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   Photoelectrochemical behavior of TiO2 (anatase) film electrode prepared by the sol-gel method 
has been investigated over a wide pH range from 1 to 13.5. It was found that the photocurrent-
potential curves in the intermediate pH region comprise the two waves. The first wave dominating 
above pH=12 was ascribed to the generation of 02 mainly via H2O, resulting from trapping of the 
photogenerated holes by Ti3+-OH-. On the other hand, the second wave dominating below pH = 12 was 
ascribed to the direct photoox1dation of water adsorbed at Ti' sites. On the basis of these results the 
mechanism that surface states produced by OH- or H2O adsorbed at Ti" sites play an improtant role 
in photoelectrochemical reaction is proposed. 
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                     INTRODUCTION 

   Up to now enormous studies have been carried out on photoelectrochemistry of 
semiconductor electrodes for wet type solar energy conversion. To obtain new elec-

trode materials with both high efficiency and stability for that purpose'), the mecha-
nisms of photoelectrochemical reactions at the semiconductor electrode have been also 
extensively investigated. Especially the surface states (ss) have been known to cause 
very interesting and significant photoelectrochemical phenomena, such as flat band 
shiftz-4), Fermi level pinning°, charge transfer through them3l and photoluminescence°, 
including recombination center as a disadvantage). 

   The authors8> have recently reported the photoelectrochemical behavior of the 
Ti02 film electrodes prepared by the sol-gel method. It was observed that the Ti02 film 

electrodes thus prepared show a considerably high photocurrent comparable to a single 
crystal Ti02 electrode and a large positive flat band shift under illumination in 0.05mol 
dm-3 H2S0, solution (pH=1). This was explicable by considering that the sol-gel 
derived Ti02 films have inherently a large specific surface area and consequently many 

surface defects, being endowed with a large number of the intrinsic surface states per 
unit apparent surface area9l. 

   In the present study, the photoelectrochemical behavior of sol-gel derived TiO2 
film electrodes is investigated over a wide pH range from 1 to 13.5 in order to elucidate 
the mechanism of photooxidation of water and the role of suface states at the Ti02 
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                 Fig. 1. Photocurrent-bias potential curves at various pH 
                        values; scan rate of 20 mVs '. 

semiconductor film electrode. 

                       EXPERIMENTAL 

   The pH of electrolyte was adjusted by proper comination of H2SO4 and NaOH and 

determined by a digital pH meter (model 3060, Jenway Ltd, England). The TiO2 

(anatase) film used in the present study was 0.9 ,um in thickness and subjected to 
heat-treatment at 600°C for 20 min for high efficiency°. Electrochemical mesurements 

(photocurrent, flat band potential etc.) were conducted in the same manner as de-
scribed in the previous paper°l. 

                         RESULT 

   Photocurrent-bias potential (I-E) curves in aqueous solutions at various pH's are 

shown in Figs. la and b. Interesting features are seen from these figures that I-E curves 

below pH=3.4 show one wave as usual, while above pH=3.8 another new wave (we 
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call hereafter the first wave) appears evidently on the negative potential side as shown 
by broken lines in Fig. la for clarity. With increasing pH (Fig. lb) the first wave grows 
up at the sacrifice of the wave on the positive potential side (we call hereafter the 

second wave), which disappears eventually at pH =13.5. 
   The variations of the onset potentials for respective waves with pH are shown in 

Fig. 2, where the broken line indicates the pH dependence of evolution potential of 
hydrogen for comparison. Below pH=3.4 (the second wave) and above pH=9.5 (the 
first wave), the pH dependences of onset potentials seem to follow the Nernstian law. 

On the other hand, in the intermediate pH region the onset potentials for both waves 
seem independent of pH value and above pH = 9.5 that for the second wave is shifted 

unexpectedly toward more positive potentials. 
   Fig. 3 depicts the pH dependences of photocurrent for respective waves in the 

plateau region. The second wave is obviously responsible for the total photocurrent up 
to pH=12, while above pH=12 it becomes drastically smaller, simultaneously ac-
companied by a sharp enhancement of the first wave photocurrent. 

   Fig. 4 shows the pH dependences of the flat band potentials Vfb in the dark and 
under illumination. The Vfb's in the dark were measured for some time after the 

measurements under illumination. It is noteworthy that the pH dependence of Vfb in 
the dark is quite similar to that of the onset potential of the first wave in Fig. 2. 

