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31P can be activated to /3-emitter 32P with 14.3 d half-life by neutron bombardment. A chemically 
          durable glass containing a large amount of phosphorus is believed to be useful for in situ irradiation of cancers. 

         In the present study, a chemically durable silica glass was ion-implanted with phosphorus at a dose of 2 X 1017 
cm-2 under 20 keV, and then heat-treated at various temperatures up to 900°C. They were soaked in 

          distilled water at 95°C for 7 d. Phosphorus and silicon leached out from the glasses were analyzed by the 
          inductively coupled plasma atomic emission spectroscopy. The phosphorus ions implanted in the glass were 

          completely dissolved into the water from the as-implanted glass. The dissolution was, however, much 
          suppressed by the heat-treatment at 900°C. The Rutherford backscattering spectrometry showed that an 

          appreciable amount of phosphorus remained in the glass heat-treated at 900°C even after the soak in the hot 
         water. FT-IR spectra showed that the surface structure of the silica glass was damaged by the ion 
         implantation, but healed by the heat-treatment. These results indicate that this type of glass is promising 

          material for the radiotherapy. 
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                                   1. INTRODUCTION 

            Radiotherapy is one of the effective treatment of cancers. External irradiations, however, 

         often cause damages to healthy tissues. Recently, Ehrhardt et al. showed that glass microsphere 

        20 to 30,urn in diameter of the composition Y203 40, Al203 20, Si02 40 wt% was useful for intra-

         arterial radiotherapy of cancers.'-"3) Subjected to neutron bombardment, 89Y in the glass is 

        activated to /3-emitter 90Y with a half-life of 64.1 h. The glass is insoluble in body fluids and 

         non-toxic. Injected to the liver through the hepatic artery, the glass microsphere are entrapped 

        in the capillary bed of liver tumors and give large local radiation dose of the short-ranged, highly 

         ionizing /3-ray to the tumors, with little radiation to neighboring organs. For this treatment, /3-

         rays are the best suitable because of its much shorter radiation range than 7-rays and also 

         because of no possibility to activate any nuclides unlike a-rays. The glass microspheres are 

         successfully subjected to clinical trials for liver cancer treatment 4-1°) 

            However, the short half-life of 64.1 h for 90Y may result in the substantial decay before the 
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treatment. 31P with 100% natural abundance can be activated to  fl-ray only emitting 32P with 

14.3 d half-life by neutron bombardment. The biological effectiveness of 32P is about four times 

as large as that of 90Y. But highly phosphorus-containing glasses prepared by the conventional 

melting method are usually less chemically durable. To avoid the undesired and dangerous 

radiation of normal tissues, it is imperative that the 32P stay firmly bound to the glass and that 

none of 32P dissolved into the blood. 

   A silica glass has high chemical durability and neither silicon nor oxygen is activated by 

neutron bombardment. It is expected that phosphorus-containing glasses with high chemical 

durability could be obtained by phosphorus ion implantation into a silica glass. In the present 
study, in order to examine potential uses for intra-arterial radiotherapy, a silica glass is ion-

implanted with phosphorus followed by heat-treatment at various temperatures. Their 

chemical durability, the phosphorus distributions and the changes in the surface structure were 

investigated. 

                         2. EXPERIMENTAL 

2.1 Preparation 

   Rectangular specimens 10 X 10 X 1 mm3 in size were cut from highly pure silica glass sheets 

(metallic impurities<0.5 ppm, OH< 100 ppm) made by the vapor-phase axial deposition 

(Sumiquartz SK-1300, Sumitomo Metal Industries, Ltd., Tokyo, Japan). Phosphorus ions were 
implanted on both faces of the specimens at a dose of 2 X 1017 cm 2 under 20 keV. The samples 

were then heated up to various temperatures from 400 to 900°C at a rate of 5 deg•cm-1 and held 

at the respective temperature for 1 h. 

2.2 Soaking test 

   The samples thus treated were soaked in 20 ml of distilled water at 95°C for 3 to 7 d in a 

polypropylene bottle, shaken at 3 cm stroke length and 120 min-1 frequency. The amounts of 

phosphorus and silicon leached out from the samples were measured by an inductively coupled 

plasma atomic emission spectrometer (SPS1500, Seiko Instruments Inc., Tokyo, Japan). 

2.3 Analysis 

   The distributions of phosphorus in the samples were analyzed by the Rutherford 

Backscattering spectrometry (RBS) with the ion beam analyzer at Radiation Laboratory of 

Nuclear Engineering using 2 MeV 4He+ ions with 170° incident angle. Surface structures of the 

samples were analyzed by Fourier transform infrared (FT-IR) spectrometer (SR-5M, Japan 

Spectroscopic Co. Ltd., Tokyo, Japan) with the reflection angle of 30°. 

