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               A method to fit the atomic wave functions obtained numerically by the Hartree-Fock method to analytical 
functions has been tested. The fitting function is expressed in terms of Slater-type orbitals (STO's) with 

           integral principal quantum numbers. For the fixed principal quantum number in each STO, both orbital 
            exponent and expansion coefficient have been determined by the use of the nonlinear least-squares method. 

           The obtained wave functions are used to calculate the mean radial distances and the x-ray emission rates in 
           the analytical form. The present results are compared with those obtained using the original numerical wave 

           functions and with those by the Hartree-Fock-Roothaan method. 
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                                      1. INTRODUCTION 

               In order to calculate realistic energy eigenvalues and wave functions of electrons in complex 

          atoms, it is usual to use the self-consistent-field method, such as the Hartree-Fock (HF) method.") 
Frose-Fischer3l developed the computer code to calculate atomic structures in the HF method and 

          the Hartree-Fock-Slater (HFS) program was written by Herman and Skillman.4t These two 
          computer programs have been frequently used to obtain energy eigenvalues and wave functions 

          of atomic electrons. The atomic wave functions thus obtained are often applied to estimate various 

          physical quantities important in atomic physics, such as oscillator strengths. However, the wave 
          functions in both programs are given numerically at the fixed radial mesh points and it is necessary 

           to carry out numerical derivation or integration as well as interpolation techniques in evaluation 

           of matrix elements. 
              There have been reported several attempts to obtain atomic wave functions in analytical 

forms. Roothaan5l proposed to expand atomic wave function in terms of a set of analytical basis 

          functions and to solve the HF equation as a matrix eigenvalue problem. This method, called the 

          Hartree-Fock-Roothaan (HFR) method, was originally developed for closed-shell atoms, but later 

           extended to more general open-shell cases.6t For atomic structure calculations, it is usual to use 

          Slater-type orbitals (STO's) with integral principal quantum numbers as basis functions. On the 
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       other hand, in the case of molecular orbital method Gaussian-type orbitals (GTO's) are more 

       frequently used as basis functions for atomic orbitals because of convenience of multi-center 

       integration of wave functions. 

           Clementi and Roetti7 published extensive numerical tables of the HFR wave functions for 

       neutral atoms and ions with atomic numbers Z<54. A similar table for 55<Z<92 has been 

       prepared by McLean and McLean.8) For GTO's, Fuzinaga et a1.9) reported a computer code for 
       atomic structure calculations. The relativistic Hartree-Fock-Roothaan (RHFR) method has been 

       developed for closed-shell atoms by Kim10) and for open-shell systems by Kagawa.11) They 

       employed the STO's with non-integer principal quantum numbers as basis functions. The RHFR 
       wave functions were used for analytical calculations of the momentum distribution of atomic 

electrons12) and the relativistic radiative transition rates.13) 

           The second method to obtain analytical atomic wave functions is to expand atomic wave 

       functions in terms of a finite basis set of square integrable (L2) functions and to diagonalize an 

       atomic Hamiltonian with an appropriate atomic potential. This method has been applied in most 

       cases for hydrogenic potentials with various L2 functions, such as Laguerre polynomials,1415) 
       Gaussian functions,14) Sturmian functions,16) and B-spline functions.") Mukoyama and Lin18) 

       used the STO's as basis functions and applied the L2 expansion method for the case of the HFS 

       potentials. They could reproduce the energy eigenvalues and atomic wave functions calculated 
       in the HFS method. The relativistic extension of this method for hydrogenic potentials has been 

       described in the recent reviews by Drake and Goldman19) and by Grant.20) Using the STO's, 

       Mukoyama and Lin21'22) obtained the solutions of the Dirac equation for atoms in the 

       Dirac-Fock-Slater (DFS) potential and showed that energy eigenvalues and eigenfunctions are 

       good approximation to the numerical solutions. The mean values of 1/r, r, and r2 as well as the 
       x-ray emission probabilities calculated analytically by the L2 basis functions were in good 

       agreement with those by the numerical DFS wave functions.22) 

