Bull. Inst. Chem. Res., Kyoto Univ., Vol.71, No.3, 1993

Phosphoprotein Phosphatase Genes of Arabidopsis thaliana

Mikio AOKI* and Atsuhiro OKA*

Received August 5, 1993

Phosphoprotein phosphatases are highly conserved enzymes found in fungous and animal cells. These enzymes have multiple functions in those cells, but little is known about phosphoprotein phosphatase genes are present in a model higher plant, *Arabidopsis thatiana*, by DNA hybridization, polymerase-chain-reaction, and gene cloning procedures. Genomic Southern-blot hybridization analysis suggested that the *A. thaliana* genome contains multiple copies of genes encoding serine/threonine-specific phosphoprotein phosphatase (PP1) genes, two to three copies of the type 2A phosphatase (PP2A) genes, and probably one copy of the type 2C phosphatase (PP2C) gene. Besides, a putative tyrosine-specific phosphoprotein phosphatase gene appeared to exist, being considerably diverged from those of fungi and animals. Among these genes one PP1 cDNA and one PP2A cDNA were isolated from an *A. thaliana* cDNA library, and their sequences were determined and characterized.

KEY WORDS: Protein phosphatase / Signal transduction / Higher plant / Phosphorylation / Dephosphorylation

1. INTRODUCTION

Protein phosphorylation is a central regulatory mechanism for cellular functions in all eucaryotic cells.¹⁻⁴⁾ Over the past decade it has become apparent that phosphoprotein phosphatases are as important as protein kinases in a variety of control mechanisms including signal transduction, metabolism, growth, and differentiation (for reviews see refs. 5 and 6). With regard to the substrate specificity, phosphoprotein phosphatases are categorized into two kinds, serine/threonine (Ser/Thr)-specific and tyrosine (Tyr)-specific phosphatases.

Ser/Thr specific phosphatases are further divided into two types, type 1 (PP1) and type 2 (PP2) that are sensitive and insensitive, respectively, to the cellular inhibitors 1 and 2. The PP2 class of phosphoprotein phosphatases is subdivided into three groups termed PP2A, PP2B, and PP2C from their divalent cation dependency. PP2A requires no divalent cation for its activity, while PP2B and PP2C need Ca²⁺/calmodulin and Mg²⁺, respectively. All these phosphoprotein phosphatases except for PP2C appear to exist in a cell as hetero oligomers that consist of catalytic subunits (PP1c, PP2Ac, or PP2Bc) and regulatory subunits.⁵⁾ The primary structure of the catalytic subunits belonging to the same subfamilies is highly conserved among various organisms.⁵⁾ Furthermore, the catalytic subunits of the different subfamilies are significantly similar to one another. For instance, the amino acid sequence of PP1c is about 50% and 40% identical to those of PP2Ac and PP2Bc, respectively.⁵⁾

Tyr-specific phosphatases (PTP) are classified for their architecture into two types, the

^{*}青木幹雄、岡 穆宏: Laboratory of Molecular Genetics, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

membrane-spanning receptor-type and the non-receptor-type, the catalytic domain of which is highly conserved between two types and over species.⁶⁾ In addition, there is a novel type of PTP, Cdc25, that specifically dephosphorylates the cell-cycle-controlling Cdc2 kinase.⁷⁾ The similarity between Cdc25 and typical PTP is limited within very short regions probably essential for their activity.⁷⁾

Biochemical and structural characterization of phosphoprotein phosphatases described above has been carried out chiefly with animals and more recently with fungi. Particularly, distinct evidence has been obtained exclusively with fungi, showing that PP1 and PP2A are essential because of their fundamental functions such as the regulation of cell division.^{8.9)} By contrast, little is known about phosphoprotein phosphatases in plants except for the presence in several plant species of phosphatase activities similar to PP1, PP2A, and PP2C of animals and fungi. Neither PP2B-like nor PTP-like activities have been detected in plants so far examined.¹⁰⁻¹²⁾ As a step toward shedding a light on features underlying cascades of protein phosphorylation/dephosphorylation in higher plants, we have now studied what kinds of and how many phosphoprotein phosphatase genes are present on the *Arabidopsis thaliana* chromosome using DNA hybridization, polymerase-chain-reaction (PCR), and gene cloning procedures.

2. MATERIALS AND METHODS

General methods. As described were procedures for transformation with *Escherichia coli*, preparation of plasmid and phage DNA, DNA cleavages with restriction endonucleases, repair synthesis, ligation, ³²P-labeling of DNA with random primers, gel electrophoresis with agarose and polyacrylamide, and gel blotting to a membrane filter.¹³⁾

DNA sequencing. Long DNA fragments to be sequenced were separately inserted into the M13mp18 vector,¹⁴⁾ and their unidirectional deletions were generated by cleavages with restriction endonucleases. Each deletion derivative was sequenced by the chain-termination method with T7 DNA polymerase (United States Biochemical Corp.).¹⁵⁾ Sequencing of short DNA fragments were done by cloning in the pUC18 vector.¹⁵⁾

Polymerase-chain-reaction (PCR). Oligodeoxyribonucleotides used for PCR primers were synthesized by a Beckman System 1 Plus DNA Synthesizer. Their nucleotide sequences were 5'-AAGTACCC (T/A) GAGAACTTCTT-3' (forward) and 5'-TC (A/G) TCGAACTC (A/T) CC (A/G) CAGTA-3' (reverse) that correspond to internal portions of a rabbit PP1 (KYPENFF at amino acid residues 113-119 and YCGEFDN at amino acid residues 272-278).¹⁶⁾ Other sets of primers specific for PTP were 5'-GG(A/T)GACTTCTGGCGTATG-3' (forward), 5'-CCAGC (A/G) GA (A/G) CA (A/G) TGAAC-3' (reverse 1), and 5'-GCAGCGGATGAAGATGGTTC-3' (reverse 2) that correspond to internal portions of human LAR (GDFWRM at amino acid residues 1406-1411 and VHCSAG at amino acid residues 1520-1525) and Schizosaccharomyces pombe pyp1 (QRMKMV at amino acid residues 517-523), respectively.¹⁶⁻¹⁸⁾ PCR reaction mixtures (total volume of 100 μ 1) contained 50 mM KC1, 10 mM Tris-HC1 (pH 8.3), 1.5 mM MgCl₂, 0.01% gelatin (w/v), 0.1 μ g of an A. thaliana cDNA mixture, 0.2 mM each of the four dNTPs, 2.5 units of Thermus aquaticus DNA polymerase (Takara Shuzo Co.), 50 picomoles each of the forward and the reverse primers. The reactions were done by two consecu-

tive modes in a thermal cycler (Perkin Elmer/Cetus Corp.): the first mode was 10 cycles of 1 min at 92°C (denaturation), 1 min at 42°C (annealing), and 1 min at 70°C (extension); and the second mode was 25 cycles under the same conditions except annealing temperature at 54°C.

