Bull. Inst. Chem. Res., Kyoto Univ., Vol. 72, No. 2, 1994

Structural Study of TeO₂-WO₃ Glasses by RDF and Raman Analyses

Akihiko Nukui*, Yutaka Shimizugawa*, Shigeru Suehara*, Satoru Inoue* and Tomoharu Maeseto**

Received June 5, 1994

Structures of series of TeO_2 -WO₃ glasses are studied by X-ray radial distribution function (RDF) and Raman spectroscopic methods. Atomic distances around Te atoms are obtained from the experimental RDF. Structural configuration in nearest neighbor (a variety of polyhedra related to TeO_2 and WO₃ structural components) are obtained from the Raman spectra. From the results of the RDF, Te-O (W-O) interatomic distances are in the range of 0.193–0.194 and Te-Te, 0.364–0.365 nm for 90TeO₂-10WO₃ and $80TeO_2$ -20WO₃ glasses. The Raman studies for $80TeO_2$ -20WO₃, $75TeO_2$ -25WO₃ and $70TeO_2$ -30WO₃ glasses indicate that there existed TeO₄ trigonal bipyramid, deformed TeO₃₊₁ polyhedron and TeO₃ trigonal pyramid associated with TeO₂ component. In relation to WO₃ component, there existed WO₄ tetrahedron and WO₆ octahedron. Structures of TeO₂-WO₃ glasses are basically retained structural conformation found in crystalline paratellurite in spite of that there existed polyhedra of WO₃ component as modifier.

KEY WORDS: Glass Structure/ TeO₂-WO₃ Glasses/ X-ray Distribution Function Analysis/ Raman Spectroscopy*

1. INTRODUCTION

Hitherto, the most studies of tellurite glasses have been reported from viewpoints of glass formation¹⁾ as well as optical,²⁾ dielectric³⁾ properties and so on. The tellurite glasses are also interesting from structural point of view, because their local structures have possibilities to be formed by variety of coordinates states as represented by TeO_x (x: 4+2, 4+1, 4, 3+3, 3+2, 3+1 and 3) polyhedra found in crystalline states.⁴⁾ In tellurite glasses, TeO_2 -WO₃ glass should show especially complicate local structures, because of adding to structural configurations such as WO_x (x: 4 and 6) polyhedra. Recently a few structural studies of TeO_2 -WO₃ glasses are reported. They are Infra-red (IR) spectroscopic study by Dimitrov *et al.*,⁵⁾ Raman spectroscopic one by Gubov *et al.*,⁶⁾ neutron diffraction one by Kozhukharov *et al.*,⁷⁾ and X-ray diffraction one by Nukui *et al.*,⁸⁾ Dimitrov *et al.* proposed that part of the TeO₂ was substituted by WO₄ tetrahedra. Gubov *et al.* suggested that two different coordinate states of WO₄ and WO₆ were contributed to build up the glass structure. Kozhukharov *et al.* indicated the influence of WO₃ as the modifier on the Te-O, Te-Te and O-O interatomic distances. Nukui *et al.* indicated that local structure 90TeO₂-10WO₃ was similar to that in paratellurite (α -TeO₂). However, structural conformation by the combination of TeO_x and WO_x polyhedra leads to complicate

^{*} 貫井昭彦, 清水川 豊, 末原 茂, 井上 悟: National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki, 305 Japan.

^{**} 前背戸智晴: Shinko Pantec Co. Ltd, Murotani 1-4-1, Kobe, Hyohgo, 651-22 Japan.

Structural Study of TeO2-WO3 Glasses by RDF and Raman Analyses

arrangements in the glass structure and has been still remained arguments.

In the present study, we tried to analyze the local structure of TeO_2 -WO₃ glasses by combination of Raman spectroscopic and X-ray radial distribution function (RDF) analyses in order to know what kinds of the polyhedra contribute to the local structure and to know atomic arrangement concerned with such the polyhedra.

2. EXPERIMENTAL

The compositions and densities of TeO_2 -WO₃ glasses, which were quenched from melt after keeping temperature at 800°C for 30 min., are listed in Table 1. The densities were measured by Archimedes method.

