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   The variation of amorphous regions of the sputtered films in the B2O3-Na2O system with sputtering 
power, sputtering time and substrate temperature has been investigated. The amorphous regions are 
B203=0~78.8 mol% ranges in the B2O3-Na2O system under a sputtering power 100 W, sputtering time 20 h 
and substrate temperature 90°C. Decreasing sputtering power from 100 W to 50 W, decreasing sputtering 
time from 20 h to 5 h expanded amorphous regions and increasing substrate temperature from 90°C to 250°C 
reduced the amorphous regions. These results were compared with the variation of the critical cooling rate 
for glass formation from the melt of the system. 
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                           1. INTRODUCTION 

   It has been well recognized that amorphous substances are produced in various methods 

including sol-gel method, sputtering technique and CVD method other than the melt-quenching 
method. Boron trioxide (CVD)') and silicon dioxide (sol-gel, sputtering and CVD) are the 
examples for such amorphous materials. Alumina is an example that can be transformed into 
an amorphous state by sputtering2l and sol-gel methods,3l but amorphous alumina has never 
been obtained by melt-quenching method despite the great effort utilizing the rapid quenching 
technique. MgO and CaO are the examples that can not be transformed into an amorphous 
state even by sputtering technique4l In the present study amorphous regions and the thermal 
stability of the sputtered films are compared with those of the melt-quenched glasses in the B203-
Na20 system. 

                           2. EXPERIMENTAL 

2.1 Sputtering condition 
   Sputtering apparatus was ULVAC SH-100B model by NIHON SHINNKU Co.Ltd. 

Chamber pressure was maintained at 0.6-0.7 Pa level with a sputtering gas of Ar and 02 
mixture of Ar/02=3/1. The sputtering power was varied, 50 W or 100 W, in order to see the 
effect of power on the variation in amorphous regions. The sputtering condition is shown in 
Table 1. Substrates were selected from commercial glass of soda-lime-silica composition or 
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                             Table 1. Sputtering condition. 

     Sputtering power 50  W, 100 W 
    Sputtering gasAr/02=3/1 

     Sputtering pressure 0.6-0.7 Pa 
    Sputtering time1-20 h 

    TargetsB203-Na20 glass or crystal 
                            Si02 glass for protective sputtering 

     SubstratesAl203 for chemical analysis 
                            Soda-lime-silica glass for XRD and film thickness measurement 

     Substrate temperatures 90, 250°C 

alumina according to the experimental objectives. Alumina substrate was used for the 

composition analysis of the B203-Na20 films. Commercial soda-lime-silica glass substrate was 

utilized for the determination of amorphous regions and measurements of film thickness in order 

to evaluate the deposition rate. Substrate temperature was 90°C or 250°C. The sputtering 

power was 50 W or 100 W and sputtering time ranged from 5 to 20 h. 

2.2 Preparation of targets 
   Targets in the form of disk 4 mm thick and 60 mm in diameter were prepared by quenching 

the B203-Na20 melts of given compositions fused at 1,000°C for lh. Silica glass plate or silica 

glass powder was used as target material for protective sputtering (see 2.3) over the sputtered 
films of hygroscopic, B203 rich or Na20 rich compositions. 

2.3 Protective sputtering 

   Hydration takes place immediately in the ambient atmosphere at the film surface of pure 

B203 or Na20 rich (more than 50 mol% Na20) compositions. To protect the sputtered films 

from hydration, Si02 film of 1 ,um was deposited over the B203-Na20 films under the condition of 

sputtering power 50 W and sputtering time 25 h. It was proved that X-ray diffraction can detect 

crystalline phases in the film sample below the protective Si02 film. A possible disturbing effect 

such as diffusion of silica into the underlying film or reaction of silica with the film, was examined 

by EMA line probing along the cross section of the protectively sputtered sample. No hazardous 

result was perceived under the present condition. 

2.4 Compositional analysis of sputtered films by WDX analysis 

   Chemical composition of the sputtered films was analyzed by use of WDX (X-650 model by 

HITACHI Co. Ltd.) using melt-quenched B203-Na20 glasses as the reference. The 
concentration of B203 and Na20 components were determined by volumetric and flame 

photometric method, respectively. 