           In the present work, we test the third approach to obtain atomic wave functions in analytical 

       forms. This method is based on the technique to fit the numerical functions to the analytical 

       functions by the use of the least-squares method. In the present paper, we use the HF code3) to 

       calculate the numerical HF wave functions and employ the STO's similar to those used by Clementi 

       and Roetti7 in the HFR method as the fitting functions. The obtained wave functions are used 

       to evaluate the mean values of the power of the radial distance and the x-ray emission rates. These 

       quantities calculated in the present method are compared with those from the numerical HF wave 
       functions and from the HFR wave functions. 

                             2. COMPUTATIONAL METHOD 

          Let O(r) the radial part of the HF wave function obtained numerically by the HF code.3) We 

       expand Cr) in terms of a set of basis functions X(r), 

N ~(r) = E cI XI(r),(1) 
                                          1=1 

       where r is the radial distance, Nis the number of basis functions, and c; is the expansion coefficient. 

           We choose the STO's as basis functions:7'8) 
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 Xt(r)=N, r"i-lexp(-Sir)•(2) 

Here n, is the principal quantum number and (i is the orbital exponent of the STO. The 

normalization factor Ni is given by , 

             Ar=---------------------(21)"t+1/2' 
       [I'(2ni+ 1)]1/2(3) 

where f(x) is the gamma function. 

    Choosing appropriate values for JV and n, (i= 1,• • •,N), we determine the most suitable values 

for ci and Ci by the least-squares method. Since X,(r) is a nonlinear function with respect to the 

variable Ci, we use the nonlinear function minimization method developed by Powell.231 Starting 

from initial estimates of these parameters, the best values are determined by the iteration method. 

                        3. RESULTS AND DISCUSSION 

    All the numerical computations in the present work have been performed on the FACOM 

M-760/10 computer in the Institute for Chemical Research, Kyoto University. 

    In Table I, the calculated results of the present method for neutral Li (Z=3) atom are 

compared with the HFR values of Clementi and Roetti.71 First, the numerical calculation of the 

HF wave functions were made for (1s)2(2s)1 configuration by the use of the computer program 

written by Frose Fischer.31 The obtained wave functions for the ls and 2s orbitals were fitted to 

the STO's using the HFR parameters') as the initial estimates. Since the phase factor of the HF 

wave functions in the HF code3l is different from that of the HFR ones in Ref. 7, the sign of the 
HF wave function is sometimes different from that of the HFR function. However, in the present 

work we always choose of the sign of the wave function to be same as that of the HFR tables. It 

           Table I. Comparison of the parameters between the present method 
                   and the HFR method (Ref. 7) for neutral Li atom 

         PresentHFR 

Shell n,C,c,Cic, 

ls 1 2.476730.897852.476730.89786 
        1 4.698770.111314.698730.11131 
        2 0.40457-0.000080.38350-0.00008 
        2 0.657470.001120.660550.00112 
        2 1.07087-0.002161.07000-0.00216 
        2 1.632770.008841.632000.00884 

   2s 1 2.47663-0.146282.47673-0.14629 
         1 4.69867-0.015164.69873-0.01516 
        2 0.384100.003770.383500.00377 
        2 0.660540.980520.660550.98053 
        2 1.070170.109721.070000.10971 
        2 1.63206-0.110221.63200-0.11021 
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      is clear that the present results are in good agreement with the values of Clementi and Roetti,7t 

      except for the case of the orbital exponents of the is orbital.24) 

          Table II shows the comparison of the present results for the 2p and 3d orbitals in the neutral 

      atom of copper (Z=29) with the corresponding values of the HFR method.7 The estimations 

       of the parameters were performed in the manner similar to the case of Li. It can be seen from 

      the table that both sets of parameters are in good agreement with each other. This fact indicates 
      that the shape of the atomic wave functions in both models is quite similar. 