Cloning of PCR fragments for PP1. After treatment with 0.4 units/ml of Klenow fragment of DNA polymerase I (Takara Shuzo Co.) at 37°C for 30 min, PCR reaction products were separated by polyacrylamide gel electrophoresis. DNA fragments of about 480 base-pair (bp) long were eluted from the gels, and then inserted at the *Hinc*II site of pUC18.¹⁴⁰

Isolation of plant DNA and RNA. The plant used was Arabidopsis thaliana (Columbia ecotype). Its cultivation was done under the standard growth conditions at 22°C where 18-h illumination and 6-h darkness alternated. Plant DNA and RNA were isolated from whole tissues using cetyltrimethylammonium bromide, and poly (A) $^+$ RNA was separated from poly (A) $^+$ RNA through oligo (dT)-cellulose (Pharmacia) column chromatography.¹⁹

Yeast and animal phosphoprotein phosphatase clones. The following clones were used as probes in Southern-blot hybridization and library screening experiments. PP2A, the 1.2-kilobase-pair (kbp) EcoRI fragment of Brassica napus PP2A cDNA from pKS-M13⁺PP2A²⁰; PP2C, the 2.35 kbp SmaI fragment of rat PP2C cDNA from pST-11²¹; pyp1, the 1.5 kbp PCR-amplified cDNA of S. pombe pyp1 (corresponding to the amino acid residues 24-523)¹⁸; cdc25, the 0.95 kbp BamHI-BglII fragment of pCDC25²²; and HPTP α , the 2.7 kbp BamHI-HindIII fragment of pSP65.HPTP α .f1,²³ respectively.

Membrane hybridization. Four conditions of different stringency (high, moderate, low, and poor stringency) were used for hybridization. Under the high-stringency conditions, hybridization was performed at 42°C for 20 h in a solution containing 50% (v/v) formamide, 5X SSC ($1 \times SCC = 150 \text{ mM} \text{ NaCl}-15 \text{ mM}$ sodium citrate), $5 \times \text{Denhardt's solution}$, ¹⁵⁾ 100 µg/ml calf thymus DNA, 0.5% SDS, and a probe DNA (about $5 \times 10^8 \text{ cpm}/\mu g$ of DNA). The filter was washed at room temperature, twice for 30 min in 2X SSC-0.1% SDS, once for 30 min at room temperature in 0.1X SSC-0.1% SDS, and once for 30 min at 65°C in the same solution. For three other conditions, the formamide concentration and the last washing conditions were changed as follows: moderate stringency, 40% formamide, washing once at 50°C in the same solution; low stringency, 20% formamide, washing once at room temperature in 0.5X SSC-0.1% SDS.

Northern-blot hybridization. Plant total RNA was fractionated on a 1.2% agarose gel containing 1.8% formaldehyde with running buffer of 20 mM MOPS Good's buffer (pH 7.0)-5 mM EDTA-8 mM sodium acetate that was previously treated with diethyl pyrocarbonate. RNA was transferred to an Immobilon-N PVDF membrane filter (Millipore Corp.), and hybridization was carried out under the conditions of moderate stringency. The autoradiograms were generated by a Fujix BA 100 Bio-Image Analyzer (Fuji Photo Film).

Screening of cDNAs encoding PP1 and PP2A. An A. thaliana cDNA library constructed with the $\lambda gt10^{13}$ vector was screened under the hybridization conditions of either high or low stringency.

Transformation of A. thaliana *root explants. A. thaliana* root explants were prepared by the standard procedures,²⁴⁾ and then infected with *Agrobacterium tumefaciens* LBA4404²⁵⁾ carrying the pBI121 binary vector²⁶⁾ or its derivatives. Km^r transformant calli were selected, and then mature plants were regenerated as described.²⁴⁾

3. RESULTS

Type 1 phosphoprotein phosphatase genes of A. thaliana

To see if the A. thaliana genome contains PP1-like genes, PCR was run on a mixture of cDNA derived from whole plant tissues. The set of PCR primers used had degenerate sequences corresponding to the two highly conserved regions of PP1 (see Materials and methods). Gel electrophoresis of the PCR products gave the major band at about 480 bp position that roughly coincides with the size predicted from the primer locations (493 bp). These PCR fragments were inserted into pUC18, and the resulting clones were sequenced. Two out of them (PCR-1 and PCR-2) contained open reading frames intimating phosphoprotein phosphatases. Their putative translation products were close to each other (82% identity), and also to the corresponding positions of member enzymes of animal and fungous PPlc (78%-80%; see below). Thus these two PCR fragments appeared to be portions of A. thaliana PP1 cDNAs. To know the entire structure of PP1, an A. thaliana cDNA library constructed with the $\lambda gt10$ vector was screened with a PCR-2 probe. From about 5.5 $\times 10^5$ recombinants, six positive clones were obtained and sequenced. The longest clone contained an open reading frame of 957 bp, predicting a protein of 318 amino acid residues (35 kDa) (Fig. 1-A). The amino acid identity in its translation product with animal and fungous PP1c, PP2Ac, and PP2Bc occurred at 80%, 45%, and 40%, respectively, as shown in Fig. 2. The hydropathy profile²⁷⁾ revealed this protein is a soluble one (Fig. 3). These results implied that the cloned DNA fragment is derived from an A. thaliana counterpart of PPlc, and thereby named AT-PP1. Northern-blot hybridization analysis using the PCR-2 segment as a probe and total RNA from whole tissues gave a unique hybridization signal at about 1.3-kilobase (kb) position (Fig. 4). Therefore, it seems that the majority of AT-PP1 transcripts are matured to mRNA in a unique manner, probably without alternative splicings.

