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                  Using the classical trajectory Monte Carlo (CTMC) method, we have calculated the energy spectra of 
              the target electrons ejected in p + H° at an impact energy of 25 keV. We have described a simple way to 
               determine the ECC peak with charged particles. This study has shown that the electronic spectrum is 
               very sensitive to the choice of the energy and solid angle windows for the evaluation of the calculated 

                  data. 
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                                         I. INTRODUCTION 

                Two decades ago Crooks and Rudd° first observed a sharp peak in the doubly differen-
              tial cross section (DDCS) of electrons ejected in ion-atom collisions. This cusp-shaped peak 

              appears close to the direction of the projectile at the energy where the velocity of the ejected 
              electron is equal to that of the projectile. When the projectile is a bare nucleus, the electron 

              comes only from the target atom. In this case, the cusp peak arises due to the process where 
              an atomic electron is dragged by the projectile and moves with it. This process is called the 

              electron capture to the continuum (ECC) . 
                 Since the work of Crooks and Rudd,') extensive experimental studies on the ECC have 

              been performed to investigate cusp peaks, such as position, shape, intensity, and full width at 
              half maximum (FWHM), as a function of projectile energy for various combinations of projec-

              tiles and target atoms " Theoretical models for these parameters have also been developed.''') 
                 It is relatively easy to calculate these parameters of the cusp peak for projectiles with 

              low and high velocities because the perturbation theories, such as the Born approximation, 
              can be used. On the other hand, theoretical models are rather scarce in the case of intermedi-

             ate energy range (25 keV/amu < E < 500 keV/amu) , where the projectile velocity is almost 
              same as the velocity of the electrons moving around the target nucleus. Studies of the ECC 

              peak in this energy region give sensitive theoretical and experimental tests of the collision 
               dynamics between three particles, i.e. projectile, electron, and target nucleus. 

                 In the present work, we use the classical trajectory Monte Carlo (CTMC) method and in- 
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vestigate the cusp peak produced in the reaction 

 p+H° p+H++e-. 

The Monte Carlo simulation is a non-perturbative method and at the same time a very power-
ful tool to study ECC peak in the intermediate energy region, where the perturbative treat-
ments are invalid. Moreover, the CTMC method can also provide a physical insight to the ECC 

process. 
   It should be noted that 'the CTMC calculation by Banks et al.') is in agreement with the 

coupled-channel calculation of Shakeshafts° to predict a large ECC component in the ionization 
cross section for H++ H, which has a maximum at E =50 keV. We further note that the ear-
lier CTMC works" could succeed in calculating the DDCS of the ECC peak when the projec-
tile energy is greater than 37.5 keV. However, for low-energy projectiles the CTMC calcula- 

lions of the ECC peak are time-consuming because we must trace the projectile and the ejected 
electron far from the target nucleus. It is hoped to develope a simple method to reduce the 
computation time to a great extent. 

   In this paper we present a simple procedure to calculate the DDCS of the ECC peak by 

the use of the CTMC method and address the problem of the calculating and evaluating proce-
dures. The projectile velocity is chosen at the low impact energy, Eprgectite =25 keV. 

                        II. THEORETICAL METHOD 

    In the CTMC approach, the Newton's10-12)or Hamilton's13.1") classical non-relativistic equa-
tions of motions for the three-body system are solved numerically for a statistically large 
number of trajectories with initial conditions determined pseudorandomly. In the present 
study, we use the Newton's equations: 

       driri—r~ 
mi------d2=ZiZ,----------r—r3 (i =1,2,3),(1)                      i2 

Where mi, r i, and Zi denote the mass, the position vector, and the charge of the i-th particle, 

respectively. We consider the three-particle system that the projectile (P), the particle 1, col-

lides with the target atom, the particles 2 and 3. In the initial state, the target consists of a 

bound system (Te) , where the electron (e) , the particle 2, is moving around the target nucleus 

(T) , the particle 3. 
   The uniform motion of the center of mass of three particles is usually separated out, and 

                                      X= the relative motion of the three particles is expressed in terms of their relative positionsA= 

r 2 — r3, B = r 3 — r1, C = r 1 — r2 (see Fig. 1) , and the corresponding velocities 
VA = A , 17B  = B , V = e. Here dot means the derivative with respect to the time variable. 
From the relation between the relative coordinates in the center-of-mass system 

X+ /j++  C =0,(2) 

only two vector equations of motion are independent: 

( 6 3 )



                                                  K.  TOKESI, T. MUKOYAMA 

                                                        Stop 2Rutherford 
scattering form 

                     yB<Bm,x V(T.e)<eps 
                                                                transfer ionizationVIT ,e)<epsl 

zinzoor 

                                                                0 ~ 

N1)otherSx                                                                      stop i 

                 Npr 713) 
e(2) 

X 

Fig. 1. Schematic diagram of the ECC calculations. 
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         with 

Ni = (ini)-1 (i =1,2,3).(5) 

             These equations are integrated with time as the independent variable by the use of the 

          standard Runge-Kutta method. The initial conditions, such as the impact parameter of particle 
         1 (projectile) with respect to the target system (nucleus plus electron) and the orientation 

         and velocity of the particle 2 (electron) moving around the particle 3 (target nucleus) , are 

          selected using random numbers. These parameters were chosen at a relatively large distance 
         between the projectile and target atom (Zin in Fig. 1). 