   Photocurrent-time responses at several potentials at various pH's are shown in 
Figs. 5 and 6. At pH's of 1 and 13.5 where only one wave is observed, the evident 
transient current is not visible (Fig. 5). On the other hand, in the pH region, where two 
waves are observed, the evident transient current is seen in the vicinity of the onset 

potential for the second wave (Fig. 6). 

                        DISCUSSION 

   The existence of the two waves in the I-E characteristics of the single crystal TiO2 
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     (rutile) electrode in the particular pH region was first reported by Despalt~o1, although 
     he did not mention any details of this phenomenon in his paper. It is, however, obvious 

     from the present experimental facts that there exist at least two kinds of photo-

     cleavage routes for water at the TiO2 electrode. So the present paper will make clearer 

     the existence and origins of the two waves in the I-E characteristics which were 

     observed for the sol-gel derived TiO2 (anatase) film electrode in the wide pH region. 

        The surface of TiO2 must be in equilibrium with the acidic or basic electroytes as 

follows"1 

       (acidic) Ti-OH+H4 = Ti0H2+ 

        (basic) Ti-011+ OH- Ti-0-+H20, 

     where the intermediate Ti0H2+ in acidic electrolyte can be taken as for water to be 

     adsorbed at Ti atoms resulting from dissociation equilibrium at the Ti02— electrolyte 

      interface. 

        Jaeger and Bard1~1 first confirmed the presence of radical intermediates relating 
     to H202, such as OH • and H02 • radicals at illuminated TiO2 powders by spin trapping 

     and ESR techniques. Wilson13 observed the peaks of dark cathodic current after 

     pre-illumination and assigned them to the reduction of photogenerated H202. Further-
     more, Gutierrez and Salvador") ascribed them to the surface states (ss) caused by H2 

     02 forming during preillumination. Following Salvador's experiment the authors') 

     have also confirmed experimentally that 11202 forms at the TiO2 (anatase) film 

     electrode prepared by sol-gel method during illumination in the wide pH range. These 

     things clearly indicate that H202 is generated by photoelectrochemical reaction at the 

TiO2 electrode. 

        Taking into account these facts, the following two respective reactions are 

     possible in acidic and basic electrolytes as the photooxidation of water by photogener-
     ated holes: 
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  (acidic) 2Ti-OH2++4h+ -4 2Ti++4H++02 .............................................(1) 

4Ti-OH2++4h+ -> 4Ti++4H++40H • 

40H •2H202-*2H20+02....................................(2) 

  (basic) 4Ti-OH+4h+ -> 4Ti++2H2O+02................................................(3) 

4Ti-OH+4h+ 4Ti++40H • 
................................................ (4)            40H • -+ 2H202 2H20+02 

The photocurrents must be influenced by the addition of H202 to the electrolyte, 

provided eqs.(2) and (4) are prevailing. To confirm the effect of H202 on each wave, 
different amounts of H202 were added to the electrolyte. The results at pH =12.2 are 

shown in Fig. 7 for an example. The photocurrent values for respective waves in the 

plateau region are plotted against the H202 concentration in Fig. 8151. As clearly seen 
from this figure, the second wave dominating in the acidic region shows a less H202 

concentration dependence, while the first wave dominating in the alkaline region 

strongly depends on the H202 concentration. That is, the degree of a decrease in the 

saturation photocurrent is more pronounced for the first wave than for the second 

wave. 

   Therefore, it is concluded that the second wave is mainly governed by reaction (1), 

although reaction (2) cannot be completely ruled out because the formation of H202 at 

the TiO2 (anatase) film electrode after illumination was experimentally confirmed 

even at pH =115. The above assignment seems in good accordance with the present 

results that in the higher pH range than 12 the onset potential of the second wave is 

shifted toward more positive potentials (Fig. 2) and the photocurrent decreases drasti-

cally (Fig. 3) due to an increase in concentration overpotential since the number of 

Ti0H2+ at the surface is considered to decrease with increasing pH. On the other hand, 

since the first wave is strongly affected by the addition of H202, reaction (4) is mainly 

responsible for the first wave. 