          Using the analytical wave functions thus obtained, we attempted to calculate three mean 

       values, <I/r>, <r>, and <r2>. In the present case, the wave functions are expressed in terms 

      of the STO's and these quantities can be calculated analytically. For this purpose, we used the 
       integration formula: 

('F(n+l) 

            Jexp(-ax)x"dx=  a"+1 .(4) 

0 

      The typical examples of the calculated results for Cu (Z=29), Ag (Z=47), and Au (Z= 79) are 
      shown in Table III and compared with the values obtained directly from the HF wave functions 

      by numerical integration.31 In the case of Au, the initial estimates were taken from the table of 
      McLean and McLean.81 It is seen that the good agreement is achieved, i.e. the discrepancy is 
      smaller than 1%. 

          The obtained analytical wave functions were also used to calculate the x-ray emission 
       rates. In the dipole approximation, the x-ray emission rate per second is expressed as251 

                             9,Ni max(l;,lf)3z T=8.Ox 10
3 (21,+1)------------ E`fD`f ,(5) 

      where Ni is the number of electrons in the initial state from which the electron makes a transition, 

                  Table II. Comparison of the parameters between the present method 
                           and the HFR method (Ref. 7) for neutral Cu atom. 

           PresentHFR 

   Shell n;C;c;(; c; 

       2p2 12.538860.7913711.88610 0.84302 
             2 20.274160.0914219.58060 0.11714 
            3 11.134900.1386510.83980 0.04499 
            36.980490.019947.30670 0.03012 
             34.54172-0.003434.57017 -0.00511 

            33.071090.001282.89365 0.00182 

       3d34.959590.352355.21851 0.29853 
            3 13.260120.0262612.96880 0.02649 
            37.543090.213907.61139 0.18625 
            33.013490.404853.18734 0.42214 
            31.745720.173041.66248 0.26291 
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         Table III. Comparison of the mean values  <1/r>, <r>, and <r2> 
                  between the present method and the HF method (Ref. 3), 

(a.u.). 

<1/r><r><r2> 

Z Shell Present HFPresent HFPresent HF 

29 is 28.5136 28.5141 0.052881 0.052879 0.003748 0.003748 
     2p 6.1572 6.1572 0.207546 0.207546 0.052750 0.052750 
     3d 1.4566 1.4566 0.918248 0.918257 1.104507 1.104803 

47 2s 10.5975 10.5975 0.140267 0.140266 0.023126 0.023126 
     3p 3.6963 3.6963 0.371401 0.371392 0.159868 0.159870 
      4d 1.0163 1.0163 1.311885 1.312110 2.070060 2.711139 

79 3s 7.1783 7.1784 0.203299 0.203300 0.047103 0.047103 
     4p 3.0455 3.0456 0.451394 0.451400 0.231039 0.231041 

     5d 0.8756 0.8756 1.487310 1.489527 2.594358 2.609165 

         Table IV. Comparison of x-ray emission rates (sec 1) between the HFS, 
                   HFR, HF, and the present methods. 

Z Transition Factor') HFSb)HFR`)HFdt Present 

29 K-L2314 8.7343 8.98758.9851 8.9841 
K- M2314 1.0556 1.04601.0613 1.0610 
L1-M2312 6.7721 7.18697.2947 7.2950 
L2,3-M111 4.2980 4.89424.9308 4.9318 

47 K-L2315 6.9779 7.09297.0930 7.0934 
K- M2315 1.1650 1.18791.1866 1.1873 
K-N2314 1.9193 1.77391.8071 1.8039 
L1-M2314 0.9697 1.01361.0136 1.0136 
L1-N23131.7201 1.65901.6837 1.6833 

L2,3 -M4 ,5 141.63881.71781.71691.7165 

79 K-L2316 6.1685 6.22456.2241 6.2243 
K - M23 16 1.2488 1.26431.2642 1.2644 
K-N2315 2.9158 2.92162.9237 2.9232 
K-02314 4.9739 4.43124.5356 4.5435 

