 

                4 a01 yl-1 + a02 yl-1 + a03 yl-1 + Sqrt[3] a02 yll - Sqrt[3) a03 yll, 

                3 a02 yl-1 + 3 a03 y1-1 - Sqrt[3] a02 yll + Sqrt[3] a03 yll}}} 

                                   Fig. 3. Test run output on display. 
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          5 al /z C3v 
O 1 1 
O 4 6.000000 

     O 3 1(A) 
       0 3 2.000000 0 2 2.000000 0 1 2.000000 

Omitted for space 

        ** Nsym , Isyml, Jsyml ** 
4 
1 1 1 1(B) 
1 1 1 0 

      C3v Positions of atoms 
      4 

    1. 0. 0. 1     -0.5 0.866025 0. 2(C) 

                            J 

      -0 .5 -0.866025 0. 3 
0. 0. 0. 4 

               Fig. 4. Contents of test run output file after the formatting. 

{{names}, {symmetry orbitals}}. Symmetry orbitals belonging to a representation A, 

constitute the wavefunctions in a, one-electron states. The results for the a, orbitals 

mean as follows: 

6.yoo(a4), 

2y00(a1)+ 2y00(a2) + 2No(a3), 

6y1o(a4), 

2yy,0(ai)+2ylo(a2)+2yio(a3), 
1(a2)— IT.''1-1(a3)+23/11(al)—yll(a2)—yll(a3).. 

   Figure 4 shows the contents of output file "file-NH3" which has been processed by 
a formatting FORTRAN program named "FORMSYM". The formatted file will be 
directly obtained with the next version of symOrb coded in the second version of 
Mathemetica. The lines(A) are the symmetry orbital data for the DV-Xa program 
"SCAT" . The lines(B) are parameters concerned with the reading of symmetry orbital 
data. They are required in the main input file F05 for the program "SCAT". The 

lines(C) show the coordinates of atomic sites. 
   Note added in proof: The classification procedure explained in the section 2.2 has 

been replaced with that according to a relationship in the group theory. The method 
is described by Meyer [§ 3 in Int. J. Quant. Chem., 33, 445 (1988)]. The numerical 
integration in the text is still used to check the obtained symmetry orbitals. 
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