Existence of a multi-gene family of type 1 phosphoprotein phosphatase

To find out whether AT-PP1 gene homologs are dispersed over the *A. thaliana* genome or not, genomic Southern-blot hybridization analysis (*Bam*HI and *Eco*RI digests) was done with PCR-1 and PCR-2 probes. Under the conditions of high stringency, each probe made one or two specific DNA fragments visible. Under the conditions of low stringency, on the other hand, several additional weak bands were detected. One such band probed with PCR-1 corresponded to the clear band probed with PCR-2 under the high-stringency conditions, and *vice versa* (Fig. 5-A). These results support the view that the *A. thaliana* genome contains multiple genes of PP1 with structural variations: presumably five to eight copies of PP1 genes including pseudogenes if any.

Type 2A phosphoprotein phosphatase genes of A. thaliana

Although an attempt was made to isolate PP2A cDNA clones by the PCR method as in the case of PP1, no candidate clone was obtained. As a next effort, using a truncated cDNA clone derived from the putative PP2A gene of *B. napus* as a probe, genomic Southern-blot hybridization analysis (*Bam*HI and *Eco*RI digests) was done under the three different conditions. Although no signal band appeared under the high-stringency conditions, a unique signal band was detected under the moderate-stringency conditions, and two or more signal

bands under the low-stringency conditions (Fig. 5-B). These results are interpreted as that at least two to three copies of PP2A-like genes are present on the A. thaliana genome.

To confirm it, an *A. thaliana* cDNA library was screened under the conditions of low stringency with the *B. napus* partial PP2A cDNA probe. By screening about 5.5×10^5 recombinants, four positive clones were obtained. From their nucleotide sequence analysis, it was found that the longest clone (787 bp insert) had an open reading frame whose translation product was 93% identical to that of the used probe, and about 80% indentical to fungous and animal PP2Ac members (Fig. 1-B and Fig. 2). This product also shared about 50% identity with PP1c members and 45% identity with a rat PP2Bc enzyme. Therefore, this product is likely to be an *A. thaliana* PP2A homolog (AT-PP2A).

Other types of phosphoprotein phosphatase genes of A. thaliana

To know if the *A. thaliana* genome contains type 2C phosphatase gene homologs, we carried out genomic Southern-blot hybridization analysis with a rat PP2C cDNA probe (Fig. 5-C). Only under the conditions of low stringency we detected a unique hybridization signal, intimating there is at least one PP2C-like gene in the *A. thaliana* genome.

The presence or absence of tyrosine-specific phosphoprotein phosphatases (PTP) was tested by the PCR method using various sets of PCR primers corresponding to the well-conserved regions among fungous and animal PTP members (see Materials and methods). However, no PCR fragment encoding PTP enzymes was produced. As a next effort, using yeast *pyp1*, yeast *cdc25*, and human PTP α clones as probes, genomic Southern-blot hybridization was done as above. We detected faint signal bands only with the yeast probes and only under the hybridization conditions of poor stringency. In addition, both yeast probes visualized a common restriction fragment as can be seen in Fig. 5-D. Since the similarity between *pyp1* and animal PTPs is slightly higher than that between *cdc25* and animal PTPs,⁷⁾ these results imply that the observed signal is derived from a novel type of PTP, a *cdc25* homolog, and that the *A. thaliana* genome contains no gene encoding typical types of PTP enzymes, though considerably diverged PTP-related genes may be present.

Trial for constructing transgenic plants carrying an antisense AT-PP1 gene

A large portion of AT-PP1 cDNA (corresponding to amino acid residues 19-221) was cloned into pBI121 in the antisense orientation under control of the cauliflower mosaic virus 35S promoter, and the resulting plasmid was named pBI121-PP1. *A. thaliana* root explants were infected with LBA4404(pBI121-PP1) and LBA4404(pBI121), and Km' transformant calli were regenerated to mature plants. The transformation efficiency and degree of greening of calli were almost the same for both strains. However, shoot induction from calli occurred at a significantly lower efficiency with pBI121-PP1 than with pBI121. Almost all calli derived from pBI121-PP1 represented abnormal morphology showing strikingly tufty hairy roots, and their green portions gradually disappeared without further shoot induction (data not shown). We obtained only two regenerated mature plants after extensive efforts. Therefore, overexpression of the antisence AT-PP1 gene appeared toxic to plants, and the regenerated plants might be silent upon expression of the introduced gene.

