# Nucleotide Sequence of the Gene of HgaI Restriction Endonuclease 

Hiroyuki Sugisaki＊

Received July 20， 1993


#### Abstract

The nucleotide sequence reported in this paper has been submitted to the DDBJ，EMBL，and Gen－ Bank Data Bank with accession number D17388．

The abbreviations used are：bp，base pair（s）；kb，kilobase pair（s）；ORF，open reading frame； $\mathrm{R}-\mathrm{M}$ system，restriction－modification system；RHgaI，Hgal restriction endonuclease；MHgaI，HgaI modification methylase；IPTG，isopropyl－$\beta$－D－thiogalactopyranoside


KEY WORDS：DNA cloning／Haemophilus gallinarum／Type IIS restriction－modification system／Expression in E．coli

The genes of a variety of the type II restriction－modification（ $\mathrm{R}-\mathrm{M}$ ）systems that recog－ nize symmetrical DNA sequences have been cloned and their gene organization and nucleotide sequences have been analyzed［see the reviews ${ }^{1-3)}$ ］．As concerns the genes consisting of the type IIS $R-M$ systems that recognize asymmetrical DNA sequences，however，only those of the $F o k I^{4)}$ ，MboII ${ }^{5)}$ and $S t s I^{6)}$［the endonuclease recognizes the same DNA sequence as $F o k$ en－ donuclease but cleaves at different positions $\left.{ }^{7}\right]$ R－M systems have been reported so far ．

The HgaI R－M system found in Haemophilus gallinarum，that belongs to this category， recongnizes a 5 bp segment of DNA，consisting of $5^{\prime}-G A C G C-3^{\prime}$ in one strand and $3^{\prime}-C T G C G-5$＇ in the other（ HgaI recognition site）．HgaI restriction endonuclease（ RHgaI ）introduces stag－ gered cleavages 5 and 10 nucleotides downstream from the recognition sequences ${ }^{8.9)}$ ．Experi－ ments have been designed to clone the genes consisting of the system and a DNA fragment carrying the genes of two HgaI modification methylase（MHgaI）has been successfully iso－ lated from a genomic DNA library of H．gallinarum ${ }^{10)}$ ．The two methylase genes are respective－ ly responsible for modification of the internal cytosine residues of the CTGCG and GACGC strands and render DNA resistant to digestion by RHgaI．However，the RHgaI gene was not identified．Since the genes of restriction endonucleases are usually linked to those of the cor－ responding methylases on chromosome，truncated open reading frame 3 （ORF3）previously identified，which is located just downstream from the two MHgaI genes，is most likely to be the corresponding gene（see Fig． 2 in Ref．10）．The separation of the domains for DNA sequ－ ence recognition and cleavage makes type IIS restriction endonucleases interesting objects for studies of DNA－protein recognition．Therefore，an experiment was designed to clone the complete gene from the chromosomal DNA．

As to maintain the plasmid carrying a restriction endonuclease gene in E．coli cells，coex－ istence of the corresponding methylase gene is indispensable．First，the plasmid carrying the

[^0]two MHgaI genes was constructed. The 2.9 kb region of $\mathrm{pKS} 318^{10}$ (from the leftmost HindIII site to the $X b a I$ site at nucleotide position 2909, see Fig. 2) was inserted into the HindIII-XbaI region in the multicloning sites of $\mathrm{pUC1} 9^{11)}$. Deletion was introduced from the $X b a \mathrm{I}$ site and a clone carrying a DNA fragment of nucleotide positions 1 to 2497 was isolated. The coding region for the two MHgaI genes could be just genetated as a 2.4 kb fragment from the plasmid construct by RNsp (7524) V-REcoRI digestion and inserted into the EcoRV site of pACYC184 ${ }^{12)}$ by blunt end ligation. The resulting construct carrying the two MHgaI genes under control of the tet promoter was named pKS430 (see Fig. 2) and introduced into E.coli MCH1061 cells ${ }^{10)}$.

