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Molecular Orbital Calculations of Continuum Wavefunctions
for H2+ with Basis Functions of Atoms
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Molecular continuum wavefunctions for H" ion are obtained by means of numerical calculations
with linear combination of atomic wavefunctions. The present approach is based on the molecular orbital
method which is established for the bound states of molecules. The obtained wavefunctions are compared
with exact solutions which is the continuum wavefunctions of the two-center one-electron system with the
Coulomb interaction. In a short range from the nuclei, the wavefunctions by the present method is in good
agreement with the exact solutions. The photoabsorption cross sections are compared with the exact value
reported previously.
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I. INTRODUCTION

Continuum wavefunctions for molecules are required for studies of electron excitation
spectroscopies such as the photoelectron spectroscopy, the photoabsorption spectroscopy and
the electron energy loss spectroscopy and for analysis of electron transfer in the atomic colli-
sion processes.

There are some calculation methods which provide the molecular continuum wavefunc-
tions: the multiple-scattering method, various methods of the partial-wave expansion, the
pseudo-bound state L% method and the direct numerical method. A comprehensive list of the
methods which have been applied to Hy photoionization can be found in Ref. 1. Richards et
al."? have reported a direct numerical method where the differential equations for the con-
tinuum are solved with the finite difference method and the obtained wavefunction is joined to
an asymptotic solution which stands at large distances. They have presented the photoioniza-
tion cross sections with high accuracy for Hs and Hz+. Their method is suitable for diatomic
or linear molecules, because the system is reduced to a two-dimensional problem. At this
stage, it is inconvenient for calculation of polyatomic molecules with the lower symmetry, re-
quiring huge computation time for the three-dimensional cases. The multiple scattering
method® is frequently utilized for theoretical X-ray absorption spectra. This method in the
generally used form is restricted to the potential with the crude muffin-tin type. The complete
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expression of the continuum wavefunction is not required in the L% method.*® Instead, con-
tinuum information is extracted from operators discretized in finite sets of square integrable
(L?) basis functions.

In the present work based on the L? method adopting a numerical basis set, we use a
computer code named ‘SCAT™ which puts the discrete-variational (DV) X @ molecular orbital
(MO) method into practice. We have applied this MO method to theoretical X-ray absorption
spectra of molecules®® For the one-electron system of Hy™, the X @ approximation is un-
necessary. The DV integration scheme and orthogonalization procedure are used to generate
the continuum wavefunctions. The standard SCAT code has been modified for including ato-
mic continuum wavefunctions in the basis set in addition to bound-state ones.

II. COMPUTATIONAL METHOD

In the DV method, one-electron Hamiltonian matrix elements Hj; and overlap ones S;; in
the secular equation are evaluated with the weighted sum of integrand values at randomly
selected sample points:

(H—¢€ S) c=0, (1)
H; = % w(re) ¢, () Hm) 8, (), (2)
Sy = % w ("k) $, ("k) ¢j (fk)‘ (3)

where w (r) is the reciprocal of the sample point density at r.. This procedure makes it easy
to adopt numerical atomic orbitals as a basis set for the molecular orbitals. The atomic orbit-
als (AO) are used as the L2 basis functions. Linear combination of the bound and continuum
atomic wavefunctions or orbitals (LCAQ) is used to approximate the continua. The wavefunc-
tions in the spherical potential are separated into the spherical harmonics and the radial
wavefunctions.”! The spherical harmonics are expressed with the associated Legendre func-
tions. The differential equation for the radial wavefunction R at a position 7 is
—a%(rz%)Jr[—z (+1)+7 (e = V)] R =0, (4)
where !, € and V are the angular momentum quantum number, the energy of electron and the
Coulomb potential for H.t. Equation (4) was numerically solved with the Hamming method.
The numerical solutions for the bound states were derived with the standard computer code
similar to a nonrelativistic version of the code of Liberman et al.””® For the continuum states,
the numerical outward integration was done from the origin to a finite distance. In the present
work, the integration of Eq. (4) was performed up till » =40 au and a quickly decreasing
function of third order polynomial was joined to it with a smooth connection. '