(A) 1	A	AAT	CTC	CGT	TCG	TTT	TCT	ACC	TCG	TTT	AGA	TCG	GAG	ATG M	GCG	GAG	46 3
														F.1	'n	L	2
47	AAG	CCG	GCG	CAA	GAG	CAA	GAG	CAG	AAG	CGA	GCG	ATG	GAA	ССТ	GCA	GTT	94
4	ĸ	P	A	Q	Е	Q	E	Q	ĸ	R	A	м	E	¥	A	v	19
95	СТС	GAC	GAT	ATT	ATT	CGT	CGT	TTG	GTT	GAG	TTT	CGG	AAC	ACG	AGA	CCT	142
20	L	D	D	I	I	R	R	L	v	E .	F	R	N	Т	R	P	35
143	GGA	TCG	GGG	AAG	CAA	GTT	CAT	CTC	AGT	GAA	GGT	GAA	ATT	CGT	CAG	CTT	190
3€	G	<u>S</u>	<u>Ģ</u>	K	õ	v	н	L	<u>s</u>	<u>E</u>	G	E	I	R	ð	r	51
191	TGT	GCT	GTC	тсс	AAA	GAA	ATA	TTT	CTT	CAA	CAG	ccc	AAT	CTG	CTT	gaa	238
52	с	A	v	s	к	Е	I	F	L	Q	Q	P	N	L	L	Е	67
239	ተዋር	GAA	GCT	ccc	ATC	AAG	ATC	TGC	GGT	GAT	ልፐፐ	CAT	666	CAG	ТАТ	тса	286
68	L	E	A	P	I.	ĸ	I	c	G	D	I	н	G	Q	Y	s	83
007		60 1	mme	100	~		616			000			~~~	~	007		
287 84	GAT D	L	L	AGG R	L	F	GAG	TAT Y	GGA	GGG	F	P	P	GAA	A	N	334 99.
335	TAT	TTG I.	TTC	TTG L	GGT	GAT	TAT	GTT	GAC	CGT	GGC	AAG	CAA	AGC	TTG L	GAA E	382
100	-	2	Ţ.	2	Ũ	5	-	·	Ĩ.		č	n	۳.	U	-	2	110
383	ACA	ATA	TGT	CTT	CTT	CTA	GCT	TAC	AAA	ATC	AAG	TAC	CCT	GAG	AAC	TTC	430
116	т	I	с	L	L	Ľ	A	Y	к	I	ĸ	Ŷ	Р	Е	N	F	131
431	TTC	TTG	TTG	AGA	GGG	AAT	CAT	GAA	TCT	GCT	тсс	ATT	ААТ	CGT	ATT	TAC	478
132	F	L	¥8	R	G	N	н		s	A	S	I	N	R	I	Y	147
479	GGT	TTC	TAT	GAT	GAG	TGC	ААА	CGC	AGG	TTC	AAT	GTC	AGA	CTC	TGG	AAA	526
148	G	F	Y	D	Е	с	ĸ	R	R	F	N	v	R	L	W	к	163
527	АТА	TTC	ACC	GAT	TGC	ттт	AAC	TGT	СТТ	сст	GTG	GCC	GCC	тта	АТТ	GAT	574
164	I	F	т	D	с	F	N	с	L	P	v	A	A	L	I	D	179
575	GAC	2022	ата	<u>ста</u>	ന േ ന	ATC	CAT	COT	GCC	ልጥጥ	TCC	CC 4	CAG	СТС	مەم	ACT	622
180	D	R	I	L	c	M	н	G	G	I	s	P	E	L	ĸ	S	195
	mmo	<i>a</i> • <i>a</i>					b mm			000		~~~	200	~~~			(70)
196	L	D	Q	I	R	N	I	A	R	P	M	D	T	P	E	S	211
671	GGT	TTG	GTA	TGT	GAT	TTA	CTA	TGG ω	TCG	GAT	CCT	AGT	GGA	GAC	GTA	GGC	718
212		. "	•	C	5	ŋ	"	"	5	Ď	ŗ	5	9	U	v	9	~~ /
. 719	TGG	GGC	ATG	AAT	GAT	CGT	GGT	GTT	TCA	TAC	ACT	TTT	GGA	GCT	GAC	AAA	766
228	W	G	м	N	D	R	G	v	S.	Y	т	F	G	A	D	ĸ	243
767	GTC	GCA	GAG	TTC	TTG	GAG	ала	CAT	GAC	ATG	GAC	CTT	АТС	TGT	CGT	GCC	814
244	v	A	Е	F	L	Е	к	н	D	м	D	r	I	с	8) A	259
815	CAC	CAG	GTT	GTT	GAA	GAT	GGG	TAT	GAG	TTC	TTT	GCA	GAA	AGA	CAA	CTT	862
260		Q	v	v	E	D ·	G	Y	Е	F	F	A	Е	R	Q	L	275
963	CTT	NC N	~~~~	መመጥ	TC N			220	ጥለጥ	700	~~~	~~~	መጥጥ	c.) C	220	com	91.0
276	v	T	v	F	S	A	P	N	Y	c	GGGG	E	F	D	N	A	291
													-				
911 292	GGC A	GCA A	ATG M	ATG M	AGC	ATT J	GAT	GAG F.	AGC	TTA J.	ATG M	TGC	TCA	TTC F	CAG	ATT T	958 307
					CK:	11		-	-	-		-	-	-	*		
959	СТА	AAG	CCG	TCA	GAA	AAG	AAG	TCG	CCT	TTT	CTG	TGA	CAC	CGA	TTA	TCC	1006
308	L	ĸ	6	<u>s</u> PK	<u>е</u> С	K	ĸ	s	6	f	Ĺ	*					319
1007	AGT	GAC	CA														1017