2.5 Amorphous regions and crystallization behavior of the sputtered films 

    The determination of amorphous regions was made by the X-ray diffraction method. 

                     3. RESULTS AND DISCUSSION 

3.1 Chemical analysis of sputtered films 

   Figure 1 indicates the chemical composition (Na20 content) by WDX analysis of the B203-

Na20 films under different power 50 W or 100 W and sputtering time 1 —5 h. The Na20 
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             Fig. 1. Comparison of the film compositions (Na20 content for example) with 

                      the target compositions in the B203-Na20 system under the sputtering 
                 power 50 W (0) and 100 W (•). 

   content in sputtered films tend to be rich compared with that in the target for the Na20=0-50 
mol% range. Maximum compositional deviation between the targets and the sputtered films 

   amounts to 9% with sputtering power 100 W and to 5% with sputtering power 50 W. The fact 
   that no deviation is observed at Na20=50 mol% suggests that particle with composition of the 
   ratio B203 : Na20=1:1 is preferentially formed by sputtering process. According to the 

reports5-7) MBO2 composition (M= Li, Na, K, Rb) exhibits the highest vapor pressure among 
   the alkali borate melts. 

   3.2 Deposition rate in the B203-Na20 system 
      The average deposition rate was calculated from the film thickness and the sputtering time. 

   The deposition rate for B203-Na20 system is shown in Fig. 2. Figure 2 indicates a maximum 
   deposition rate observed at Na20=50 mol% composition. The maximum of deposition rate at 

Na20=50 mol% can be ascribed to the high vapor pressure of the MBO2 species as mentioned 
above.5-7 As the sputtering power is doubled, from 50 W to 100 W, deposition rate increases 

   nearly 3 times as much for all compositions. 

   3.3 Amorphous regions determined by X-ray diffraction 

   (i) Effect of protective Si02 sputtering against hydration 
      X-ray diffraction patterns of the as-deposited film (without protective Si02 sputtering) in the 

   B203-Na20 system on the commercial glass substrate are illustrated in Fig. 3. Precipitated 

   phases are hydrated H3B03 crystal at Na20=0 mol% composition, B203•Na20•H20 crystal at 
Na20 =46.2— 78.8 mol% compositions and sodium carbonate NaCO3 at Na20 >78.8 mol% 

   composition. 
       It was speculated that the hydrated crystalline phases H3B03 and B203•Na20•H20 had 
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                Fig. 2. Deposition rate of the B203-Na20 system under sputtering power 50 W 
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    come from the hydration of the sputtered films during the XRD experiments in the humid 
    circumstance. The hydration of B203 film was confirmed by measuring the growth of hydrated 

    H3B03 crystal by X-ray diffraction as a function of exposing time. 
       Fig. 4 indicates the increase of the X-ray diffraction intensity due to the formation of H3B03 

    crystals when as-deposited B203 film is exposed to humid air. Hydration of B203 film becomes 
    apparent after 6 min and the growth of the hydrated H3B03 layer with time is clearly 

    demonstrated. It is also shown that by a protective Si02 sputtering (film thickness 1.LLm) over 
    as-deposited B203 film under the sputtering power 100 W and substrate temperature 90°C, no 

    hydration occurs in the humid atmosphere even after 20 min. 
       Figure 5 shows the X-ray diffraction of the protectively sputtered B203-Na20 films. As 

    compared with the non-protective sputtering (Fig. 3), hydrated compounds (H3B03 and 
B2O3•Na2O•H2O) did not precipitate. However, NaCO3 was still observed in the Na20= 

90-100 mol% compositions. With protective Si02 sputtering amorphous region was in the 
    range of Na20 =0-78.8 mol%. Ota and Soga8) observed that substantial amount of 
    undecomposed NaCO3 is retained in the Na20 rich borate melts even after a long heating at 
    1,000°C or higher temperatures. Crystalline NaCO3 presumably came from undecomposed 

    sodium carbonate retained in the target. The effect of protective Si02 sputtering against 
    hydration on the change of amorphous region is shown in Fig. 6. 

