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   Voltage-Current (V-I) characteristics and ac impedance were measured for the cell system 
composed of cellulose acetate (CA) membranes separating two NaCI solutions, one side containing a 
small amount of Tetraphenyl borate (TPB-) and the other Tetraphenyl arsonium (TPAs'). The 
rectification effect on the V-I characteristics and the associated dielectric relaxation were found. The 
membrane capacitance and conductance of the cell system depend on frequency. The limiting values 
of the membrane capacitance at high frequencies are independent of the applied bias voltage, being 
considered to be the geometric membrane capacitance. While the limiting values of the membrane 
capacitance and conductance at low frequencies depend on the applied bias voltage. Dependence of 
the values on the applied bias voltage and the rectification effect are discussed on the basis of a 
bipolar membrane model which consist of two abutting region of oppositely charged layers in series. 
In conclusion, it is considered that the large hydrophobic ions are specifically adsorbed in the CA 
membrane and show some behavior as fixed charges. 
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                      1. INTRODUCTION 

   In a previous paper'), dielectric properties were reported of cellulose acetate (CA) 
membranes in aqueous electrolyte solutions. The membrane capacitance and con-
ductance of the CA membranes in aqueous solutions were evaluated from the experi-
mental results by means of the dielectric analysis. 

   For the system composed of the CA membranes separating two electrolyte solu-
tions containing hydrophilic ions, the only dielectric relaxation due to the geometric 

capacitance and conductance of the membrane was observed. It is important to learn 
the dielectric behavior of the membranes in the ambient aqueous solution containing 
hydrophobic ions. For instance, it is known that a small amount of hydrophobic ion in 
the ambient aqueous solutions greatly affects the dielectric behavior of lipid bilayer 
membranes 2,3).. 

   This paper describes electrochemical properties of the cellulose acetate membrane 
separating two NaC1 solutions, one side containing a small amount of hydrophobic 

anion and the other hydrophobic cation. The rectification effect on voltage-current 

(V-I) characteristics and the associated dielectric relaxation were observed for this cell 
system. By the analysis of the relaxations, the membrane capacitance and conductance 
were evaluated, showing the dependence on frequency and applied bias voltage. 

   These properties were studied for bipolar membranes immersed in electrolyte 
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solutions, both theoretically and experimentally4-8>. Bipolar membranes consist of two 

abutting regions of fixed charges in series, one layer being cation-selective and the 

other anion-selective. They have attracted interest for an industrial application of ion 

exchange membranes and explaining some of the electrical characteristics of biologi-

cal membranes. The phenomena observed in the present system are discussed on the 

basis of the bipolar membrane model. 

                      2. EXPERIMENTAL 

   The system studied is shown in Fig. 1. It consists of a cellulose acetate membrane 

separating two 100mM NaC1 aqueous solutions, one side containing Sodium Tetra-

phenyl borate (TPBNa) and the other Tetraphenyl arsonium chloride (TPAsC1) of 
concentrations 10-150jM. 

   The cellulose acetate membranes were prepared by slowly withdrawing a clean 

glass plate from a 3wt% acetone solution of cellulose acetate (E398-3 Eastman Codak 
Co., Ltd.) and evaporating a solvent completely9l. The thickness of the membrane t was 

estimated to be about 0.lum by the following equation10l: 

            t=0.4(s)w8I /(1) 
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where  p, and ps the density of the solution and cellulose acetate, respectively, ws the 

weight fraction of the cellulose acetate in solution, p the viscosity of solution, uo the 

withdrawal rate, and g the gravitational constant. 

   The measuring system for the V-I characteristics and dielectric measurement is 

shown in Fig. 2(a). The cell system consists of a four electrode configuration. The two 

inner electrodes were used to measure the potential difference and the outer electrodes 

to pass and measure the current through the membrane. All electrodes were Ag wire 

or mesh coated with AgCI. 

