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   The approximation of atomic continuum wave function by an L2 basis set has been studied using the 
Slater-type orbitals. The numerical continuum wave function is fitted to analytical basis functions with the 
least-squares method. It is shown that for low-energy electrons and for small radial distances the present 
method can give good approximation to numerical wave functions in the Hartree-Fock-Slater field. 
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                           1. INTRODUCTION 

   For many-electron systems, realistic energy eigenvalues and wave functions are generally 
obtained as numerical solutions of the Schrodinger equation with the self-consistent-field (SCF) 

potential.l'2l The Hartree-Fock (HF) and Hartree-Fock-Slater (HFS) methods are often used 
for this purpose. In this case, the wave functions are given usually in numerical forms. 

However, in order to evaluate matrix elements for atomic transitions, such as radiative rates and 
inner-shell ionization cross sections, it is more convenient to use analytical wave functions. 

   For bound states, there have been reported several attempts to calculate analytical wave 
functions. The most frequently used method is the Hartree-Fock-Roothaan (HFR) method.3) 
The atomic wave functions are expanded in terms of a set of basis functions and the HF equation 
is solved as a matrix eigenvalue problem. 

   In atomic collisions, the finite-basis-set expansion method has often been adopted. The 
atomic wave functions are expanded in terms of a finite basis set of square-integrable (L2) 
functions and an atomic Hamiltonian with an appropriate atomic potential is diagonalized to 
obtain energy eigenvalues and wave functions.4l Since the atomic potential is unchanged in this 

method, the iteration procedure is unnecessary and the computation time is significantly reduced 
in comparison with the HFR method. Recently we have developed an alternative approach to 

obtain analytical wave functions.5l This method consists in fitting analytical functions to the 
SCF wave functions computed numerically. 

   On the other hand, for continuum states the number of methods which have been used to 
express wave functions in analytical forms is scarce. The finite-bases-set method described 
above, sometimes called the L2 discretization method or the pseudostate method, has been applied to 
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many problems in atomic and molecular ionization  processes.4'6) When the number of the basis 

set is finite, in addition to the bound sates which have negative energies we obtain the states with 

positive discrete energy eigenvalues, called pseudostates. 
   The eigenfunctions corresponding to these pseudostates should contain some information 

about the continuum states with the same kinetic energies and can be used as approximate wave 

functions to continuum wave functions, though the normalization conditions for two wave 

functions are different. As basis functions, various L2 functions have been used, such as 
Laguerre polynomials,7'8) Slater-type orbitals (STO's),4) Gaussian-type orbitals,9) Sturmian 

functions, /°) B-spline functions,11 and Lobatto functions.12) 

   The pseudostate method is a very powerful technique to express continuum states in 

analytical forms and has been successfully applied for many problems. However, it is difficult to 

obtain the wave function corresponding to a definite kinetic energy, because the energy 

eigenvelues of the pseudostates are determined by diagonalization of the atomic Hamiltonian. 

In order to evaluate the transition matrix element for a definite kinetic energy using pseudostates, 

special numerical techniques, such as the Stieltjes imaging,° should be used. Furthermore, 

since the pseudostates are obtained together with the bound states the size of basis set becomes 

larger. This fact is sometimes trouble when a dense discrete spectrum with positive energies is 

necessary. 

   In the present work, we present a method to calculate an analytical continuum wave 

function with an arbitrary kinetic energy. The present method is an extension of our previous 

works for the bound states5'13) to the continuum case. First the continuum wave function is 

computed numerically by solving the single-particle Schrodinger equation for an appropriate 

atomic potential. The phase shift and the normalization constant are evaluated in the 

conventional way for the continuum wave function. Then the numerical wave function is fitted 

to analytical L2 functions with the least-squares method. Here we demonstrate the validity of 

the method for the examples of neutral atoms with the HFS potential using the STO's as basis 

functions. 

                     2. COMPUTATIONAL METHOD 

   The single-particle wave function for the continuum state is given as the solution to the 

radial Schrodinger equation : 
      d2

d(r)f[k22V(r)—1(1+r21)]Pkt(r)=O. (1) 
Here V(r) is the atomic potential, 1 is the orbital angular momentum quantum number, and k is 

the wave number of the free electron, that is k= (2E)112, where E is the kinetic energy of the 

electron. Throughout the present work atomic units (h=m=e=1) are used. 
   In neutral atoms, the atomic potential vanishes faster than the Coulomb field and V(r)--*0 for 

r—co. For sufficientlylarge r values, Eq. (1) reduces to 
     d2

dr2(r) 1{k2l(lr?--------------1)]Pkt(r)=0.(2) 
In this asymptotic region, the continuum wave functions are of the form14) 

            2        P
ki(r) = rck-----kr [cos 8ijt(kr) —sin 8i ni(kr)],(3) 

where st is the phase shift, and j1(x) and ni(x) are the spherical Bessel and Neumann functions 
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    with order 1, respectively. 
        The solution of Eq. (1) should joint smoothly to Eq. (3) at the practical infinity  r=r00. 

    From this condition, the phase shift can be determined as 
                 kj t{kr, )—/3J1(kr.)  

  tan 8t=(4)                    k
n'/3nt(kr,) ' 

    where the primed quantity means the derivative with respect to r and 

              _ pkt(r001                      ) _ 
Pkt(r.)r~(5) 

    The normalization constant is decided at r=rc.. and the normalized continuum wave function is 
     obtained. 

