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   Molecular continuum wavefunctions for Ha+ ion are obtained by means of numerical calculations 
with linear combination of atomic wavefunctions. The present approach is based on the molecular orbital 
method which is established for the bound states of molecules. The obtained wavefunctions are compared 
with exact solutions which is the continuum wavefunctions of the two-center one-electron system with the 
Coulomb interaction. In a short range from the nuclei, the wavefunctions by the present method is in good 
agreement with the exact solutions. The photoabsorption cross sections are compared with the exact value 
reported previously. 
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                            I. INTRODUCTION 

   Continuum wavefunctions for molecules are required for studies of electron excitation 

spectroscopies such as the photoelectron spectroscopy, the photoabsorption spectroscopy and 

the electron energy loss spectroscopy and for analysis of electron transfer in the atomic colli-

sion processes. 

   There are some calculation methods which provide the molecular continuum wavefunc-

tions: the multiple-scattering method, various methods of the partial-wave expansion, the 

pseudo-bound state L2 method and the direct numerical method. A comprehensive list of the 
methods which have been applied to H2 photoionization can be found in Ref. 1. Richards et 

al.' Z have reported a direct numerical method where the differential equations for the con-

tinuum are solved with the finite difference method and the obtained wavefunction is joined to 

an asymptotic solution which stands at large distances. They have presented the photoioniza-

tion cross sections with high accuracy for H2 and H2+. Their method is suitable for diatomic 

or linear molecules, because the system is reduced to a two-dimensional problem. At this 

stage, it is inconvenient for calculation of polyatomic molecules with the lower symmetry, re-

quiring huge computation time for the three-dimensional cases. The multiple scat, ring 
method') is frequently utilized for theoretical X-ray absorption spectra. This method in the 

generally used form is restricted to the potential with the crude muffin-tin type. The complete 
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             expression of the continuum wavefunction is not required in the L2 method 4-6) Instead, con-
            tinuum information is extracted from operators discretized in finite sets of square integrable 

             (L2) basis functions. 
                In the present work based on the L2 method adopting a numerical basis set, we use a 

            computer code named 'SCAT') which puts the discrete-variational (DV) X a molecular orbital 
(MO) method into practice. We have applied this MO method to theoretical X-ray absorption 

             spectra of molecules." For the one-electron system of H2+, the X a approximation is un-
             necessary. The DV integration scheme and orthogonalization procedure are used to generate 

            the continuum wavefunctions. The standard SCAT code has been modified for including ato-
             mic continuum wavefunctions in the basis set in addition to bound-state ones. 

                                   II. COMPUTATIONAL METHOD 

                 In the DV method, one-electron Hamiltonian matrix elements Hij and overlap ones Sij in 
             the secular equation are evaluated with the weighted sum of integrand values at randomly 

             selected sample points: 

(H — E S) c =0,(1) 

Hi; = ~ w (rk) 6 i (rk) H (rk) 9 (rk) ,(2) 

k Sij = I co (rk) s i (rk) 1 j (rk) ,(3) 

k 

            where co (rk) is the reciprocal of the sample point density at rk. This procedure makes it easy 
            to adopt numerical atomic orbitals as a basis set for the molecular orbitals. The atomic orbit-

            als (AO) are used as the L2 basis functions. Linear combination of the bound and continuum 
            atomic wavefunctions or orbitals (LCAO) is used to approximate the continua. The wavefunc-
            tions in the spherical potential are separated into the spherical harmonics and the radial 

wavefunctions.11 The spherical harmonics are expressed with the associated Legendre func-

            tions. The differential equation for the radial wavefunction R at a position r is 

dr(r2 dR)+[— 1 (l +1) + r2 (E—V)] R=O,(4) 
             where 1, E and V are the angular momentum quantum number, the energy of electron and the 