   The V-I characteristics were measured with Solartron 1286 Potentiostat. The 

triangular voltage as shown in Fig. 2(b) was applied to the cell system. The sweep rate 

was 100mV/sec. The electrode immersed in solution containing TPAs+ ion was used as 

a reference. In this paper, the positive bias voltage is called "forward" and the negative 

bias voltage "reverse". 

   The dielectric measurements were carried out with 1286 potentiostat and Yokog-

awa Hewlett Packard 4192A LF Impedance Analyzer operating in a frequency range 

between 5Hz and 74kHz at each applied bias voltage. A 28mV peak-to-peak ac voltage. 

was applied to the cell system for impedance measurement. All measurements were 

carried out at room temperature 25°C. 

                  3. RESULTS AND DISCUSSION 

3.1. Voltage-Current Characteristics 

   Figure 3 shows the V-I characteristics of the cell system shown in Fig. 1. The 

voltage Tick was applied to the membrane, beign obtained from the measuring voltage 

Vmeas by 

VdC= VmeasIdcRs(2) 

where Id, the measuring current through the membrane and RS the solution resistance 

between the two electrodes and the CA membrane. The resistance RS was determined 
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      by the ac impedance measurement which will be described later. 

         The rectification effect is clearly observed for the cell system corriposed of the CA 

      membrane separating the electrolyte solutions containing the hydrophobic ions, while 

      it is not observed for the membrane immersed in a 100mM NaC1 solution. The reverse 

      current decreases with increasing the concentration of the hydrophobic ions. 

      3.2. Dielectric Properties 

         Figure 4 shows the frequency dependence of the capacitance C and the conductan- 
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ce G observed for the cell system composed of the CA membrane immersed in a 
100mM NaC1 solution (B) and that containing the hydrophobic ions (A) when the 
applied bias voltage is OV. In the case of (B), only one dielectric relaxation is observed, 
being considered to be due to the interfacial polarization between the membrane and 
the ambient aqueous solutions. In the case of (A), a large low frequency dielectric 
relaxation is observed in addition to the high frequency relaxation. The complex plane 

plots of the same data are shown in Fig. 5. In the former case, one semicircle is 
observed, while two semicircles are observed in the latter. 

   The membrane capacitance Cf, and conductance Gft are obtained by the following 
equation~1: 

       1 _  1 _  1(3) 
               Cft+Gft/jco C+G/fro Cu,+G./ja) 

where j the imaginary unit, CO the angular frequency and Cu, and Gu, are the capacitan-
ce and conductance of the ambient aqueous solution, respectively. The values of C,,, G. 
are estimated by means of the extrapolation of the complex plane plots to the high 

frequency limit. The solution resistance Rs is obtained by Rs=1/Gu,. 
   The complex plane plots of the membrane capacitance and conductance are shown 

in Fig. 6. One semicircle is clearly observed. For the analysis of the results, we adopt 

the equivalent circuit as shown in Fig. 7. 
   The value of the geometric capacitance Cf is about 0.1p F/cm2, being obtained as 

the limiting value of the capacitance Cft at high frequencies. The Cf-value does not 
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                                                 as shown in Fig. 6. 

depend on the applied bias voltage and the concentrations of the hydrophobic ions and 

NaCl. The membrane thickness t can be estimated to be about O.lpm by the following 

equation: 

evEf  
t= C

f,(4) 
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where of= 15 the relative permittivity of the CA membrane in aqueous solution and e„ 

the permittivity of vacuum. The estimated value of the membrane thickness from the 
dielectric method agrees with the estimated value by Eq. 1. 

   The values of the capacitance Cdt and the conductances G1, G, depend on the 

applied bias voltage and the concentrations of the hydrophobic ions as shown in Figs. 

8-10. 

   In the present paper, the case is discussed of the reverse bias voltage. When the 

forward bias voltage was applied, the frequency dependence of the capacitance and 

conductance was found to be inductive at low frequencies. This phenomenon is still 

under consideration. 