(B) 1	т	ATT	CCG	ACG	GAC	GCA	ACC	ATT	GAT	CTT	GAT	CTT	GAT	GAG	CAG	ATC	46
1		I	P	Ť	D	A	Т	I	D	L	D	L	D	E	Q	I	15
47	TCG	CAG	стс	ATG	CAG	TGC	AAG	CCT	CTC	TCG	GAG	CAA	CAG	GTT	AGA	GCA	94
16	s	Q	L	м	Q	с	ĸ	P	L	S	E	Q	Q	v	R	A	31
95	TTA	TGC	GAG	AAA	GCC	AAG	GAG	ATC	TTA	ATG	GAT	gaa	AGC	AAT	GTT	CAG	142
32	L	с	Ē	ĸ	A	ĸ	E	I	Ľ	м	D	E	S	N	v	Q	47
143	CCT	GTG	AAA	AGC	сст	GTG	ACA	ATC	TGC	GGT	GAT	ATT	CAT	GGA	CAG	TTC	190
48	P	v	ĸ	s	P	v	т	I	с	G	D	I	н	G	Q	F	63
191	CAT	GAT	CTT	GCA	GAG	CTT	TTC	CGT	ATA	GGG	GGA	ATG	TGC	сст	ĠAT	ACC	238
64	н	D	L	A	E	L	F	R	I	G	G	м	с	P	D	Т	79
239	AAT	TAC	CTG	TTT	ATG	GGA	GAC	TAT	GTG	GAC	CGT	GGT	TAŤ	TAT	TCT	GTT	286
80	N	Y	L	F	M	G	D	Y	v	D	R	G	Y	Y	s	v	95
287	GAA	ACT	GTT	ACG	CTG	TTA	GTC	GCC	TTA	AAG	ATG	CGA	TAT	CCT	CAG	CGA	334
96	Ē	т	v	т	L	L	v	A	L	ĸ	M	R	Y	P	Q	R	111
335	ATC	ACT	ATT	CTT	AGA	GGA	AAC	CAT	GAA	AGT	CGT	CAG	ATT	ACT	CAG	GTT	382
112	I	т	I	L	R	G	N	H	E	S	R	Q	I	T	Q	v	127
383	TAT	GGA	TTT	TAT	GAA	TGT	CTA	CGA	AAG	TAC	GGC	AAC	GCA	AAT	GTŤ	TGG	430
128	Y	G	F	Y	Е	с	L	R	к	Y	G	N	A	N	v	W	143
431		ATC	ጥጥጥ	ACA	CAC	CTC	TTC	GAC	ዋልዋ	ጥጥጥ	CCT	CTC	202	ccc	TTC	CTT	478
144	ĸ	T	F	т	D	T.	F	D	Ŷ	F	p	I.	T	A	L	v	159
Tyr-kinase																	
479	GAG	TCA	gaa	ATA	TTT	TGC	CTT	CAT	GGT	GGA	TTA	TCT	CCA	TCT	ATC	GAG	526
160	Ē	s	E	I	F	с	L	н	G	G	L	S	P	s	I	E	175
527	ACC	CTT	GAC	244													574
176	т			Tuto.	ATA	AGG	AAT	TTT	GAT	CGA	GTT	CAA	gaa	GTG	ccc	CAT	
		L	D	N	I '	AGG R	AAT N	TTT F	GAT D	CGA R	GTT V	CAA Q	GAA E	GTG V	P P	CAT H	191
575	GAA	L	D CCG	N ATG	I TGT	AGG R GAC	AAT N TTA	TTT F TTA	GAT D TGG	CGA R TCT	GTT V GAC	CAA Q CCC	GAA E GAT	GTG V GAC	CCC P CGA	CAT H TGT	191 622
575 192	GAA E	L GGG G	D CCG P	N ATG M	I TGT C	AGG R GAC D	AAT N TTA L	TTT F TTA L	GAT D TGG W	CGA R TCT <u>S</u> CK	GTT V GAC D	CAA Q CCC P	GAA E GAT D	GTG V GAC D	CCC P CGA R	CAT H TGT C	191 622 207
575 192 623	GAA E GGT	L GGG G TGG	D CCG P GGC	N ATG M ATC	I TGT C TCT	AGG R GAC D CCT	AAT N TTA L CGG	TTT F TTA L GGT	GAT D TGG W GCC	CGA R TCT <u>S</u> GGA	GTT V GAC D II TAT	CAA Q CCC P ACA	GAA E GAT D TTT	GTG V GAC D GGT	CCC P CGA R CAG	CAT H TGT C GAT	191 622 207 670
575 192 623 208	GAA E GGT G	L GGG G TGG W	D CCG P GGC G	N ATG M ATC I	I TGT C TCT <u>S</u> PKC	AGG R GAC D CCT P	AAT N TTA L CGG R	TTT F TTA L GGT G	GAT D TGG W GCC A	CGA R TCT <u>S</u> CK GGA G	GTT V GAC D II TAT Y	CAA Q CCC P ACA T	GAA E GAT D TTT F	GTG V GAC D GGT G	CCC P CGA R CAG Q	CAT H TGT C GAT D	191 622 207 670 223
575 192 623 208 671	GAA E GGT G ATA	L GGG G TGG W TCT	D CCCG P GGCC G GAA	N ATG M ATC I CAA	I TGT C TCT <u>S</u> <i>PKO</i> TTC	AGG R GAC D CCT P CT AAT	AAT N TTA L CGG R CAC	TTT F TTA L GGT G ACA	GAT D TGG W GCC A AAC	CGA R TCT <u>S</u> CK GGA G AAC	GTT V GAC D II TAT Y TTA	CAA Q CCC P ACA T AAG	GAA E GAT D TTT F	GTG V GAC D GGT G ATC	CCC P CGA R CAG Q GCC	CAT H TGT C GAT D CGA	191 622 207 670 223 718
575 192 623 208 671 224	GAA E GGT G ATA I	L GGG G TGG W TCT S	D CCG P GGC G GAA E	N ATG M ATC I CAA Q	I TGT C TCT <u>S</u> PKC TTC F	AGG R GAC D CCT P AAT	AAT N TTA L CGG R CAC	TTT F TTA L GGT G ACA T DSyla	GAT D TGG W GCC A AAC N AAC	CGA R TCT <u>S</u> CK GGA G AAC N	GTT V GAC D II TAT Y TTA L	CAA Q CCC P ACA T AAG K	GAA E GAT D TTT F CTG L	GTG V GAC D GGT G ATC I	CCC P CGA R CAG Q GCC A	CAT H TGT C GAT D CGA	191 622 207 670 223 718 239
575 192 623 208 671 224 719	GAA E GGT G ATA I GCT	L GGG G TGG W TCT S CAC	D CCG P GGC G GAA E CAG	N ATG M ATC I CAA Q TTG	I TGT C TCT <u>S</u> PKO TTC F	AGG R GAC D CCT P AAT ASR-G ATG	AAT N TTA L CGG R CAC H Jlyco GAT	TTT F TTA L GGT G ACA T SSy12 GGA	GAT D TGG W GCC A AAC N AAC N TAC	CGA R TCT <u>S</u> CK. GGA G AAC N AAC	GTT V GAC D II TAT Y TTA L TGG	CAA Q CCCC P ACA T AAG K GCT	GAA E GAT D TTT F CTG L CAC	GTG V GAC D GGT G ATC I GAG	CCC P CGA R CAG Q GCC A CAA	CAT H TGT C GAT D CGA K K AAA	191 622 207 670 223 718 239 766
575 192 623 208 671 224 719 240	GAA E GGT G ATA I GCT	L GGG G TGG W TCT S CAC	D CCCG P GGC G GAA E CAG Q	N ATG M ATC I CAA Q TTG L	I TGT C TCT S PKC TTC F V	AGG R GAC D CCT P AAT AAT ATG	AAT N TTA L CGG R CAC H J J J J J Z GAT D	TTT F TTA L GGT G ACA T OSY12 GGA G	GAT D TGG W GCC A AAC N TAC Y	CGA R TCT S CK GGA G AAC N 2 AAC N	GTT V GAC D II TAT Y TTA L TGG W	CAA Q CCCC P ACA T AAG K GCT A	GAA E GAT D TTT F CTG L CAC H	GTG V GAC D GGT G ATC I GAG E	CCC P CGA R CAG Q GCC A CAA Q	CAT H TGT C GAT D CGA R AAA K	191 622 207 670 223 718 239 766 255
575 192 623 208 671 224 719 240 767	GAA E GGT G ATA I GCT GTG	L GGG G TGG W TCT S CAC CAC	D CCG P GGC G GAA E CAG Q ACT	N ATG M ATC I CAA Q TTG L ATT	I TGT C TCT TCT F GTT V TTC	AGG R GAC D CCT P C AAT ASD ASD M AGT	AAT N TTA L CGG R CAC H J J J J J GGT GCG	TTT F TTA L GGT G ACA T DSSyl22 GGA G	GAT D TGG W GCC A A AAC N AAC TAC Y	CGA R TCT S CK GGA G AAC N AAC N	GTT V GAC D II TAT Y TTA L TGG W	CAA Q CCC P ACA T AAG K GCT A	GAA E GAT D TTT F CTG L CAC H	GTG V GAC D GGT G ATC I GAG E	CCC P CGA R CAG Q GCC A CAA Q	CAT H TGT C GAT D CGA XXXX AAA K	191 622 207 670 223 718 239 766 255 787