        In order to express Pkt(r) obtained above in analytical forms, we expand it in terms of basis 
    functions X(r) 

N Pkt(r)= 4xt(r),(6) 
n=1 

    where is the expansion coefficient and Nis the number of basis functions. In the present work, 

     we use the STO's as basis functions:5'13) 

xs(r) =N:e" eXp (— y1 r) •(7) 

    Here N, is the normalization constant for the STO, n, is an integer, and is the orbital exponent. 

        For the fixed values of N and n,, the most suitable values for 4 and are determined by 

    fitting Eq. (6) to the numerical continuum wave function Pkt(r) with the least-squares method 

    using the nonlinear function minimization procedure.15) 

                         3. RESULTS AND DISCUSSION 

        The numerical calculations in the present work have been performed on the FACOM M-

    1600/6 computer in the Institute for Chemical Research, Kyoto University. 
        The atomic potentials were calculated in the HFS method in the manner similar to the 

    Herman-Skillman program,16) but the Latter tail correction17) is omitted so as to fulfill the 

    boundary condition described above. Using this atomic potential, the continuum wave function 

    with a certain kinetic energy is obtained by solving the Shrodinger equation numerically. 
        The numerical wave function was fitted to the sum of the STO's in Eq. (6). The initial 

    estimates for fitting were taken from the table of Clementi and Roetti18) for the HFR wave 
    functions. For 1=0, we used the parameters for the 2s electron as the initial estimates, because 

    the 4 values for the is electron are almost zero except for one. The values of N and n, were fixed 

    in their original values and the parameters and were determined using the nonlinear least-

    squares method between r=0 and 10/Z, where Z is the atomic number. 
        Test calculations were made for the case of Ne atom. Table I lists the and values for 2s 

    electron, taken from the Clementi-Roetti table and used as the initial estimates, and the fitted 
    results for the electron with the energy of 1 a.u. and 10a.u. and with the orbital angular 

    momentum of 1=0. The obtained analytical continuum wave function for E=1 and l=0 is 

    shown in Fig. 1 and compared with the numerical continuum wave function. The relative 

    difference between two wave functions in % is plotted in Fig. 2 against the radial distance r. It 

    can be seen from the figures that agreement between both wave functions is quite good. The 
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        Table I. Comparison of parameters of STO's of Ne for the continuum electron with 

 E=1 and 10 and 1=0 with those for the 2s electron. 

n, 
         2sa)E= 1 E= 102sa)E= 1E= 10 

      1 -0.231 -0.779 -0.525 9.485 8.331 3.069 

      1 -0.006 -0.501 -1.481 15.566 9.205 3.623 

     2 0.186 0.807 5.969 1.962 3.430 5.485 

      2 0.669 -12.602 -8.910 2.864 1.001 -0.003 

     2 0.309 0.415 -2.830 4.825 3.356 2.335 

      2 -0.139 -2.205 -2.061 7.792 4.476 7.254 

        a) Clementi and Roetti
, Ref. 18. 
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           Fig. 1. Comparison of the analytical wave function for Ne with E=1 and 1=0 
                  with the numerical one. The solid line represents the numerical wave 

                 function in the HFS field and K' symbol indicates the present result. 

deviation is less than 1°/0 in the region of r in the figures. The large deviation is found at the 

points near to the node of the continuum wave function, where the absolute values are small and 
slight difference in wave functions gives rise to large relative deviation. 

   Figure 3 shows the conparison of the wave functions of Ne 1=0 state with E=10. In this 

case, the analytical wave function is also a good approximation to the numerical continuum wave 

function, but the relative deviation from the latter is larger, less than 15%, in comparison with the 

case of E=1. This suggests that for high-energy electrons larger basis sets involving large n= 

values are needed to represent quick oscillation. For the case of 1=1, the similar comparison is 

made for E=1 in Fig. 4. In this case, the number of basis functions is only four, but we can still 

obtain good agreement with the numerical wave functions. 

   The present results indicate that for low-energy region and for small radial distance the L2 

expansion method with STO's can give good approximation to the continuum wave function. 
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         Fig. 2. Relative deviation for Ne with E=1 and 1=0 from the numerical one.. 
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                     Fig. 3. Same as Fig. I, but for E=10 and 1=0. 

                           4. CONCLUSION 

   We presented the method to express the atomic continuum wave function in the form of 

analytical functions. The numerical wave functions for the continuum states were fitted to the 

sum of the STO's, as in the case for bound states. The expansion coefficients and the orbital 

exponents in STO's were determined by the nonlinear function minimization method of 
Powel1.15) The obtained wave functions are good approximation to the numerical continuum 

wave functions for the energy range and the region of radial distance considered, though the 

number of basis functions is small, N=6 for 1=0 and N=4 for 1=1. This fact suggests that for 
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inner-shell electron ejection in low-energy region the present method is useful to calculate the 
transition matrix elements analytically, because dominant contributions come from the small-r 
region. 
   However, our results in the pseudostate method4) indicate that for higher energies and for 
larger radial distances the STO's cannot reproduce the oscillatory behavior of the exact 
continuum wave functions and are not good basis functions. In such . cases, we must use 
different basis functions and probably different techniques. 

   In the present work, we used the STO's as basis functions and the atomic potential was 
obtained for neutral atoms with the HFS method. However, the principle of the present method 
is more general. One can use any kinds of basis functions and arbitrary potentials, not only for 
neutral atoms but also for ions. Such calculations are made simply by changing the boundary 
conditions and asymptotic forms of wave functions. 
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