            Coulomb potential for H2+. Equation (4) was numerically solved with the Hamming method. 
            The numerical solutions for the bound states were derived with the standard computer code 

            similar to a nonrelativistic version of the code of Liberman et al.12 For the continuum states, 

            the numerical outward integration was done from the origin to a finite distance. In the present 
            work, the integration of Eq. (4) was performed up till r = 40 au and a quickly decreasing 

            function of third order polynomial was joined to it with a smooth connection. 
                 The basis functions were transformed to the symmetry-adapted orbitals for pooh. When 

            the extended basis set is used, there is the possibility that there exist almost linearly depen-
            dent basis functions. The basis functions are located on the different atoms of the molecule 
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but have a close relation with orbitals of the other atom because many basis functions spread 

out beyond the adjacent atoms. The linear dependence among the symmetry orbitals was re-

moved before the wavefunction orthogonalization which was done by solving the secular equa-

tion. 

   The used basis set for the H2+ molecular ion consisted of orbitals from  is to 6f and the 

atomic continua from 0 Hr to +1.6 Hr with an energy sequence of the equal ratio of 

beginning at +0.05 Hr, containing s, p, d and f wavefunctions. After the removal of the linear 

dependence, 366 MO's were generated and 255 MO's were located above the vacuum level. 

   The oscillator strength fi9 for a transition from a state i to j was calculated in the dipole 

approximation: 

                                 2 
  fii =T co r i(5) 

where co is the energy difference between the state i and f. Numerical integration in the 

dipole matrix elements was performed in the same way as that in Ref. 13. It was the same DV 
integration method as used in 'SCAT'. The cross section is given by 

                  2~r2aao2 
        gi fry~ 8 (co—cop),(6) 

where a is the fine-structure constant, ao is the Bohr radius, gi is the degeneracy of the ini-

tial state and cop is the photon energy. For the bound states, the function 8 expresses a 

lineshape including the exciting X-ray linewidth, the hole-state lifetime contribution and the 

spectrometer response. For the continuum, 8 can be replaced with unity. 

   For comparison, exact continuum wavefunctions for H2+ were calculated using the com-

puter code by Rankin and Thorson.14 This calculation for the two-center one-electron system 
with the Coulomb interaction is based on the algorithm presented by Ponomarev and Somov.'s) 

   The results for H2+ can be applied to any other bare-nucleus one-electron system with 

charge Z for each nucleus, when the distances are scaled as 1/Z and the energies as Z2. 

                      III. RESULTS AND DISCUSSION 

   The continuum wavefunctions for the H2+ ion which were derived by the molecular 

orbital method in the LCAO approximation are compared with the exact solutions for the two-

center one-electron system, as shown in Figs. 1 and 2. The bond length was set to 2.0 au, 

according to the minimum of the calculated energy.16) The amplitudes of wavefunctions are 

normalized to one at the center of hydrogen atoms. The results by the present method are in 

good agreement with the exact wavefunctions. In the short range from the nuclei, the agree-
ment is excellent. 

   The deviation from the exact solution is obvious in the region from 2.5 au to 10 au. In 

the present MO calculations, the basis functions are located at each hydrogen atom. The wave-

functions on the neighboring atom are quite different in amplitude and curvature from those 

on the opposite side. Through the process of the orthogonalization of the present method, the 

continuum wavefunctions are fitted with the basis set, using the variational method. This fit-
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       Fig. 1. Continuum wavefunctions of a„ for Hz+ with 1.90 eV above the vacuum 

            level. The solid curve is calculated by the molecular orbital method and the 
            broken curve is the exact solution. The positions of hydrogen nuclei are indi-

              cated with arrows. 
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        Fig. 2. Continuum wavefunctions of a„ for Hz+ with 6.50 eV above the vacuum 
             level. The solid curve is calculated by the molecular orbital method and the 

             broken curve is the exact solution. The positions of hydrogen nuclei are indi-
             cated with arrows. 

ting is done more strictly in the region where the deviation in the wavefunction causes larger 

energetic instability, that is, in the region with the higher kinetic energy of electron. There-

fore, the deviation from the exact value is large on the opposite side of the adjacent hydrogen 

atom. 