Next, a DNA fragment adjacent to the insert of pK318 on the H.gallinarum chromosome was searched. When digests of the chromosomal DNA by various restriction endonucleases were subjected to the Southern blotting hybridization ${ }^{13)}$ using, as probe, the 390 bp XbaI-HindIII fragment (nucleotide positions 2,909 to 3,399 , see Fig.2) which is located in the coding region for ORF3; an approximately 4.5 kb ClaI fragment was identified (data not shown). The DNA fragment would be contain the region adjacent at the right side to the insert and a sufficient coding capacity for complete ORF3 because the ClaI site is located just upstream from the gene (see Fig.2). Complete ClaI digests of the chromosomal DNA were fractionated by electrophoresis on $0.7 \%$ agarose gel, and fractions predominantly containing the fragments of $3.5-5.5 \mathrm{~kb}$ were collected. The sized ClaI fragments were ligated to a phosphatase-treated Accl digest of pUC19 and introduced into E.coli MCH1061 carrying pKS430. Among the recombinants examined by colony hybridization ${ }^{13)}$ using the Xbal-HindIII fragment as probe, one carrying ORF3 under control of the lac promoter in a single 4.5 kb ClaI fragment was named pKS456. The RHgaI activity was actually detected in the extract from the E.coli cells by induction with isopropyl- $\beta$-D-thiogalactopyranoside (IPTG) . I, therefore, concluded that the 4.5 kb ClaI fragment contains the RHgaI gene.

The nucleotide sequence of the region adjacent to the insert of pKS 318 was determined using the dideoxy sequencing method ${ }^{[4.15)}$. The DNA sequence of the $1,8-\mathrm{kb}$ leftmost ClaI to HincII region of pKS456 is shown in Fig. 1. Analysis of coding capacities indicated that ORF3 terminates at nucleotide position 3808 .

To verify that ORF3 is indeed the RHgaI gene, the endonuclease activity was determined by the in vitro assay procedure. The leftmost 1.6 kb region of the 4.5 kb ClaI fragment (from the BamHI site on the pUC19 moiety to the EcoT22I site, see Fig.2) which encompasses entire ORF3 was inserted into the BamHI-PstI region in the multicloning sites of the expression vector pKK223-3 (Pharmacia P-L Biochemicals Inc.). The resulting construct carrying ORF3 under control of the tac promoter was named pKS475. The plasmid construct was introduced into E.coli MCH1061 cells carrying pKS430 and after induction with IPTG, protein expressed from the gene was purified by phosphocellulose (Whatman), heparin-agarose (Bethesda Research Laboratories), and hydroxyapatite (Clarkson Chemical Co.) columns. When the various DNAs were digested with the purified protein fraction and authentic RHgal isolated from H.gallinarum cells, the same restriction patterns were obtained (data not shown). The results clearly indicated that ORF3 was the RHgaI gene. In ORF3, the ATG codon occurred at nucleotide positions 2345 and 2360 . The predicted molecular weights of proteins beginning with ATG at nucleotide positions 2345 and 2360 were 56,734 and 56,119 , respectively. I assigned the ATG codon at 2360 to the initiation site for translation of the endonuclease for only this one was accompanied by a putative ribosomal-binding sequence, 5 '-GGAG- $3^{\prime}$,

