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                                  I. Introduction 

   Peptidoglycan is a major structural element that provides resistance to osmotic 
lysis in both Gram negative and positive bacteria, and contains D-amino acids which 

presumably provide stability against proteolytic degradation. Thus, in Gram nega-
tive bacteria such as Escherichia coli and Salmonella typhimurium, peptidoglycan is 
assembled by a UDP-muramyl pentapeptide with four of the five amino acids in the 

pentapeptide containing D-amino acids (L-Ala-D-Glu-meso-diaminopimelate-D-Ala 
-D-Ala) . This pentapeptide precursor is translocated into the membrane and cross-
linked. While the e-amino group of a meso-diaminopimelate residue is cross-linked 
directly to the penultimate D-Ala in a second pentapeptide strand in Gram negative 
bacteria, a pentaglycine bridge connects the strands in Gram positive bacteria. The 
new interstrand peptide bond is formed as the intrastrand D-Ala-D-Ala bond is 
broken. D-Alanine is a central molecule in the peptidoglycan assembly and cross-
linking. Alanine racemase (EC 5.1.1.1) catalyzes the interconversion between L-
and D-alanine and supplies D-alanine for the peptidoglycan synthesis. 

   Alanine racemase has been purified from Pseudomonas putida (2 ), Bacillus sub-
tilis (3), Salmonella typhimurium (4, 5), Streptococcus faecalis (6), and Bacillus 
stearothermophilus (7 ). The enzyme requires pyridoxal 5' -phosphate (PLP) as a 
cofactor. PLP binds to the lysine residue of the enzyme protein and forms an aldi-
mine Schiff base. The a-proton of the substrate moiety is then abstracted, and the 
PLP-substrate carbanion is generated. Stereorandom return of the proton yields 
racemic alanine. The mechanism of alanine racemase reaction have been studied 
thermodynamically by Faraci & Walsh (8 ). 
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                       II. Genetical and evolutional aspects of alanine racemase 

          Walsh and his coworkers carried out the molecular cloning of alanine racemase 

      genes  (9  ). Two distinct Salmonella DNA clones that complement the D-alanine 
      requirement of E. coli strain that is temperature sensitive for growth in the absence 

      of D-alanine have been isolated (9 ). Both contain distinct alanine racemase genes ; 

      one mapped at minute 37 on the chromosome is termed the dadB, and the other 

      mapped at minute 91 is termed the alr gene (10). The two distinct alanine racemase 

      genes have been also demonstrated in E. coli (11). The DadB alanine racemase is 
      inducibly formed and functions in the catabolism of L-alanine ; D-alanine produced 

      by racemization is deaminated to pyruvate by D-alanine dehydrogenase, whose gene 
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                                            Fig. 1 
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 (dad  A) is located adjacent to dadB and repressed together with dadB and dadR (9 ). 
The other alanine racemase, Alr enzyme, is constitutively synthesized and functions 
in anabolic assembly of peptidoglycan (10). Mutation in either one of the alanine 
racemase genes does not result in D—alanine auxotrophy in S. typhimurium, but mut-
ants lacking both genes require exogenous D—alanine for growth (10). 

   We made a comparison among the complete amino acid sequences of alanine 
racemase from four different sources (B. stearothermophilus (12) ; B. subtilis (11) ; S. 
typhimurium, DadB ; S. typhimurium, Alr) in order to find out the homologous regions 
in their primary structures (Fig. 1). Despite the fact that Bacillus and Salmonella 
belong to Gram-positive and Gram—negative bacteria, respectively, and that the 
dadB and alr genes map at two distinctly different regions of the S. typhimurium 
chromosome, the four racemase sequences display considerable homology : 74 re-

sidues match in the sequences of the four enzyme and 53 residues match in the 
sequences of three (about 33 % homology on average for the sequences of four 
.enzymes). The sequence homologies between the two of four racemases were calcu-
lated as 54 % (B. stearothermophilus : B. subtilis) ; 43 % (DadB: Alr) ; 35 % (B. stear-
othermophilus : DadB) ; 34 % (B. subtilis : DadB) ; 31 % (B. stearothermophilus : Alr) ; 
and 30 % (B. subtilis : Alr). The high homology between DadB and Alr strongly 
suggests that they evolved from a common ancestor by gene duplication. An oct-
apeptide containing the active—site lysyl residue that binds PLP occurs in all the 
four enzymes. Low—specificity amino acid racemase of P. putida contains the same 
sequence, and also probably evolved from the common progenitor. 

            III. Structure and function of thermostable alanine racemase of 
               Bacillus stearothermophilus 

1 . Subunit dissociation and unfolding 
   The B. stearothermophilus alanine racemase is quite stable upon heat treatment 

at 70 °C for 80 min in 10 mM potassium phosphate buffer (pH 7.2). This thermost-
ability of the enzyme enable us to subject the enzyme to high—resolution X—ray an-
alysis, which is now in progress (13). 