L1- M2315 1.2488 1.27891.2788 1.2789 
L1-N2314 3.1369 3.19173.1998 3.1998 

L2,3-M4 .3 15 2.1540 2.20942.2087 2.2086 
L2,3-N4,5 14 3.9764 4.05834.0614 4.0618 
M1-N2 ,313 5.3506 5.60795.6137 5.6156 

"tn means x 10". 
b)Hartree-Fock-Slater method (Ref. 26). 
`tHartree -Fock-Roothaan method (Ref. 7). 
d)Hartree-Fock method (Ref. 3). 
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E; f is the x-ray transition energy in Rydberg, D, f is the dipole matrix element, and and l f are 

         the orbital angular momenta in the initial and final states, respectively. The dipole matrix element 

        is given by 

D,f= <0flrkt' >,(6) 

         where ta; and Of are the initial- and final-state wave functions of the electron. Inserting Eq. (I ) 

         into Eq. (6), the dipole matrix element and then the x-ray emission rate can be expressed in the 

         analytical form by the use of Eq. (4). 

             The x-ray emission rates calculated in this manner are compared with those from the HFS, 

         the HFR, and the HF wave functions. The HFS values were taken from the table prepared by 

         Manson and Kennedy26) and the HFR values were calculated in the manner similar to the present 

         work by the use of the tabulated parameters by Clementi and Roetti7 and by McLean and 

McLean.^) The HF values were obtained by numerical integration using the HF wave functions.3) 

         In Table IV, the comparison is shown for several strong x-ray components in Cu, Ag, and Au. The 

         present results are in good agreement with the values obtained by the HF wave functions 
         numerically. These two values agree also with the HFR values. The HFS values are in 

         agreement with other three values for inner-shell transitions, but there is discrepancy up to several 

         percents in the case of outer-shell transitions. This difference can be ascribed to the Slater 
         approximation for the exchange potential used in the HFS method. 

                                     4. CONCLUSION 

            The analytical form of the atomic HF wave functions has been obtained by the use of the 

         nonlinear least-squares method. The numerical HF wave functions were fitted to the sum of the 

         STO's with integral principal quantum numbers, and the expansion coefficients and orbital 

         exponents were determined by the Powell's nonlinear function minimization method. The 

         obtained wave functions were used to calculate the mean values of <1/r>, <r>, and <r2>, 

         and the x-ray emission rates. The results in the present method are in good agreement with the 

         values obtained numerically from the original HF wave functions. This fact indicates that the 

         present analytical wave functions are good approximation to the numerical HF wave functions. 
            The advantage of the use of the analytical wave functions is the fact that all the calculations 

         described above can be performed analytically. It is also possible to obtain other quantities, such 

          as the momentum wave functions, in the analytical form. 

             In comparison with other methods for analytical wave functions, the great advantage of the 

         present method consists in its simplicity. There is no need to calculate the wave functions 
         self-consistently, as in the HFR method, and it is unnecessary to solve a generalized eigenvalue 

         problem, as in the case of the L2 expansion method. This fact means that the number of basis 
         functions can be chosen to be larger than in other methods and the calculations are stable when 

         appropriate initial estimates of the parameters are used. 

            In the present work, we used the STO's as fitting functions and fitted them to the HF wave 

         functions. However, the present method can be used in more general cases. It is possible to 

         choose any kinds of analytical functions as basis functions and to fit them to any numerical atomic 

         wave functions. The type of the basis function and the atomic wave function should be determined 
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      by considering the problem to be solved and the quantity to be calculated. For example, in the 

      case of molecular orbital calculations the GTO's would be more suitable basis functions. Further-

      more, it is possible to extend the present method to the relativistic case and to obtain the 

      analytical wave functions corresponding to the Dirac-Fock or DFS wave functions. 
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