TATATTAGAACTATTATTGGTGAGGCTATTCCACCCAAATTACTTTCAGCAATATGTTTT CCTGATGGAGAAAATATTAATGTTAAATGATGATCAAATTTGGATATTTAAAAAACATAC Met Glu Lys lle Leu Met Leu Asn Asp Asp Gln lle Trp Ile Phe Lys Lys His Thr TAATAATATTCAGCTATTAATTGAAGTTGCTTTGTATTTAAAAAGCAATAAATCTTCTGT Asn Asn lle Gln Leu Leu lle Glu Val Ala Leu Tyr Leu Lys Ser Asn Lys Ser Ser Val TTCAAAAAAAGATAAAGATGCGATGTATGATATATTCAGTGAATCTGAATTATATAATCC Ser Lys Lys asp Lys asp ala Met Tyr Asp lle Phe Ser Glu Ser Glu Leu Tyr Asn Pro AAGAGAATCTTTACGTGATAAACCTTTGGACACAATTAATCATAAATTAGATGGGTTATC Arg Glu Ser Leu Arg asp Lys Pro Leu Asp Thr Ile Asn His Lys Leu Asp Gly Leu Ser TTATTTTATGTTTGGGTACTCAGATAGAATAAATGATGAAAATAAATTTATTTTTAGTCC Tyr Phe Met Phe Gly Tyr Ser asp Arg Ile Asn Asp Glu Asn Lys Phe Ile Phe Ser Pro ATTAGGAAATCTTTTCCTGAAATATCTACATGATAAAGATAAATTAAGCAAAATTTTTTC Leu Gly Asn Leu Phe Leu Lys Tyr Leu His Asp Lys Asp Lys Leu Ser Lys Ile Phe Ser TTGTATGCTTATTAGTATGCAGTTTCCTCATCCATATAGTAAGCCTAGTGAATGCTTTTT Cys Met Leu lle Ser Met Gln Phe Pro His Pro Tyr Ser Lys Pro Ser Glu Cys Phe Leu ACTATATCCATTTAGATTAATTTTTAAACTGCTTTTAGATAAACGCCTACAAGGTAGGCT Leu Tyr Pro Phe Arg Leu lle Phe Lys Leu Leu Leu Asp Lys Arg Leu Gin Gly Arg Leu atatcattatgangTatatananttattattcatacantatctatagatgangccanata Tyr His Tyr Glu Val Tyr Lys ile Ile lle His Thr Ile Ser Ile Asp glu ala Lys Tyr TGAATTTCTAGTCAAGAGTATATTAAATTCTAGAAAAAAATCTTGGAATGAGAAACTTAA Glu Phe Leu Val Lys Ser lle Leu Asn Ser Arg Lys Lys Ser Tpp Asn Glu Lys Leu Asn
TGAATTATCAGAAATACAACATAAAGTTGTTAAATCTGTATATGAGTGGCAATACTACAT Glu Leu Ser Glu Ile Gln His Lys Val Val Lys Ser Val Tyr Glu Trp gln Tyr Tyr Ile TGTGCCATTGTTAGGTAGCTTACACATTTTTAAAATTAATAATGGAGATATAGAGCAAAA
Val Pro Leu Leu Gly Ser Leu His lle Phe Lys Ile Asn Asn Gly asp lle Glu Gln Lys ACTTTATCATCCTCAAAAAGATGGAAGTAAATCACCTCCAACAGCAAGAAAGGCAAATAA Leu Tyr His Pro Gln. Lys asp Gly Ser Lys Ser Pro Pro Thr Ala Arg Lys Ala Asn Asn TGGCTATGTAGAAATTAATGATAATTTGACTAATTTTATTGATAAATTATTGAACAAGTA Gly Tyr Val Glu lle Asn asp Asn Leu Thr Asn Phe lle Asp Lys Leu Leu Asn Lys Tyr