   Alanine racemase of B. stearothermophilus consists of two identical subunits, 
whereas both DadB and Alr enzymes of Salmonella typhimurium and also the Strept-
ococcus faecalis enzyme occur as a monomer. Toyama et al. examined whether the 
monomeric form of the B. stearothermophilus enzyme is catalytically active or not. 
They studied the guanidine HC1—induced subunit dissociation and unfolding of the 
enzyme by means of circular dichroism (CD) analysis, fluorescence and absorption 
spectroscopies, and gel filtration (14). The overall process was found to be reversi-
ble : more than 75 % of the original activity was recovered in a decrease in the dena-
turant concentration. The enzyme was unfolded by guanidine HC1 treatment 
through two detectable phases : Phases 1 and 2 were observed by fluorescence spect-
roscopy and gel filtration, and Phase 2 by CD measurement. They concluded that the 
two phases are derived from the following transitions : Phase 1, dissociation of the 
dimer to monomers ; Phase 2, unfolding of the monomer (14). 
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   The monomeric form of the protein was found to be catalytically inactive (14). 

The absorption spectrum of the monomeric form indicated that the carbonyl group 

of PLP is not bound in an internal Schiff base linkage. The reactivity of the  car-

bonyl group of PLP is usually elevated by formation of a Schiff base with the a-

amino group of a lysyl residue at the active site of PLP enzymes (15). The mutant 

enzymes of aspartate aminotransferase (16) in which the PLP-binding lysyl residue 

is replaced by arginine do not react with PLP to form a Schiff base, but they show a 

slight, but distinct activity. Toyama at al. suggested that the inactivity of the mono-

meric form is due to a local and minor structural change which simultaneously 

occurs with the subunit dissociation (14). 
   The thermostable alanine racemase undergoes a major structural change when 

guanidine HC1 concentrations are increased to 1.8 M. The unfolded monomer ag-

gregates with each other to form a species with a high molecular weight. Isolated 
monomers of /32-subunit of tryptophan synthase (17) and aspartate aminotransferase 

of E. coli (18) also aggregate. 

   The subunit dissociation is usually accompanied by destruction of the secondary 

structures when thermolabile proteins are used. The thermostable alanine racemase 

is a feasible material to study the mechanism of subunit dissociation and protein un-

folding. 

2 . Limited proteolysis 

   Galakatos and Walsh showed that the native DadB and Alr racemases are dig-

ested at homologous positions by a-chymotrypsin, trypsin, and subtilisin to produce 

two non-overlapping polypeptides of Mr 28,000 and 11,000 (19). Both enzymes are 

composed of two domains, which are linked by a hinge. The two domains are as-

sociated with each other after the cleavage at the interdomain bridge under denatur-

ing conditions. Both clipped enzymes retain about 3 % of the original activity ; the 

active-site geometry and secondary structure are not distorted by the proteolysis. 

The hinge region is conserved also in the primary structure of alanine racemases 

from Bacillus subtilis and B. stearothermophilus (19). 
   Toyama at al. showed that the B. stearothermophilus enzyme also is cleaved into 

two major fragments with Mr 14,000 (fragment F-1) and 29,000 (F-2) with subtilisin 

(20). They isolated F-1 and F-2 fragments by reversed phase HPLC, and showed 
that the enzyme is cleaved by proteolysis around 264Tyr to produce F-1 and F-2 

based on the amino acid compositions of the isolated fragments. They showed also 

that approximately 85 % of the native protein disappeared after incubation for 72 h, 

and that about 50 % of the original activity remained (20). This indicates that 

about 15 % of the native enzyme was unchanged, and that the activity correspond-

ing to 35 % of the original activity was derived from the peptide fragments formed. 

The nicked forms of both DadB and Alr enzymes were only 3 % as active as the 

corresponding native forms (19). Thus, the peptide fragments of the B. stearother-

mophilus enzyme interact with each other more strongly to form a considerably 
active structure than that of the thermolabile enzyme. Toyama at al. constructed 

and expressed a mutant gene which tandemly encodes the two peptides correspond-

                          (381)
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ing to F-2 and F-1 (21). 