   At the greater distances, the MO continuum wavefunctions agree well again with the ex-

act wavefunctions. Phase of the wavefunction is determined at a distant point. Phase shift of 

the wavefunction is. valuable for estimating angular distribution of the photoelectron, which 

provides precise information of the orbital properties. In the direct numerical method,1415I the 
differential equation of the continuum is solved outward from the centers of atoms and the 
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obtained wavefunctions are joined to asymptotic solutions at the greater distance. The  preci-

sion on applying the asymptotic solution at a short distance was estimated, using the computer 

code of Rankin and Thorson.") The precision of two digits for the asymptotic solution of a u 

with 1.90 eV and 6.50 eV is achieved at 23 au and 6.7 au of distances and that of four digits 

at 30 au and 10 au, respectively. The phase deviations of the MO continuum wavefunctions 

from the exact ones for a u with 1.90 eV and 6.50 eV are 0.04 r and 0.05 r , respectively, at 

the distance greater than 20 au. The connection at 30 au with the asymptotic solution does not 

deteriorate the total precision of the phase determination. Within this precision, the phase 

shift values can be derived from the asymptotic solutions connected with the present MO con-

tinua. To obtain the phase shift information for general molecules, wavefunctions solved at a 

middle distance for arbitrary spherical potentials of molecules are required. Using this solu-

tion, the wavefunction determined at a short distance from the molecule is connected with an 

asymptotic wavefunction at a long distance. The calculation methods for the arbitrary spheri-

cal potentials have been presented in Ref. 17. 

   For the photoabsorption spectra, information of the wavefunction at the long distance is 

not required. Since the bound electron which is to be excited by the photon occupies a small 

volume inside the molecule, only the continuum wavefunctions within this small volume is 

necessary to estimate the photoabsorption cross sections. 

   In the present work, the oscillator strength was converted to the photoabsorption cross 

section with the function s of the Lorentzian curve. The same S was used for the oscillator 

strength of the discretized continua. This procedure is based on a relation for finite intervals: 

Isi f a dE, when n —0:00(7) 
where si is the i th discretized cross section. To get a smooth photoabsorption spectrum, the 

peak width of each Lorentzian curve was assumed to be 2.0 eV. For the bound levels, the 
width is determined by the resolution of spectrometer and the natural line width. The present 
width for the bound levels was tentatively fixed to 2.0 eV. The theoretical photoabsorption 

spectrum of excitation from the state (ls a g) 1 is shown in Fig. 3. 
   A number of Rydberg states exist below the ionization energy (0 eV in- Fig. 2) and form a 

continuous spectrum spreading up to the continuum. Above the ionization energy, the cross 
section decreases with the energy. The marks + are the exact values reported by Richards 

and Larkins!) The present cross section was calculated with the continuum wavefunctions in 
the LCAO approximation. The exact cross section and the present one are 0.931 Mb and 0.90 
Mb, respectively, at 0 eV and 0.537 Mb and 0.47 Mb, respectively, at 5.44 eV. The cross sec-
tions by the present method agree well with the exact values but are smaller by 5-15% in the 
rangeupto6.5eV. 
   The fluctuation of the cross section becomes large at the energy above 6 eV. At the high-

er energy, the basis functions are less sufficient in number to represent the continua. Less fit-
ted continuum wavefunctions are less stabilized in energy. If greater basis set is adopted, the 
components located at the higher energies may be redistributed to the lower energy region and 
may increase the cross sections to a small extent in the lower region. Langhoff et al') have de-
veloped a method where the accurate cross sections are extracted with the Stieltjes imaging 
method from the L2 discretized cross sections. 
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       Fig. 3. Photoabsorption spectrum of excitation from (is a g)1 of Hs±. The abscissa in-
             dicates the excitation energy and the ionization threshold energy is set to zero. 

             The vertical lines are oscillator strengths for the discrete levels obtained by 
             the molecular orbital method and converted to the photoabsorption cross sec-

             tions drawn with the rigid curve. The marks + are the exact values calculated 
             by Richards et al.2) and joined with the broken line. 
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