Fig. 1. Nucleotide sequences and the deduced amino acid sequences of AT-PP1 (A) and AT-PP2A (B) cDNA, respectively. The amino acid sequences are given below the nucleotide sequences. The LRGNHE and RAH regions are shaded, respective potential phosphorylation sites and the corresponding kinases are underlined and cited, and a potential Asn-glycosylation site is boxed. CKII, casein kinase II; PKC, protein kinase C.

rabbitPP1 α	MSDSEKLNLDSIIGRLLEVQGSRPGKNVQLTENEIRGLCLKSREIFLSQPILLELEAPLKIC
dis2	MDYDIDAIIEKLVKARNGKPSKQVQLSDAEIRYLCTTSRSIFLSQPMLLELEAPLKIC
AT-PP1	MAEKPAQEQEQKRAMEPAVLDDIIRRLVEFRNTRPGSGKQVHLSEGEIRQLCAVSKEIFLQQPNLLELEAPIKIC
Hu2AO	MDEKVFTKELDQWIEQLNECKQLSESQVKSLCEKAKEILTKESNVQEVRCPVTVC
ppa2	MSIDPANDSKLAPEANDATLG-DVDRWIEQLKKCEPLSEADVEMLCDKAREVLCQENNVQPVRNPVTVC
AT-PP2A	IPTDATIDLDLDEQISQLMQCKPLSEQQVRALCEKAKEILMDESNVQPVKSPVTIC
	** * *
rabbitPP1 α	${\tt GDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFLLRGNHECASINRIYGFY}$
dis2	${\tt GDIH} GQYSDLLRLFEYGGYPPDANYLFLGDYVDRGKQSLEVICLLFAYKIKYPENFFLLRGNHEFASINRIYGFY$
AT-PP1	${\tt gdih} {\tt goid} {\tt lrlfey} {\tt ggfppe} {\tt anylflgdy} {\tt drgk} {\tt gsleticllayki} {\tt kypenff} {\tt lrgnh} {\tt sasinriy} {\tt gfy}$
PCR-1	PENFFLIRGNHECASINRIYGFY
Hu2A 🛛	GDVHGQFHDLMELFRIGGKSPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRERITIIRGNHESRQITQVYGFY
ppa2	GDIHGQFHDLMELFKIGGDVPDMNYLFMGDYVDRGYHSVETVSLLVAMKLRYPNRITILRGNHESRQITQVYGFY
AT-PP2A	GDIHGQFHDLAELFRIGGMCPDTNYLFMGDYVDRGYYSVETVTLLVALKMRYPQRITILRGNHESRQITQVYGFY
	***** * ** ** * **** ***** * * ** * ** ** ****
rabbitPP1 α	DECKRRY-NIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDLQSMEQIRRIMRPTDVPDQGLLCDLLWSDPDK
dis2	DECKRRY-SIKLWKTFTDCFNCMPVAAVIDEKIFCMHGGLSPDLNSLDQIQRIIRPTDIPDTGLLCDLVWSDPEK
AT-PP1	DECKRRF-NVRLWKIFTDCFNCLPVAALIDDRILCMHGGISPELKSLDQIRNIARPMDIPESGLVCDLLWSDPSG
PCR-1	${\tt Deckrrf-svrlwkvftdsfnclpvaaviddkilcmhgglspdltnveqiknikrstdvpdsgllcdllwsdpsk}$
Hu2A a	eq:clrkygnanvwkyftdlfdylpltalvdgqifclhgglspsidtldhiraldrlqevphegpmcdllwsdpdd
ppa2	${\tt Declrkygsanvwkhftnlfdyfpltaliedrifclhgglspsidsldhvrtldrvqevphegpmcdllwsdpdd$
AT-PP2A	-ECLRKYGNANVWKIFTDLFDYFPLTALVESEIFCLHGGLSPSIETLDNIRNFDRVQEVPHEGPMCDLLWSDPDD
	** * ** * * * * *** * * * ***
rabbitPP1 α	DVQGWGENDRGVSFTFGAEVVAKFLHKHDLDLICKAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVD
dis2	DLTGWGENDRGVSYTFGADVVSRFLQKHDLDLICRAHQVVEDGYEFFGKRQLVTIFSAPNYCGEFDNVGAMMSVN
AT-PP1	DV-GWGMNDRGVSYTFGADKVAEFLEKHDMDLICKAHQVVEDGYEFFAERQLVTVFSAPN <u>YCGEFDN</u> AGAMMSID
PCR-1	DVKGWGMNDRGVSYTFGPDKVAEFLIKNDMDLICRAHQVVEDGYEFFADRQLVTIFSAPNYCGEFD
Hu2AO	RG-CWGISPRGAGYTFGQDISETFNHANGLTLVSRAHQLVMEGYNWCHDRNVVTIFSAPNYCYRCGNQAAIMELD
ppa2	RC-GWGISPRGAGYTFGQDISETFNHANGLSLTARAHQLVMEGFNWAHDGDVVTIFSAPNYCYRCGNQAAILEVD
AT-PP2A	RC-GWGISPRGAGYTFGQDISEQFNHTNNLKLIARAHQLVMDGYNWAHEQKVVTIFSA
	*** ** **** * * **** * * ******* * *
$rabbitPP1\alpha$	ETLMCSFQILKPADKDKNKGKYGQFSGLNPGGRPITPPRNSAKAKK
dis2	EDLLCSFQILKPAEKRQRVSQSSIKESKSATNSLKKSKNN
AT-PP1	ESLMCSFQILKPSEKKSPFL
Hu2AC	DTLKYSFLQFDPAPRRGEPHVT <u>RBTPDYFL</u>
ppa2	DIMNOVFLOFDPAPREGEPVIARRIPDYFL

Fig. 2. Amino acid sequence comparison of Ser/Thr-specific phosphoprotein phosphatases. From upper to lower rows, rabbit PP1 α ,¹⁶ S. pombe dis2 (PP1),⁸ AT-PP1, PCR-1 translation product, human PP2A α ,³⁹ S. pombe ppa2 (PP2A),⁹ AT-PP2A. The regions for PP1 PCR primers are underlined. Asterisks under the sequences represent highly conserved amino acid residues among PP1 and PP2A enzymes, and hyphens represent spacing for the best match. The LRGNHE and RAH regions and the RRTPDYFL region are indicated by shading and wavy lines, respectively. AT-PP1.AMI

Fig. 3. Hydropathy profile of AT-PP1. Positive and negative values indicate hydrophobic and hydrophilic characters, respectively.²⁷⁾

Fig. 4. Northern-blot hybridization analysis of AT-PP1 mRNA. Total plant RNA (lane 1, 0.8 μ g RNA; lane 2, 4.0 μ g) was fractionated by gel electrophoresis, blotted to a membrane filter, and hybridized with the ³²P-labeled PCR-2 segment. The position of ribosomal 28S and 18S RNAs are indicated by arrowheads.