TTCTTTTTTAGATACCCCTATCTTATTATCTGATAGTCAACGAAAATCAAATGATGTGAC Ser Phe Leu asp Thr Pro lle Leu Leu Ser asp Ser Gin Arg Lys Ser Asn Asp Val Thr TAAGGAAATTTATTCTTTTTACCCAGAGCTTCTTTTAGCAGAAATTGGCGAAACAATCTC Lys Glu lle Tyr Ser Phe Tyr Pro Glu Leu Leu Leu ala Glu lle Gly Glu Thr lle Ser TTTTGAATCTCATATTTTAAATATTCCTAAATTAATCACAGAATATTCCAAGAATCCAGA Phe Glu Ser His Ile Leu Asn Ile Pro Lys Leu lle Thr Glu Tyr Ser Lys Asn Pro Asp TAATAGCACATCTGGCAAATTTGAGAAAATTCTTGAGGAAGCTTTTAATTTATTCATTGA Asn Ser Thr Ser Gly Lys Phe Glu Lys lle Leu Glu Glu Ala Phe Asn Leu Phe Ile Asp TGTAGAAGCTCAATGGTTAGCAGGAGCAGGCAGAACAGATATTGAATGTATGTATTTGCC Val glu ala Gln Trp Leu ala Gly ala Gly Arg Thr Asp lle Glu Cys Met Tyr Leu Pro AATAAATGAAAAATTTTCTATTGAAGCTAAATCAACAAAAAATAAATTAAGTATGATTAA Ile Asn Glu lys Phe Ser lle Glu Ala lys Ser Thr lys Asn lys Leu Ser Mel he Asn TTCAGGTAGATTAAAACGCCACAGAACTTTAATTAGTGGAAATTATACTATTGTTATTAC Ser Gly Arg Leu Lys Arg His Arg Thr Leu Ile Ser ala Asn Tyr Thr Ile Val lle Thr TCCAAGATATGTACCTAGTGTACGTTATGATATTGAAGCACAAGATATAGTTCTCATAAC Pro Arg Tyr Val Pro Ser Val Arg Tyr asp lle Glu ala Gln asp Ile Val Leu lle Thr agCCGATACATTAGCAGAGTATTTATACAATAATATTATTTCTAATAATCGAGATATTTC Ala Asp Thr Leu Ala Glu Tyr Leu Tyr Asn Asn lle Ile Ser Asn Asn Arg Asp Ile Ser TTATGCTGATATACAAGCTATCATTGTTGCTAATTTGGGAAAAGATATTAGTACTCAAAT Tyr Ala Asp lle Gln Ala lle lie Val Ala Asn leu Gly lys Asp lle Ser Thr Gin le TTCAAATTTAACACTTTCCAAATTTGGTTGATGGATAAATGAATATGCATAAGAACATTA Ser. Asn Leu Thr Leu Ser Lys Phe Gly
CAGAAAAAACTATTGTATGATAGCAATCACAAAATTGTGATCTACATACCTCATAACTTA TACAGTTTTAAAAGGGTTAAATCGCCATTCCTATATTCGAGTGGGCGATTTTTTATGTCT AGCGTTTAGCTTTGAGTACCTTGTACACACAAGGAATACTTATGGAT CATT ACTTACTTT CAAGCAAATCTAAAACATTATCCCTTAAACATATCTTCCGTCTAAGTGAAGATGAAGCCT TCCAACTTTTGAAAGCAAACCGTTGGGAAAATCCTGATAAAATCCTCCAAAGTAGTACGT CTAAATTATAGAATAAGCCACTTAAGATAATCACTCAAGGTGTTTAAAATATCATCAATT AAACTTGTCAAAAAATTTCTCTTGACAGAACTAAGACCTTTTTGGCACTCGCTATATTCA AAAATGCAGAAAATTTCAAAAAGCACTTGACAAAAGAAAACGCTTGACAAGCACCCTATA AAATAATATCTTTTTGCCCACCGAGAATAGTCCCTTCATTATGACTTTGTTTTTTAAGCC TAAAAAGGCTTGGAAATTTCAGAGTTTTAATGAAGGGATTTTTGTTTCTATGGCACAACA TTTTCGGTTATCAGCGACAGCACGCCAGCTATCTATGGATAGCTTGGTGAGCTTGTCTGA TGACGAGATTTTTCAGCTATTGAAACAAGCTCGATGGGGTAATGTAGATGAAATAAACGA TGTTATTTGTCCGCATTGCCATACTCGCCACCACGCCTATTTCATTTCTACTCGTAAACA ATGGCAGTGCAAACATTGCCAACATCGTTTTTCTATTACAGCAGGCACTATTTTTCAAGG TGCAAAACTTTCTTTGCGTAAAATTGTATTGGCAATTTTCTATTTTTCGACTGAAAGCAA AGGATTATCTGCTATTACACTATCACACAAGCTCAACGTGCAATATAAAACAGCGTGGGT ATTGCTACATAAATTTCGTGAATCGCTTGATAAAGCCAAAGATTTAACACATTTAAGTGG CGAAGTTCATATTGATGGCGCTTACATGAACAACTACATTCGTCCTAAAAACTTTCTCCA TAAACGTATTGATAGATGAAAGAAACGTTATCAGCGTGCAGATAAATCTTGTGTATTGGT ATTCCGTC