Table I. Composition and density of the glasses.			
Composition	$TeO_2 \ (mol\%)$	$WO_3 \pmod{8}$	Density (g/cm ³)
TW1	90	10	5.68
TW2	80	20	5.93
TW3	75	25	6.06
TW4	70	30	6.18

Table 1. Composition and density of the glasses.

Samples of TW1 and TW2 were ready for X-ray measurement and TW2, TW3 and TW4, for Raman measurement. X-ray diffraction measurement was performed by using a powder diffractometer⁹⁾ at the BL-4B station of Photon Factory in National Laboratory for High Energy Physics. Measurements were carried out by monochromatized X-ray with wave length of 0.075 nm. Intensity data were collected by step scanning with every 0.4° from 4° to 140° in 2θ range adopting fixed-time counting for 30 sec. Intensity of incident beam was monitored by the scattering and fluorescent X-rays from Al foil. The collected intensities were normalized with Krogh-Moe and Norman method after correcting absorption factor and Compton scattering.

The Raman spectra of the glasses were taken in the range of $200-1,200 \text{ cm}^{-1}$ with a SPEX RAMALOG9 type spectrometer equipped with an argon ionized laser with 514.5 nm.

3. RESULT

3.1 RDF study

Figure 1 shows intensity curves of the 90TeO_2 - 10WO_3 and 80TeO_2 - 20WO_3 glasses. Figure 2 shows the RDF, D(r)'s obtained as the Fourier transform of interference function deduced from the observed intensities. Main peaks located below 0.5 nm are found at 0.193–0.194 nm and 0.374–0.375 nm, and several shoulders in the range of 0.4–0.5 nm for two glasses. The interatomic distances of Te-O including a slight W-O ones, and Te-Te (W-W) in the TeO₂-WO₃ glasses together with those of crystalline α -TeO₂ and Li₂TeO₃ are listed in Table 2.

3.2 Raman Study

Raman spectra of the tellurite glasses with composition of 20, 25 and 30mol% WO₃ contents are shown in Figure 3. In the spectra of the glasses, three bands (around 500, 700 and 930 cm⁻¹) and several shoulders (around 350, 800 and 850 cm^{-1}) are found. The bands below 800–900 cm⁻¹ should be mainly contributed by TeO₂ component as refering to Sekiya's Raman

A. NUKUI, Y. SHIMIZUGAWA, S. SUEHARA, S. INOUE and T. MAESETO

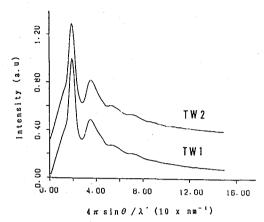


Fig. 1. X-ray diffraction intensities of 90TeO₂-10WO₃ and 80TeO₂-20WO₃ glasses.

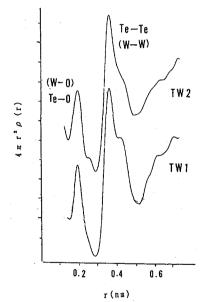
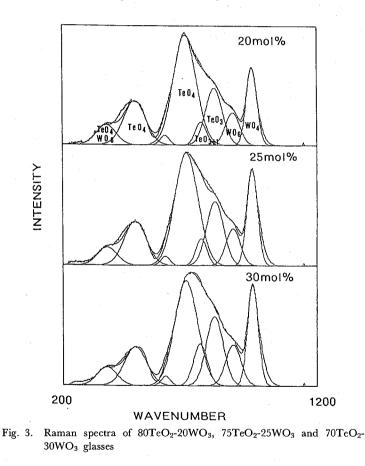


Fig. 2. Radial distribution functions of 90TeO₂-10WO₃ and 80TeO₂-20WO₃ glasses which include mainly local atomic arrangements around Te atoms.


study of a various kind of tellurite glasses.¹⁰⁾ Comparing these spectra with those of the other tellurite glasses with different modifiers such as $TeO_2-R_xO_y$ (ex. R: alkali earth elements and so on),¹⁰⁾ the sharp band beyond the 900 cm⁻¹, relatively large shoulder around 350 cm⁻¹ and small one around 850 cm⁻¹ are observed additionally. Those correspond to contribution of WO₃ component. Gubov *et al.* proposed that the band at about 930 cm⁻¹ was contributed by WO₄ tetrahedron, because B₂WO₄ crystal, which consisted of WO₄ tetrahedra, showed such the band at 930 cm⁻¹. While Daniel *et al.*¹¹⁾ observed the band in Raman spectra related to tungsten oxide (*m* and *h*-WO₃), which consisted of WO₆ octahedra with corner sharing,