Fig. 5. Genomic Southern-blot hybridization analysis of the *A. thaliana* phosphoprotein phosphatase genes. *A. thaliana* DNA (5 μ g/lane) was digested with *Bam*HI (lane B) or *Eco*RI (lane E) followed by gel electrophoresis and then by blotting. The probes used are indicated at the top. HIGH, MODE, LOW, and POOR are the high, moderate, low, and poor stringency for hybridization, respectively (see Materials and methods). The band positions of the λ *Hin*dIII fragments are indicated at the left for a size marker.

4. DISCUSSION

Type 1 phosphoprotein phosphatases of A. thaliana

The extremely conserved regions common to PP1c, PP2Ac, and PP2Bc are LRGNHE of residues 134-139 and RAH of residues 258-260, and are presumed to play critical roles in the phosphatase activity and/or interaction with regulatory subunits^{8,28)} (Fig. 2). In fact, a yeast dominant-negative mutant (*dis2-11*) contains a substitution by Q for R in the RAH sequence.⁹⁾ AT-PP1 completely conserved all of these sequences, implying that AT-PP1 actually encodes an *A. thaliana* Ser/Thr-specific phosphoprotein phosphatase.

From motif analysis of AT-PP1 with the PROSITE program,²⁹⁾ we found SEGE (at amino acid residues 44-47) and SIDE (at amino acid residues 296-299) for potential casein kinase II targets, and SGK (at amino acid residues 37-39) and SEK (at amino acid residues 311-313) capable of being phosphorylated by protein kinase C (Fig. 1-A). Since the former two sequences are preserved among PP1 member enzymes (Fig. 2), the PP1 activity itself is likely to be regulated through phosphorylation by Ser/Thr-specific protein kinases (Fig. 1-A and Fig. 2).

Genomic Southern-blot hybridization analysis with the PP1 PCR segments indicated that five to eight PP1 genes including pseudogenes if any, are present on the *A. thaliana* genome, constituting a multi-gene family (Fig. 5-A). Rabbit and yeast (*S. cerevisiae* and *S. pombe*) have only two PP1 loci,⁸⁰ and *Drosophila melanogaster* contains three PP1 loci.³⁰ Therefore, PP1 genes seem to generally comprise a multi-gene family. It is known that two *S. pombe* PP1 genes (*dis2* and *sds21*) have overlapping functions⁹: a mutation within either gene is viable, while their simultaneous disruptions lead to defect in sister chromatid separation. By analogy, multi PP1 genes of *A. thaliana* presumably have overlapping functions critical for proliferation of plant cells. During the preparation of this manuscript, clonings of *A. thaliana* PP1 genes including the same one as described here have been reported, and one of them has been shown to complement the *S. pombe* cold sensitive *dis2-11* mutation.^{31,32}

Type 2A phosphoprotein phosphatases of A. thailana

Genomic Southern-blot hybridization analysis with a *B. napus* partial PP2A cDNA probe revealed the existence of two to three copies of PP2A genes in the *A. thaliana* genome (Fig. 5-B). Similarly, *S. pombe* has two PP2A genes (*ppa1* and *ppa2*) highly homologous to each other, and also to the two genes of rabbit PP2A.⁹⁾ Their double disruptions result in the lethal phenotype, while either disruption does not, as in the case of the PP1 genes. However, no overlapping has been observed between PP1 and PP2A functions.⁹⁾

We isolated a cDNA clone similar to *B. napus* and mammalian PP2A genes (Fig. 1-B). Its motif analysis revealed the LRGNHE and RAH regions characteristic of Ser/Thr-specific phosphoprotein phosphatases are completely conserved as in AT-PP1, intimating that this clone (AT-PP2A) is derived from one of *A. thaliana* PP2A genes (Fig. 2). Recently, similar clones have been reported.³³⁾ AT-PP2A contains a conserved sequence of KIFTDLFDY at amino acid residues 144-152 that is a potential target of protein tyrosine kinase as predicted by the PROSITE analysis.²⁹⁾ Besides, there are a possible Asn-glycosylation site at amino acid residues 229-232 and latent target sites for both casein kinase II and protein kinase C (at amino acid residues 201-204 and 212-214, respectively). Another conserved sequence, RRTPDYFL at the C-terminal portion,⁹⁾ though lacking in the AT-PP2A clone, contains a

probable target of protein tyrosine kinase ³⁴ (Fig. 2). Thus, the AT-PP2A activity as well as AT-PP1 seems to be controlled by post-translational modifications including phosphorylation. *Type 2B and 2C phosphoprotein phosphatases of* A. thaliana

Biochemical analyses with *B. napus* seed extract, wheat and pea leaf extracts, and carrot suspension culture have failed to identify PP2B-like enzymatic activities.¹⁰⁻¹²⁾ Genomic Southern-blot hybridization analysis with a rat PP2C probe indicated the presence of one PP2C gene on the *A. thaliana* genome (Fig. 5-C). PP2C is distinctive from other protein phosphatase families not only structurally but also characteristically: it acts as a monomer, being insensitive to okadaic acid.^{5,21)} Thus PP2C member enzymes may have quite different category of functions in cells.

Tyrosine-specific phosphoprotein phosphatases of A. thaliana

Though in animal cells reversible phosphorylation/dephosphorylation on tyrosine residues has been thought to play critical roles in the control of cellular functions, plants and yeast seem to carry no protein tyrosine kinase genes similar to those of animals.¹³⁾ Since the cell-cycle-controlling Cdc2 kinase (or its structural gene) whose activity is modulated by phosphorylation/dephosphorylation on its Tyr- 15^{35} has been identified in several plant species,^{19,36-30} Tyr-specific kinase and Tyr-specific phosphatase for the Cdc2 kinase (yeast Weel and Cdc25 equivalents, respectively) should also be present in plant cells. We provided evidence to support this prediction that genomic Southern-blot analysis with either yeast *pyp1* or *cdc25* probe identified the same DNA fragment (Fig. 5-D). However, a human receptor type PTP probe did not visualize *A. thaliana* homologs in genomic Southern-blot hybridization analysis, nor were PCR fragments similar to animal PTP enzymes obtained. Therefore, the observed signal probed with *pyp1* and *cdc25* appears to correspond to the *A. thaliana* counterpart of *cdc25*. The results further support the view that *A. thaliana* PTP gene(s) are structurally diverged from those found in fungi and animals.