Fig. 1 Nucleotide sequence of the leftmost ClaI to HincII region of the 4.5 kb insert in pKS456. The ami no acid sequence assigned for RHgal are given below the nucleotide sequence. The nucleotide sequence is numbered from the leftmost end of $\mathrm{pKS3} 18^{9}$, and the amino acid sequences from the first initiation codon, respectively.


Fig. 2. Gene organization of the HgaI R-M system. The filled line represents the region of which the DNA sequence was determined as shown in Fig. 1 and open line the other region for H.gallinarum chromosomal DNA. Below the physical map on which the major restriction sites are indicated, the two methylase and one endonuclease genes are shown by open arrows, and the region inserted into the plasmid costruct in this experiment are indicated by bold lines.
in the appropriate position. To confirm this assignment, I have a plan to analyze the N -terminal amino acid sequence.

The gene organization of the HgaI R-M system derived from Ref. 10 and this paper is shown in Fig.2. This R-M system is consisted of two cytosine methylase genes responsible for modification of different DNA strands in the target DNA and a endonuclease gene for cleavage of both DNA strands.

## Acknowlegments

I wish to thank Dr. M. Takanami for his instructive advice and criticism during the course of this work.

## References

(1) G.G. Wilson, Nucleic Acids Res., 19, 2539-2566(1991).
(2) G.G. Wilson, and N.E. Murray, Ann. Rev. Genetics, 25, 585-627(1991).
(3) T.A. Bickle, and D.H. Krüger, Ann. Rev. Microbiol., 57, 434-450 (1993) .
(4): K. Kita, H. Kotani, H. Sugisaki, and M. Takanami, J. Biol. Chem., 264, 5751-5756 (1989) .
(5) H. Bocklage, K. Heeger, and B. Müller-Hill, Nucleic Acids Res., 19, 1007-1013 (1991).
(6) K. Kita, M. Suisha, H. Kotani, H. Yanane, and N. Kato, Nucleic Acids Res., 20, 4167-4172 (1992).
(7) K. Kita, H. Kotani, H. Ohta, H. Yanase, and N. Kato, Nucleic Acids Res., 20, 618(1992).
(8) N.L. Brown, and M. Smith, Proc. Natl. Acad. Sci. USA, 74, 3213-3216 (1977).

## HgaI Restriction Endonuclease Gene

(9) H. Sugisaki, Gene (Amst.), 3, 17-28(1978).
(10) H. Sugisaki, K. Yamamoto, and M. Takanami, J. Biol. Chem., 266, 13952-13957 (1991) .
(11) C. Yanisch-Perron, J. Vieira, and J. Messing. Gene (Amst.), 33, 103-119 (1985) .
(12) A.C.Y. Chang, and S.N. Cohen, J. Bacteriol., 134, 1141-1156 (1987).
(13) J. Sambrook, E.F. Fritsch, and T. Maniatis, "Molecular cloning: A Laboratotry Manual" 2nd Ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
(14) F. Sanger, S. Nicklen, and A.R. Coulson, Proc. Natl. Acad. Sci. USA, 74, 5463-5467 (1977)
(15) J. Messing, Methods in Enzymol., 101, 20-78 (1983).


[^0]:    ＊椙崎弘幸：Research Facility of Nucleic Acids，Institute for Chemical Research，Kyoto University， Uji，Kyoto 611，Japan