The basis functions were transformed to the symmetry-adapted orbitals for Dej,. When
the extended basis set is used, there is the possibility that there exist almost linearly depen-
dent basis functions. The basis functions are located on the different atoms of the molecule
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but have a close relation with orbitals of the other atom because many basis functions spread
out beyond the adjacent atoms. The linear dependence among the symmetry orbitals was re-
moved before the wavefunction orthogonalization which was done by solving the secular equa-
tion.

The used basis set for the H,™ molecular ion consisted of orbitals from ls to 6f and the
atomic continua from 0 Hr to +1.6 Hr with an energy sequence of the equal ratio of V2
beginning at +0.05 Hr, containing s, p, d and f wavefunctions. After the removal of the linear
dependence, 366 MO’s were generated and 255 MO's were located above the vacuum level.

The oscillator strength f;; for a transition from a state ¢ to j was calculated in the dipole
approximation:

.fiJ‘Z%wa | r | 1'>

~where  is the emergy difference between the state ¢ and f. Numerical integration in the

2

, (5)

dipole matrix elements was performed in the same way as that in Ref. 13. It was the same DV
integration method as used in ‘SCAT’. The cross section is given by

0 =2L2g“—02f¢j 8 (w—w,), (6)
i
where a is the fine-structure constant, ag is the Bohr‘radius, g; is the degeneracy of the ini-
tial state and w, is the photon energy. For the bound states, the function & expresses a
lineshape including the exciting X-ray linewidth, the hole-state lifetime contribution and the
spectrometer response. For the continuum, ¢ can be replaced with unity.

For comparison, exact continuum wavefunctions for H2+ were calculated using the com-
puter code by Rankin and Thorson.” This calculation for the two-center one-electron system
with the Coulomb interaction is based on the algorithm presented by Ponomarev and Somov.?

The results for H, ™ can be applied to any other bare-nucleus one-eleciron system with
charge Z for each nucleus, when the distances are scaled as 1/Z and the energies as Z2.

HI. RESULTS AND DISCUSSION

The continuum wavefunctions for the H,™ ion which were derived by the molecular
orbital method in the LCAO approximation are compared with the exact solutions for the two-
center one-electron system, as shown in Figs.1 and 2. The bond length was set to 2.0 au,
according to the minimum of the calculated energy.® The amplitudes of wavefunctions are
normalized to one at the center of hydrogen atoms. The results by the present method are in
good agreement with the exact wavefunctions. In the short range from the nuclei, the agree-
ment is excellent.

The deviation from the exact solution is obvious in the region from 2.5 au to 10 au. In
the present MO calculations, the basis functions are located at each hydrogen atom. The wave-
functions on the neighboring atom are quite different in amplitude and curvature from those
on the opposite side. Through the process of the orthogonalization of the present method, the
continuum wavefunctions are fitted with the basis set, using the variational method. This fit-
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Fig. 1. Continuum wavefunctions of o, for Hp,¥ with 1.90eV above the vacuum
level. The solid curve is calculated by the molecular orbital method and the
broken curve is the exact solution. The positions of hydrogen nuclei are indi-
cated with arrows.
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Fig. 2. Continuum wavefunctions of o, for H,¥ with 6.50eV above the vacuum
level. The solid curve is calculated by the molecular orbital method and the
broken curve is the exact solution. The positions -of hydrogen nuclei are indi-
cated with arrows.

ting is done more strictly in the region where the deviation in the wavefunction causes larger
energetic instability, that is, in the region with the higher kinetic energy of electron. There-
fore, the deviation from the exact value is large on the opposite side of the adjacent hydrogen
atom.