5. CONCLUSIONS

We revealed the presence of several types of *A. thaliana* phosphoprotein phosphatase genes similar to fungous and animal counterparts, being consistent with enzymatic activities previously identified in higher plants. The isolated clones described here provide a useful tool for functional analysis of PP1 and PP2A by over- and under-expressing the PP1 and PP2A genes in transgenic plants, through which it is expected to obtain new insight into the molecular mechanisms underlying protein phosphorylation/dephosphorylation regulation.

ACKNOWLEDGMENTS

We are grateful to Dr. T. Hirayama for his help and discussion in the course of this work. We also thank Drs. R.W. MacKintosh, S. Tamura, P. Nurse, and H. Saito for their generous gifts of *B. napus* PP2A cDNA, rat PP2C cDNA, *cdc25* cDNA, and human HPTP α cDNA, respectively. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

(306)

search from the Ministry of Education, Science, and Culture of Japan.

REFERENCES

- (1) A.M. Edelman, D.K. Blumenthal and E.G. Krebs, Annu. Rev. Biochem., 56, 567 (1987).
- (2) L.C. Cantley, K.R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller and S. Soltoff, Cell, 64, 281 (1991).
- (3) Y. Nishizuka, Nature, **334**, 661(1988).
- (4) G.F. Sprague Jr, Trends in Genetics, 7, 393(1991).
- (5) P. Cohen, Annu. Rev. Biochem., 58, 453(1989).
- (6) E.H. Fischer, H. Charbonneau and N.K. Tonks, Science, 253, 401(1991).
- (7) J. Gautier, M.J. Solomon, R.N. Booher, J.F. Bazan and M.W. Kirschner, Cell, 67, 197(1991).
- (8) H. Ohkura, N. Kinoshita, S. Miyatani, T. Toda and M. Yanagida, Cell, 57, 997 (1989).
- (9) N. Kinoshita, H. Ohkura and M. Yanagida, Cell, 63, 405 (1990).
- (10) C. MacKintosh and P. Cohen, Biochem. J., 262, 335(1989).
- (11) G. Siegl, C. MacKintosh and M. Stitt, FEBS Lett., 270, 198(1990).
- (12) C. MacKintosh, J. Coggins and P. Cohen, Biochem. J., 273, 733(1991).
- (13) T. Hirayama and A. Oka, Plant Mol. Biol., 20, 653(1992).
- (14) C. Yanisch-Perron, J. Vieira and J. Messing, Gene, 33, 103(1985).
- (15) J. Sambrook, E.F. Fritsch and T. Maniatis, "Molecular Cloning: A Laboratry Manual", Cold Spring Harbor Laboratory Press, New York (1989).
- (16) N. Berndt, D.G. Campbell, F.B. Caudwell, P. Cohen, E.F. da Cruz e Silva, O.B. da Cruz e Silva and P.T.W. Cohen, FEBS Lett., 223, 340 (1987).
- (17) M. Streuli, L.R. Hall, Y. Saga, S.F. Schlossman and H. Saito, J. Exp. Med., 168, 1523 (1988).
- (18) S. Ottilie, J. Chernoff, G. Hannig, C.S. Hoffman and R.L. Erikson, Proc. Natl. Acad. Sci. USA, 88, 3455(1991).
- (19) T. Hirayama, Y. Imajuku, T. Anai, M. Matsui and A. Oka, Gene, 105, 159(1991).
- (20) R.W. MacKintosh, G. Haycox, D.G. Hardie and P.T.W. Cohen, FEBS Lett., 276, 156(1990).
- (21) S. Tamura, K.R. Lynch, J. Larner, J. Fox, A. Yasui, K. Kikuchi, Y. Suzuki and S. Tsuiki, *Proc. Natl. Acad. Sci. USA*, **86**, 1796 (1989).
- (22) P. Russell and P. Nurse, Cell, 49, 559(1987).
- (23) N.X. Krueger, M. Streuli and H. Saito, EMBO J., 9, 3241 (1990).
- (24) D. Valvekens, M. van Montagu and M.V. Lijsebettens, Proc. Natl. Acad. Sci. USA, 85, 5536 (1988).
- (25) A. Hoekema, P.R. Hirsch, P.J.J. Hooykaas and R.A. Schilperoort, Nature, 303, 179 (1983).
- (26) R.A. Jefferson, T.A. Kavanagh and M.W. Bevan, EMBO J., 6, 3901 (1987).
- (27) J. Kyte and R.F. Doolittle, J. Mol. Biol., 157, 105 (1982).
- (28) H. Ohkura and M. Yanagida, Cell, 64, 149(1991).
- (29) A. Bairoch, Nucleic Acids Res., 20, Supplement, 2013(1992).
- (30) V. Dombrádi, J.M. Axton, N.D. Brewis, E.F. da Cruz e Silva, L. Alphey and P.T.W. Cohen, Eur. J. Biochem., 194, 739 (1990).
- (31) K. Nitschke, U. Fleig, J. Schell and K. Palme, EMBO J., 11, 1327 (1992).
- (32) R.D. Smith and J.C. Walker, Plant Mol. Biol., 21, 307 (1993).
- (33) J. Ariño, E. Pérez-Callejón, N. Cunillera, M. Camps, F. Posas and A. Ferrer, Plant Mol. Biol., 21, 475 (1993).
- (34) J. Chen, B.L. Martin and D.L. Brautigan, Science, 257, 1261 (1992).
- (35) P. Nurse, Nature, **344**, 503(1990).
- (36) J. Colasanti, M. Tyers and V. Sundaresan, Proc. Natl. Acad. Sci. USA, 88, 3377 (1991).
- (37) A. Hemerly, C. Bergounioux, M. van Montagu, D. Inzé and P. Ferreira, Proc. Natl. Acad. Sci. USA, 89, 3295 (1992).
- (38) S. Hata, H. Kouchi, I. Suzuka and T. Ishii, EMBO J., 10, 2681 (1991).
- (39) Y. Khew-Goodall, R.E. Mayer, F. Maurer, S.R. Stone and B.A. Hemmings, *Biochemistry*, 30, 89 (1991).