	Te-O (nm)	Te-Te (nm)
90TeO ₂ -10WO ₃	0.194*1	0.364*2
80TeO ₂ -20WO ₃	0.193*1	0.365 ^{*2}
α -TeO ₂	0.191	0.374
	0.208	
Li_2TeO_3	0.185	0.385
	.0.187	
	0.193	

Structural Study of TeO2-WO3 Glasses by RDF and Raman Analyses

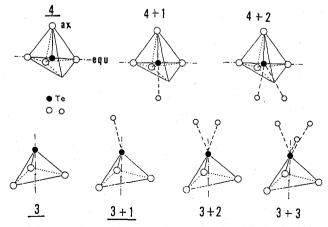
Table 2. Interatomic distances of glasses and

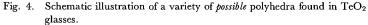
*1 including W-O, *2 including W-W.

did not show the band at about $930 \,\mathrm{cm}^{-1}$.

The Raman spectra obtained in the present study were deconvoruted by adopting Gaussian functions distributed at the corresponding band positions to those of TeO4 trigonal bipyramid, deformed TeO3+1 polyhedron and TeO3 trigonal pyramid in TeO2 component according to Mochida et al. and those of WO₄ tetrahedron and WO₆ octahedron in WO₃ component.⁶⁾ As the results, the total spectra could be assighted by bands at 780, 650 and 480 cm^{-1} which are

A. NUKUI, Y. SHIMIZUGAWA, S. SUEHARA, S. INOUE and T. MAESETO


belong to TeO₂ component and by bands at 940, 870 and 380 cm^{-1} for WO₃ component. Furthermore, the band at 780 cm⁻¹ is belong to TO₃ polyhedron. That at 720 cm⁻¹ is belong to TeO₃₊₁ polyhedron, and 650 and 480 cm⁻¹, to TeO₄ polyhedron, respectively. On the other hand, the band at 940 cm⁻¹ corresponds to WO₄ tetrahedron, and 870 and 380 cm⁻¹, to WO₆ octahedron, respectively.


4. **DISCUSSION**

The possible configurations of the polyhedra of TeO_2 component are shown in Figure 4. The Raman analysis indicates the coexistence of a various kinds of primary polyhedra such as TeO_4 trigonal bipyramid (TeO_4 tbp), deformed TeO_{3+1} polyhedron and TeO_3 trigonal pyramid (TeO_3 tp) for TeO_2 component, and WO₄ octahedron and WO₆ octahedron for WO₃ one. While interatomic distance related to the neighbor environment around Te atom such as Te-O and that of Te-Te with slight contribution of W-O and W-W atomic pairs, respectively are obtained by the RDF analysis.

The structures of tellurite glasses are usually explained on the basis of structural units of paratellurite (α -TeO₂) and of the tellurite compounds which have similar compositions to glasses. The structure of α -TeO₂ consists of structure unit which Te atom is surrounded by four oxygen atoms. Two oxygen atoms situated at 0.191 nm in equatorial plane. The other two situated at 0.208 nm in axial plane. While structure of m-WO₃ crystal consists of WO₆ octahedra in which the W atoms are off-center, and form three short (0.18 nm) and three long (0.21 nm) W-O bonds with the surrounding oxygens. The theoretical value of Te-O in TeO₂ glass⁶⁾ and the average one in α -TeO₂ are 0.20 nm, respectively. While W-O interatomic distance in the glass is 0.188 nm.⁶⁾

The first peaks found in the RDF for 90TeO_2 -10WO₃ and 80TeO_2 -20WO₃ are corresponded to Te-O interatomic distances with a small amount of contribution of W-O atomic pairs and located at 0.194 and 0.193 nm, respectively. It is reasonable to show such the values, because of overlapping of Te-O atom pair (0.20 nm) and W-O one with shorter interatomic distance (0.188 nm). The Te-O interatomic distance become short slightly with increasing of WO₃ contents

Structural Study of TeO2-WO3 Glasses by RDF and Raman Analyses

from 10 to 20 mol%. This tendency may correspond to configuration change from TeO₄tbp to deformed TeO₃₊₁ polyhedra.