   Lo et al.16 found based on the UPS study that photoelectrochemical active sites at 
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the Ti02 surface are not Ti" but Ti" at which H2O and/or OH- are adsorbed. The 
energy level of Ti"+-OH- is located at about 0.5eV above the top of valence band" 1 but 
that of Ti"+-H20 is located far below the top of valence band. On the other hand, those 
of Ti3+-H2O and Ti3+-OH- are located at the band gap of Ti02 (anatase) electrode'".'s'. 
Therefore, water and hydroxyl ion adsorbed at Ti" sites can be oxidized by the 

photgenerated holes. Schematic energy diagrams and the proposed mechanisms of 

photoelectrochemical reaction for TiO2 (anatase) film electrode at several pH's are 
shown in Fig. 9. 

   At pH=1, oxygen evolution takes place only via oxidation of water adsorbed at 
Ti" on the surface by the photogenerated holes according to reaction (1), giving rise 

to one wave photcurrent. At pH=7, the number of OH- is exactly equal to that of H+ 
in an electrolyte, leading to an increase in the number of Ti3+-OH- at the surface. As 
a result, oxygen evolution via Ti3+-OH- according to reaction (4) takes place in 
addition to reaction (1), giving rise to two wave photocurrents. At pH=12, as the 
number of Ti3+-OH- increases, the contribution of the first wave to the total photocur-
rent increases, while the contribution of the second wave decreases. At pH =13.5, as 

the surface of TiO2 electrode is considered to be almost competely covered with OH-, 
oxygen evolution proceeds exclusively via Ti3+-OH-, again giving rise to one wave 

photocurrent only just like at pH =1. 
   Lo et al.161 also pointed out that water adsorbs associatively at Ti" sites, while 

does dissociatively at Ti" sites on the surface according to 

Ti3++H2O -* Ti3++OH-+H+. 

This may result in giving excess negative charge to the surface independent of 
equilibrium with an electrolyte especially in the intermediate pH region. As mentioned 
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    before, the sol-gel derived TiO2 film electrodes are characterized by large specific 

     surface area and high donor density (Ti3+)8'9) These may explain the reason why the 
    onset potenatials of the first wave (Fig. 2) and the Vfb in the dark (Fig. 4) are 

     independent of pH in the intermediate pH region. That is, the adsorbed OH- ions act 

     as potential-determining species in this pH region. 

        In the pH region where the I-E characteristics show two waves, all the surface 

    states of Ti3++0H-, Ti3++H2O, Ti4++0H- and adsorbed H202 at 1.47eV below the 

    bottom of conduction band'a,'9) are located between the band gap as shown in Fig. 9b. 

    Thus, in the intermediate pH region there are many surface states by which the 

    photogenerated holes can be trapped. 
Fig- 10 depicts relations between the saturation photocurrent and the flat band 

    potential shift 0 Vfb which is defined as a difference between the flat band potentials 
     between in the dark and under illumination. Measurements were made at three 

    different light intensities of 300, 400 and 500W. Both the photocurrent and 0 Vfb 

     increased with increasing light intensity irrespective of pH. At pH =1, the photocurrent 

     is directly proportional to A Vfb, which means that all the surface states capable of 
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  trapping the photogenerated holes contribute to the oxidation of water. On the con-
  trary, the higher the pH of the electrolyte, the larger the 0 V. value at which the 
  photocurrent starts to flow. This indicates that the surface states, which_ do trap the 
  photogenerated holes but do not take part in the oxidation of water, increase in 

  number with increasing pH. 
     At shallow bias potential the photogenerated holes are trapped by Ti3+-OH- due 

  to the largest overpotential with respect to the energy level of hole, causing the 
  photocleavage of water and producing the photocurrent. As the bias potential becomes 

  deeper, in other words, the band bending becomes steeper, the number of photogenerat-
  ed holes reaching the Ti3+-0H- surface states increases, because of the suppression of 

  the recombination of photogenerated holes and electrons. When the hole transfer via 
  these surface states attains a steady state, the photogenerated holes become to fill the 
  next deep surface states, in this case Ti3+-H2O2,Ti3+-H2O and Ti'+-OH-. If the over- 

  potential of photogenerated holes is not enough to oxidize water, these trapped holes 
  may cause a transient photocurrent especially in the vicinity of the onset potential of 

  the second wave in the intermediate pH region as shown in Fig. 6. These results are 
  also quite compatible with the mechanisms proposed in Fig. 9. 
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