             As a result of the integration (Z,,,,t in Fig. 1) , we consider four final exit channels: direct 

          process, direct ionization, transfer ionization, and charge transfer. The direct channel consists 
          of the elastic scattering of the projectile and the excitation process of the target atom. The 

          direct ionization channel corresponds to the case where the target electron is ejected but its 
          interaction with the target nucleus is stronger than with the projectile. On the contrary, in the 

          transfer ionization the ejected electron has stronger interaction with the projectile than with 
          the target nucleus. In the case of the charge transfer process, the target electron is captured 

          into an unoccupied bound state of the projectile. These final sates are determined by testing 

          the values of relative positions, directions of relative velocities, the center-of-mass energy of 

         the projectile-electron system (Epa) , and that of the target-electron system (ET) • The test con-
          ditions for the final states are shown in Table I. 

             The total cross sections for a specific event (CH) are calculated by 

27rbmaxIbi(
6)                6CH =N 

         The DDCS is obtained in the following form: 
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                Table I. Test conditions for the final states. A plus sign means that the 
                       test must be passed, a minus sign that it must not be passed, 

                       and a zero that it is not made. The entries and quantities are 
                       defined as follows: D: = direct (elastic scattering or 
                       excitation), DI: = direct ionization, TI: = transfer ionization 

 (ECC)  , CT: = charge transfer (EC) , EP,: = centre-of-mass 
                       energy of (Ps) at time t (+ oo) , Era: = centre-of-mass energy 

                        of (Ti) at time t (+ 00), ETP: = centre-of-mass energy of 
                      (TP) at time t (+co), A , B , C relative positions of three 

                       particles, VA, Va, Vc relative velocities of three particles, U: 
                       = total potential energy of the electron in the total field of 

                        particles P and T, Uo: = maximum value of U. 

      Test DDI TI CT  

A<C 0+—0 

Ep >0 +++0 

ET, >0 0+++ 

EPQ<Uo 000+ 

ET,, < Uo + 000 

A VA 0 ++0 

BVa + 00+ 

C Vc 0 ++0 

B<A 0 000  

d2 6 CH    bmax bi(
7) dEd

,f2 N (cos l9mi.— cos t9max)QE 

   The standard deviation of the cross section shown above is given by 

                       N—NX1/2 X = X(NN--------),(8) 

   where X denotes v CH or DDCS. 

      In Eqs. (6), (7), and (8), N is the total number of trajectories calculated for impact para-

   meters less than bmax, and NCH is the number of trajectories that satisfy the criteria for a given 

   collision process such as capture, ionization, and excitation, bi is the actual impact parameter 

   when the actual criteria is given, AE is the energy window and 27r (cos r9 min — cos i9 max) is 

   the solid angle window. 

III. COMPUTATIONAL PROCEDURES 

      The equations (3) are (4) and used to calculate the impact ionization cross section for 25-

   keV protons on hydrogen. Throughout all the calculations in the present work atomic units 

   are used. 
      Since the ECC peak is caused by the Coulomb force and this is the long range force, it is 

   sometimes necessary to integrate the equation of motion over 106 au. Because of the limited 
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    computation time we applied a simple way of the integration, as described below. In Fig. 1, the 
    schematic diagram of the integration procedures is shown. 

       First, we integrate the equation of motion so far the real exit channel is observed (elastic 
    scattering or excitation, direct ionization, transfer ionization, charge transfer) . This point is 

    the so-called big turning point, because we continue the integration only if the exit channel is 
    the transfer ionization and stop it for all other cases (Stop 1 point in Fig. 1). It should be 
    noted that before this calculation we checked the exit channel of the direct ionization too, but 

    neglected the latter because this channel was found not to cause the ECC event. 
       After the first turning point, we change to another time integration step. Usually the opti-

    mum size of the new step was chosen to be 8+10 times larger than the previous step size. It 
    is possible to use larger step size because after this point we have three free particles. 

       The second turning point is chosen to be approximately 104 au from the colliding center. 