The important thing is the difference of the shortest Te-Te distances as well as the firstneighbor Te-O distance. In the results of neutron diffraction by Kuzhukharov et al., they insisted that the peak at 0.38–0.39 nm was strongly diffusive, because this region of atomic arrangement in the glass was affected by the strong deformation of the bonds contributing to the RDF. On the other hand, the results of X-ray diffraction study by Nukui et al. and the other tellurite glasses¹²) with different elements of compositions indicate that the peak at that region (around 0.37 nm) is extremely large and relatively sharp. There is large difference between the results of neutron and X-ray works. In the neutron experiment, the scattering factor to Te, W and O are almost same to each other. While local structures of TeO2-WO3 glasses have retained as a whole, three dimential network found in α -TeO₂ from viewpoint of atomic distance of Te-O and Te-Te atom pairs in spite of that the local structure has a variety of polyhedra of TeO₂ and WO₃ components. Therefore, taking into account of the facts described above, the diffuse like shoulder in RDF by the neuron diffraction measurement indicates that "smearing" do not deduce from strong deformation of atomic arrangement in the region (around 0.38 nm) but averaging of the contributions of Te-Te, W-W, the second neighbor Te-O and W-O, and O-O atom pairs, although the tendency of deformation shows to some extent as the results of adding to WO₃ component as modifier or even as networkformer.

Dimitrov *et al.* assumed that the WO₄-tetrahedra a part of TeO₄ groups was replaced by WO₄ tetrahedra, which leads to the formation of Te-O-W-O-Te bonds in the structure, by IR spectroscopic study. With increase in the WO₃ content, WO₄ tetrahedra as well as TeO₃₊₁ and TeO₃ polyhedra increase as can be seen in Figure 3. This fact indicate that elongated Te-O bond has possibility to combine to WO₄ tetrahedron or WO₅ octahedra.

The structural conformation by combination of TeO_x and WO_x polyhedra leads to complicate atomic arrangements through the glass structure. A further study will be performed by partial RDF employing X-ray anomalous scattering in order to make clear the atomic arrangements through the glass structure.

5. CONCLUSION

Structures of series of TeO₂-WO₃ glasses are studied by RDF and Raman spectroscopic methods. Atomic distances around Te atoms are obtained from the RDF. Structural configuration in the nearest neighbor are obtained from the Raman spectra. The Raman studies of series of TeO₂-WO₃ glasses indicate that there existed TeO₄ trigonal bipyramid, deformed TeO₃₊₁ polyhedron and TeO₃ trigonal pyramid associated with TeO₂ component. In relation to WO₃ component, there existed WO₄ tetrahedra and WO₆ octahedra. With increase in the WO₃ content, WO₄ tetrahedra as well as TeO₃₊₁ and TeO₃ polyhedra increase. Structures of TeO₂-WO₃ glasses are basically retained structural conformation found in crystalline paratellurite in spite of that there existed distinctive polyhedra of WO₃ component.

REFERENCES

(2) A.Yakhind, J. Am. Ceram. Soc., 49, 670 (1966).

⁽¹⁾ M. Imaoka and T. Yamazaki, J. Ceram. Soc. Japan, 76, 160 (1968).

A. NUKUI, Y. SHIMIZUGAWA, S. SUEHARA, S. INOUE and T. MAESETO

- (3) R. Braunstein, Solid State Commun., 28, 843 (1978).
- (4) N. Mochida et al., Yogyo-Kyo-kai-Shi, 86, 316 (1978).
- (5) V. Dimitrov et al., Monatshefte fur Chemie, 115, 987 (1984).
- (6) I.B. Gubov et al., Phys. Chem. Glasses (Russia), 15, 749 (1989).
- (7) V. Kozhukharov et al., J. Mat. Sci., 21, 1707 (1986).
- (8) A. Nukui et al., Proc. XIVth Inter. Nat. Cong. Glass, 3, 271 (1992).
- (9) R. Uno et al., Australian J. Phys. 41, 133 (1988).
- (10) T. Sekiya, Doctor Thesis: Tokyo Inst. Tech. (1994).
- (11) M.F. Daniel et al., J. Solid State Chem., 67, 235 (1987).
- (12) G.W. Brady, J. Chem. Phys., 27, 300 (1957).