   The values of Cd1 are 0.1-30uF/cm2, which are large compared with the ordinary 

geometric capacitance. They increase with increasing the concentration of the hydro-

phobic ions and the appllied bias voltage. They also increase with increasing the NaC1 
concentration as shown in Fig. 11. This capacitance appears to be attributed to the 

space charge layer. 

   The conductances G1, G, increase as the increase in the applied bias voltage and 

the NaC1 concentration and as the decrease in the concentration of the hydrophobic 

ions as shown in Figs. 9, 10, 12. The conductance G, is the limiting value of the 

membrane conductance Gft at low frequencies. It is considered to be obtained by 

differentiating the current Idc with respect to the voltage Vdc at each bias voltage. The 

conductance Gh is the limiting value at high frequencies. It must be directly related to 

the concentration c1 and mobility u1 of the mobile ion i in the membrane by the 

following equation: 

       G,=~---------aX(5) 
0Fz;u;c; 

where z; the elementary charge of the mobile ion i and F the Faraday constant. Hence, 
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 CAmodel 
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      TPB~TPAs'-X +X Fig. 13. (a) The membrane model of the CA                                                    mambrane which adsorbs TPB- ion 
                                                 from the left side of the aqueous solution 

                           d~0 dand TPAs+ ions from the right. 
                                                 (b) The simplest bipolar membrane 

    (a)(b)model. 

    it is infered that the total concentration of the mobile ions in the membrane decreases 

    with decreasing the applied bias voltage Vdc. 

    3.3. Theoretical Consideration 

       The phenomena observed for the present system were very similar to those for the 

    bipolar membrane4-8. It is considered that the large hydrophobic ions TPB-, TPAs+ 

    are specifically adsorbed in the hydrophobic CA membrane. The adsorbed hydrophobic 

    ions behave as the fixed charges since their mobilities in the membrane are considered 

    to be very small compared to Sodium and Chloride ions. Hence, the CA membrane in 

    the present system is considered to be the bipolar membrane as shown in Fig. 13(a). 

    Following Mauro') and Costero, the simplest bipolar membrane model as depicted in 

    Fig. 13(b) is discussed. 

        The bipolar membrane extends from x= — d to x=- d. The region between x=— 

    d  and x=0  has negative fixed charges, while that between x=0  and x = d has positive 

    fixed charges. The fixed charge densities of the positive and negative regions are X 

    and — X, respectively. In the transition region between x= — A and x= A, there are no 

    mobile charges. The region of the negative space charge extends from x= — to x= 

0 and that of the positive space charge extends form x=0  to x= A . 

       By solving the Poisson equation, the thickness of the space charge region A is 

    obtained by the following equation: 

/------------ 
              x_,JEvefV.(6) 

FX 

    where V;unc the potential difference between x=—  A. and x-= A. The value of V;un~is 
    the sum of the Donnan potential difference between the oppositely charged layers 2‘P'o 

    and the applied bias voltage — Vdc, that is 

Viunc=2'Y0— VdC•(7) 

    Here it is assumed that the bias voltage is applied to the transition region only. 
     The Donnan potential 'Po is 

/------------                =—RFln{-----KCo `~,(2)2+(KCo)2Z)}(8) 
    where K the partition coefficient of NaC1 between the membrane and aqueous solu-

    tion, co the NaCl concentration of solution and F, R, T are the usual meanings. 

                                (307)



                                    K. ASAKA and T. HANAI 

   The direct current  Id, is the diffusion current of the co-ions in each fixed charge 
region. Hence, the current per unit area Id, is given by 

Id~—FD+c+a(X)—c+n(d) +FD_c_n(—X)—c-n(—d) ,(9) d—~d—~ 

where D+, D_ the diffusion coefficients of Na+, Cl- ions at x, respectively. 

   The concentrations c+p(d), c_n(—d) are not affected by the applied bias voltage. 