At the greater distances, the MO continuum wavefunctions agree well again with the ex-
act wavefunctions. Phase of the wavefunction is determined at a distant point. Phase shift of
the ‘wavefunction is valuable for estimating angular distribution of the photoelectron, which
provides precise information of the orbital properties. In the direct numerical method,*" the
differential equation of the continuum is solved outward from the centers of atoms and the
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obtained wavefunctions are joined to asymptotic solutions at the greater distance. The preci-
sion on applyihg the asymptotic solution at a short distance was estimated, using the computer
code of Rankin and Thorson.!¥ The precision of two digits for the asymptotic solution of o,
with 1.90 eV and 6.50 eV is achieved at 23 au and 6.7 au of distances and that of four digits
at 30 au and 10 au, respectively. The phase deviations of the MO continuum wavefunctions
from the exact ones for o, with 1.90eV and 6.50 ¢V are 0.04 7 and 0.05 7, respectively, at
the distance greater than 20 au. The connection at 30 au with the asymptotic solution does not
deteriorate the total precision of the phase determination. Within this precision, the phase
shift values can be derived from the asymptotic solutions connected with the present MO con-
tinua. To obtain the phase shift information for general molecules, wavefunctions solved at a
middle distance for arbitréry spherical potentials of molecules are required. Using this solu-
tion, the wavefunction determined at a short distance from the molecule is connected with an
asymptotic wavefunction at a long distance. The calculation methods for the arbitrary spheri-
_cal potentials have been presented in Ref. 17.

For the photoabsorption spectra, information of the wavefunction at the long distance is
not required. Since the bound electron which is to be excited by the photon occupies a small
volume inside the molecule, only the continuum wavefunctions within this small volume is
necessary to estimate the photoabsorption cross sections.

In the present work, the oscillator strength was converted to the photoabsorption cross
section with the function & of the Lorentzian curve. The same & was used for the oscillator
strength of the discretized continua. This procedure is based on a relation for finite intervals:

n

2 si—>f odE, whenn—>o (7)

1

where s; is the 4 th discretized cross section. To get a smooth photoabsorption spectrum, the
peak width of each Lorentzian curve was assumed to be 2.0 eV. For the bound levels, the
width is determined by the resolution of spectrometer and the natural line width. The present
width for the bound levels was tentatively fixed to 2.0eV. The theoretical photoabsorption
spectrum of excitation from the state (1s o ,)! is shown in Fig. 3.

A pumber of Rydberg states exist below the ionization energy (0 eV in Fig. 2) and form a
continuous spectrum spreading up to the continuum. Above the ionization energy, the cross
section decreases with the energy. The marks -+ are the exact values reported by Richards
and Larkins? The present cross section was calculated with the continuum wavefunctions in
the LCAO approximation. The exact cross section and the present one are 0.931 Mb and 0.90
Mb, respectively, at 0 eV and 0.537 Mb and 0.47 Mb, respectively, at 5.44 eV. The cross sec-
tions by the present method agree well with the exact values but are smaller by 5-15% in the
range up to 6.5 eV.

The fluctuation of the cross section becomes large at the energy above 6 eV. At the high-
er energy, the basis functions are less sufficient in number to represent the continua. Less fit-
ted continuum wavefunctions are less stabilized in energy. If greater basis set is adopted, the
components located at the higher energies may be redistributed to the lower energy region and
may increase the cross sections to a small extent in the lower region. Langhoff et al® have de-
veloped a method where the accurate cross sections are extracted with the Stieltjes imaging
method from the L? discretized cross sections.
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Fig. 3. Photoabsorption spectrum of excitation from (ls ¢ g) L of H,". The abscissa in-
dicates the excitation energy and the ionization threshold energy is set to zero.
The vertical lines are oscillator strengths for the discrete levels obtained by
the molecular orbital method and converted to the photoabsorption cross sec-
tions drawn with the rigid curve. The marks + are the exact values calculated
by Richards et al.? and joined with the broken line.
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