3. Construction and expression of fragmentary enzyme 

   To examine whether the two polypeptide fragments generated by limited pro-

teolysis correspond to structural domains, Toyama et al. attempted to prepare the 

two polypeptides by means of genetic engineering (21). They constructed a mutant 

alanine racemase gene of B. stearothermophilus, which contains a new set of termina-

tion and initiation codons in the position of the gene corresponding to the putative 
hinge region of DadB and Alr racemases. The gene was found to be expressed to 

form an active alanine racemase composed of two dissimilar polypeptides (21). The 

mutant enzyme named fragmentary alanine racemase, was active in both directions 

of the racemization of alanine : the maximum velocity (Vmax) was about half of 

that of the wild—type enzyme ; the Km value was about twice. Absorption and CD 

spectra of the fragmentary enzyme were also similar to those of the wild—type 

enzyme. Since the fragmentary enzyme was considerably active, Toyama et al. 

suggested that its overall conformation is identical with that of the wild—type 

enzyme (21). Conformational differences, if any, should be confined to a local 

region at or in the vicinity of the active site, judging from the slight difference in 

spectral properties of the cofactor bound to the active site. These findings led to a 

conclusion that the two polypeptide fragments correspond to structural folding units 

(domains) in the parental polypeptide chain of alanine racemase as shown in Fig. 2. 

   initiationtermination 
    codon ribosome codon  ~ ~0 

                             messenger RNA 

       large domain small domain large peptide small peptide 

          IF18(proteolysis)       508 
         (wild-type enzyme)(fragmentary enzyme) 

Rel. Act.: 100%Rel. Act.: 40% 

                                  Fig. 2 
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           Although the overall conformation of the fragmentary enzyme appears to be 

        identical with that of the wild-type enzyme, it has only 40 % of the activity of the 

        native enzyme. The decreased activity of the fragmentary enzyme was accounted 

        kinetically to a combined consequence of both the increase in Km values for sub-

        strates and the decrease in the Vmax values as described above (21). Galakatos and 

        Walsh (22) showed by site-directed mutagenesis studies that the hinge region in the 

        DadB alanine racemase may play a role as a pivot for movement of the two domains 

        during catalysis and may be located close to the active site, interacting with the 

        bound PLP. Toyama et al. suggested that the decreased activity of the fragmentary 

        enzyme relative to that of the native enzyme is due to either the presence of several 

        extra residues in the hinge region or the discontinuity of the hinge sequence itself 

        (21). In accordance with this view, one of the DadB mutant enzymes in which a 
        fourth Gly was inserted into the intraloop tetrapeptide, showed a 5-fold drop in 

       Vmax/Km (22). 

           The relative activity of the fragmentary enzyme to the wild-type enzyme was 

        much higher than that of the clipped to the native DadB enzyme. This was ex-

        plained by the assumption that the thermostable enzyme has more extensive hy-
        drophobic interdomain interactions than the DadB enzyme with less thermostability 

        (12). The importance of hydrophobic interdomain interactions for catalytic activi-
        ties was pointed out by studies on lactate dehydrogenase  (23, 24). 

           Toyama et al. attempted to produce a single polypeptide corresponding to each 

        domain separately in E. coli (21). However, no protein reactive with the antibody 

         against the wild-type alanine racemase was produced. They suggested that the 

        fragments expressed in separate host cells are broken down proteolytically in the 

        cells after the translation (21). The production of a similar N-terminal fragment 

        from the DadB enzyme was also unsuccessful (22). The two peptide fragments pro-

         bably fold into an active structure only when they are co-translated. To examine 
        whether the folding process of each fragment into the domain structure is coopera-

        tive with each other during translation, Toyama et al. attempted to establish the in 

        vitro conditions for reversible resolution of the fragmentary enzyme into two poly-

        peptides and their reconstitution into the active enzyme (25). 

         4. Unfolding and reconstitution of fragmentary enzyme 

            Toyama et al. showed that the fragmentary alanine racemase of B. stearothermo-

        philus is unfolded by treatment with guanidine HC1 through two detectable phases 
        in the same manner as the wild-type enzyme : Phase 1 , dissociation into two a iS-

        forms ; Phase 2, dissociation into two fragments and unfolding of each fragment. 

        However, they found no distinct intermediate processes between the subunit 
        dissociation and the unfolding of the large and the small fragments. 

            They isolated the two polypeptides from the fragmentary alanine racemase in 

        the presence of 4 M guanidine HCI, and attempted to reconstitute and reactivate the 

         enzyme. The polypeptides were refolded spontaneously into an active form upon 

        removal of guanidine HC1. The spectra obtained by summation of the CD spectra of 
        the isolated subunits was close to that of the native fragmentary enzyme. The 
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lysine residue to which PLP is bound in the wild-type enzyme occurs in the large 

subunit of the fragmentary enzyme. However, neither bound PLP nor activity was 

found in the large subunit. Both fragments need to be folded together in order to 

form an active structure comparable with the native fragmentary enzyme. The fine 

protein conformation necessary for the catalytic activity is probably formed only 
through an interchain association of both fragments. 
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