Using the Maxwell-Boltzmann distribution law, they are given by 

               c+p(d)= c_n(—d)=KcoexP(—----RT To).(10) 
The concentrations c+p(A.), c_„(— X) depend on the applied bias voltage Vdc. They are 

given by 

            c+p(A)=c_p(—.l)=Kcoexp(—----RT4`o)exp(RVTc).(11) 
Substituting Eqs. 10 and 11 into Eq. 9, the current Id, is expressed as the following 
equation: 

          Id~=FKcoexp(—----RT`Yo)Da+~(exp(RT°)-1).(12) 
The conductance G1 can be obtained by differentiating Id, with respect to Vdc, that is 

= 

        did,(13) 

                                 dVdc 

   The capacitance Cdt is considered to be attributed to the storage of charge in the 

transition region. From Eq. 6, we have 

FX~ z(14) 
                                                evEj 

   If the voltage V. increases by a small amount of 6V, the width of the transition 

region increases by 6A. From Eq. 14, 6A is given by 

             s~ =euef6V .(15)                               2FXa
. 

   As the increase in the width of the transition region, an amount of the space charge 

in the transition region increases by (SQ. Hence, we have 

            8Q=FX&l=Zvf6V.(16) 

But the differential capacitance Cdl is defined as 

       Cdl=------ (17) 

                            (308)



                   Electrochemical Properties of Cellulose Acetate Membranes 

  30100--------------------------------------------------------1 1 

                       I/m„4X=0.leq.11                doY 0.01 

          positive current0001, 00005  E 
 20 Y 10 

X=1eq.11 •x 

                                                                01 
                 10 

1 — 001 I 

 —1.0 —0.5 0
ocm 

    ~~05 08           Vdc/V0.0005 
      X=0.1eq.110.1 - 

  0070 0001 
                0.001 

0 0005 -10 

0.01 --------------------------------------------------------------I I I I I I I ' 
        20—0.6 —0 6 —0.4 —0 2 0 Vdc/V 

                 Fig. 14.                                                             Fig . 15. 
   103 ------------------------------------------------------------------------------------11111111 

102- 

101-— 

             X=0 0005eq.11Fig. 14, 15, 16. Theoretical curvesof the 
      c0         loo-       0.001voltage-current characteris- 

                                                tics (Fig. 14) and dependence 
   t01of the capacitance Cdl (Fig. 001

15) and the conductance G, 
102--(Fig. 16) on the applied bias 

                                                     voltage Vdc. The parameters 
0.1adopted for the calculation 

103—are co=0 .1M, K=0.1, D++ 
D. = 2.74 X 10-9cm2/sec, s1= 

104- _15, T=298.15K and d=0. 
07pm. The current is the val-

                                                        ue per the membrane area 4. 
—08 —06 —04 —02 015cm2 

                  Fig. 16. 

Hence, the capacitance per unit area Cdt is expressed by the simple equation as follows: 

e„ef 
       Cdl—_(18) 

   Theoretical curves of Id, G,, Cdl against Vd, calculated by Eqs. 12, 13, 18 are 

depicted in Figs. 14, 15, 16. The features of the results are as follows. The current LC 

flowing from the positive charge region to the negative charge region is suppressed, 

whose direction is called "reverse". The reverse current decreases with increasing the 

fixed charge density X. The values of G,, Cdt decrease with increasing the absolute 

value of the reverse voltage Vdc• As the increase in the fixed charge density X, the 

value of Cdt increases while the value of G, decreases. The value of Cdt is 0.1-10,uF/ 

cm2. These features agree with the experimental results. Quantitatively, the agreement 

between the theoretical calculations and the experimental results is poor. Probably, the 
reason for this is attributed to many assumptions of the bipolar membrane model. 
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   In conclusion, it can be considered that the large hydrophobic ions are specifically 

adsorbed in the CA membrane and they behave as fixed charges. Hence, the CA 

membrane in the cell system shown in Fig. 1 behaves as the bipolar membrane. 
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