    There we are rather at long distance from the target nucleus and the interaction between the 
    ejected electron and the target nucleus is less than epsl (10-4 au). At this point we estimate 

    the critical angle (O„mx), shown in the Fig. 1, for the ionized electron. If the angular deflection 
    of the ejected electron is less than Omax, the electron is considered to be the ECC electron, but 

    not in all other cases and stop the integration of equation of motions (Stop 2 point in Fig. 1) . 

       In the next step, we integrate the equation of motion until the interaction between the io-
    nized electron and the target nucleus becomes less than eps (10-6) . This is a normal exit. 

    When the distance between the projectile and the target nucleus is greater than Bft„ish (several 
    times larger than 1/eps), we stop the integration, too. This case corresponds to the abnormal 

    exit. In the latter case the interaction between the ejected electron and the target nucleus is in 

    order of 10-5 au. This exit test is necessary because there are so extreme trajectoris that the 
    earlier exit test is not useful. The real integration procedure is stopped at this point, Then we 
    introduce the final approximation as follows: We neglected the interaction between the elec-

    tron and the target nucleus (this is less than 10-6 au) and use the Rutherford scattering for-
    mula between the ionized electron and the projectile to define the energy and deflection angle 

    of the ejected electron at the infinite time. 

                         IV. RESULTS AND DISCUSSION 

       All the numerical computations in the present work have been performed on the CRAY Y-
    MP2E supercomputer in the Institute for Chemical Research, Kyoto University. 

       As has been described above, it was found that in the present case the ECC peak arises 

    due to the transfer ionization process and the direct ionization mechanism plays a minor role. 
    Therefore we traced only the transfer ionization channel and neglected the contributions from 
    the direct ionization process. 

       The calculated results of the DDCS for the 25-keV protons on hydrogen is shown in Fig. 

   2. The total number of histories was 2 X 106. When the projectile energy is 25 keV and the 
    ejected electron spectrum is observed at 0.2°, the solid angle window becomes 0.4 sr and the 
   energy window is 0.22 eV. It is clear from the figure that the calculated shape of the ECC 

   peak is similar to the shape observed by Dahl15) and by Gibson and Reid'° for 100-keV pro-
    tons on He. 

                              ( 66 )
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             Fig. 2. Calculated shape of the ECC peak in the case of 25 keV p + H° collisions. The 
                  energy window is set to 0.22 eV and the solid angle window is 0.4 sr . 

       Since it is well known that the peak position of the ECC sharply depends on the observed 

    angle and the CTMC method can be considered as a kind of theoretical experiment, we tested 

    the evaluation procedure of the data. We change the energy and solid-angle windows, see 

   Table II, and computed the position of the cusp peak (E) . 

       In our calculations the energy of projectile was 25 keV and the cusp peak should appear 

    at Ee =13.5 eV. When a large step size is used for the energy and solid-angle windows, the 

   CTMC calculation gives smaller peak energy and the difference between the calculated peak 

    position and the expected energy is significant, as large as 1 eV. This difference decreases 
    with decreasing the size of the energy and solid-angle windows. 

       For small solid-angle windows, the calculated cusp peak position reduces to the expected 

    energy quickly even with large energy windows. When the solid angle window is rather small 

    (0.4 sr) , the difference sharply depended on the size of the energy window. At the fixed num-
    ber of the events (12847), we could get the best value for pE =0.22 eV and 6,S1 =0.4 sr. In 

    this case the calculated cusp peak position was 13.4 eV. We can expect that a better agree-

    ment between the calculated and expected energies be obtained if we use more trajectories. 

                         Table II. Calculated dependence of peak position 
                                  on the energy and solid-angle windows. 

E (ev) A O (sr) Peak position (ev)  

              1.01.012.5 

              1.00.812.8 

              0.44 0.813.0 

              0.44 0.413.2 

            0.22 0.413.4  

                              ( 67 )



                                    K.  TOKESI, T. MUKOYAMA 

                            V. CONCLUSION 

   In the present work, we have calculated the ECC peak by the CTMC method. We have 

shown that the ECC electrons are coming only from the transfer ionization process. It is in-

teresing to note that we described the transfer ionization process over 40 au from the collision 

center. However, since the Coulomb force is a long range force, the effect of this force cannot 

be neglected until 104=105 au. 

   We described that the position of the ECC peak (E) strongly depends on the evaluation 

procedure, i.e. if we decrease the solid angle or energy windows, then it moves to Ee. 
   The present calculation method can reduce the total CPU time by about 50% in compari-

son with the conventional methods. This fact indicates that the present method is very useful 

to calculate the ECC peak in ion-atom collisions because this type of calculations require 

several billion trajectories. 
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