                     3. RESULTS AND DISCUSSION 

   Figure 1 shows the changes in the concentrations of silicon and phosphorus leached out into 

the water from the as-implanted sample as a function of the soaking time in comparison with the 

result for the not-implanted silica glass. The silicon concentration for the as-implanted sample 

was about 5 times as large as that of the not-implanted sample. The phosphorus concentration 
for the as-implanted sample also appreciably increased with soaking time. It seems that the 

surface region of the as-implanted sample was damaged by the ion implantation and became 

more susceptible to leaching. 
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         Fig. 1. Change in the concentration of leached silicon and phosphorus as a 
               function of the soaking time. 0 : silicon and • : phosphorus from the 

                as-implanted sample and 0 : silicon from the not-implanted sample. 
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         Fig. 2. Change in the concentration of leached (A) silicon and (B) phosphorus 

               from 0• : the as-implanted sample and the sample implanted and 
               heat-treated ^n : at 400°C, AA : at 600°C, 00 : at 700°C, V'V : at 

               800°C, and ^^ : at 900°C. 
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   Figure 2 shows the effect of the heat-treatment on the concentrations of silicon and 

phosphorus leached out into the water. Both the silicon and the phosphorus concentrations 
decreased after the heat-treatment at above 800°C. Especially by the heat-treatment at 900°C, 

both were reduced to about one-fifth for silicon and about a quarter for phosphorus to that of the 
as-implanted sample, respectively. This small amount of the leached phosphorus should assure 

the safe use for the intra-arterial radiotherapy. 

   Figure 3 shows RBS spectra of the as-implanted sample, the sample implanted and soaked in 

water for 7 d, and the sample implanted, heat-treated at 900°C and soaked in water for 7 d. The 

peak of phosphorus was observed in the surface region for the as-implanted sample as shown in 
figure 3(A), but not observed for the sample implanted and soaked for 7 d as shown in figure 3(B). 
This indicates that implanted phosphorus in the surface region was released completely into 

water by the soaking, being consistent with the results of the soaking test. In figure 3(C), 
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     Fig. 3. Rutherford backscattering spectra of (A) the as.implanted sample, (B) the sample 
            implanted and soaked in water for 7 d, and (C) the sample implanted, heat-treated at 

            900°C and soaked in water for 7 d. 
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     for the sample implanted, heat-treated at 900°C and soaked in water for 7 d, the peak of 

     phosphorus is still observed. It was somewhat broader and weaker than that of the as-
     implanted sample, probably because part of the phosphorus diffused and/or evaporated during 

     the heat-treatment. It is emphasized, however, that this sample still holds the implanted 

     phosphorus even after the soaking. 
        Figure 4 shows the  FT-IR spectra of the as-implanted sample and the sample implanted and 

     soaked in water for 7 d in comparison with that of the not-implanted original sample. The as-

     implanted sample showed slightly larger reflectance in a region around 1,000 cm—' assigned to 

     non-bridging oxygen bonded to silicon atom.") This indicates that silica network in the surface 

     layer was broken by the ion implantation. This structural damage of the surface layer due to the 

     ion-implantation might be responsible for the decrease in the chemical durability of the silica 

     glass. For the sample implanted and soaked for 7 d, this reflectance disappeared and the profile 
     of the spectrum became nearly the same as that of the not-implanted sample. This suggests that 
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                 Fig. 4. FT-IR reflection spectra of the as-implanted sample (a--') and the 

                       sample implanted and soaked in water for 7 d (b—p), compared with 
                        that of the not-implanted sample (c^). 
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                Fig. 5. Change in intensities of FT-IR reflections at 1,000 cm ' as a function of 

                           the heat-treatment temperature. 
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         Fig. 6. FT-IR reflection spectra of the sample implanted and heat-treated at 900°C 

               for 1 h (d—) compared with that of the not-implanted sample (c–.). 

the surface layer structurally damaged by the ion implantation was dissolved by the soaking. 

Figure 5 shows the change in the intensities of the FT-IR reflection spectra at 1,000 cm-1 with 

the heat-treatment temperature. The reflectance decreased towards the value for the not-

implanted sample with increasing temperature of the heat-treatment. The reflectance increase 

around 1,000 cm-1 completely disappeared for the sample heat-treated at 900°C. As shown in 
figure 6, the FT-IR profile of the sample implanted and heat-treated at 900°C was nearly the 

same as that of the not-implanted sample. It is considered that the structural damage caused by 

the ion-implantation at the surface of the glass was healed by the heat-treatment at 900°C and 

results in the suppression of phosphorus leaching. These results promise the actual use of the 

phosphorus implanted silica glass for the intra-arterial radiotherapy. 

                           4. CONCLUSION 

   A silica glass was ion-implanted with phosphorus and subsequently heat-treated at various 

temperatures up to 900°C. The surface layer of the silica glass was damaged by the ion beam 

bombardment and became soluble in water. After the heat-treatment at 900°C, the surface 

damage was healed nearly to that before ion implantation and a phosphorus rich layer was 

retained just beneath even after the soaking in hot water for 7 d. This process may be 

successfully applied to provide phosphorus containing and chemically durable microspheres for 

the intra-arterial radiotherapy. 
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