    (ii) Effect of substrate temperature and sputtering power 
       Ota et a1.3) observed in the Si02-MgO system that the amorphous region in the sputtered 

    films decreases with increasing sputtering power and increasing sputtering time and increasing 
    substrate temperature. So it was anticipated that the amorphous region should decrease in the 

    B203-Na20 system as the substrate temperature increases. 
       Figure 7 indicates the X-ray diffraction patterns of the protectively sputtered films in the 
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                  Fig. 3. X-ray diffraction patterns of as-deosited films 1 pm thick in the B203-
                           Na20 system sputtered over the soda-lime-silica gass substrate 

                        (without protective Si02 sputtering) under the sputtering power 100 W 
                             and substrate temperature 90°C. 
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                     Fig. 5. X-ray diffraction patterns of protectively sputtered films in the B203-

                              Na20 system on the soda-lime-silica glass substrate under the 
                            sputtering power 100 W and substrate temperature 90°C. 

(100)



         Amorphous-forming Regions of RF-Sputtered Films in the B203-Na20 System 

                                                                                                                  ^ 

 Power  :  100WO : Amorphous 

                      Substrate Temp. : 90°C• : Crystal 
                     Film Thickness : 1 u m 

        without SiO2  

 sputtering• O O O • •• • • • • 

     with Si02 O O O O O CO O O • • 
           sputtering 

       0 20 40 60 80 100 
                           Na20 / mol% 

          Fig. 6. Comparison of amorphous region of sputtered films in the B203-Na20 
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          Fig. 7. X-ray diffraction patterns of protectively sputtered films in the B203-
                  Na20 system on the soda-lime-silica glass substrate under the 

                  sputtering power 100 W and substrate temperature 250°C. 

B203-Na20 system with substrate temperature 250°C, and sputtering power 100W. Crystalline 
B203.Na20 precipitated in the Na20=51.4-54 mol% composition range and NaCO3 

precipitated in the Na2O=90-~ 100 mol% compositions. Under this condition amorphous 
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regions are in fact  Na20=0-46.2 mol% and 70.2---78.8 mol% composition ranges. 

    Figure 8a shows the effect of substrate temperature. The amorphous regions are compared 

in the protectively sputtered B203-Na20 films prepared under different substrate temperature 90 

or 250°C and sputtering power 100 W. Figure 8b shows the effect of sputtering power. The 

amorphous region of the protectively sputtered B203-Na20 films increases with decreasing 

sputtering power from 100 W to 50 W under substrate temperature 250°C. The crystal region 
observed at the Na20 = 51.4— 54 mol% composition range under the sputtering power 100W 

disappeared and the amorphous region was extended to Na20 = 0— 78.8 mol% range, which is 

the same amorphous limit observed under substrate temperature 90°C and sputtering power 100 

W (Fig. 8a). 
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           Fig. 8. Comparisons of amorphous regions of the protectively sputtered B203-
                 Na20 films under the sputtering power 100 W, sputtering time 20 h and 

                  substrate temperature 90°C and 250°C (a), and under sputtering power 
                 100 W and 50 W, sputtering time 20 h and substrate temperature 250°C 

(b)- 
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3.4 Comparison of amorphous regions by the sputtering and the melt-quenched method 

   Sputtering method may be regarded as a modified melt-quenching method wherein 

sputtered molecules (ions) solidify on the substrate via quasi-liquid phase with estimated 

quenching rate  >1012 °C/s.9) So the amorphous regions in the sputtering and melt-quenching 
methods may show a similarity. Figure 9 represents the glass-forming regions obtained under 

various cooling rates in the B203-Na20 system.1°'11) It is clear from Fig. 8 and Fig. 9 that 
apparent similarity is seen between the amorphous-forming region by sputtering and by melt-

quenching methods. Increasing substrate temperature may decrease the quenching rate of the 
sputtered molecules on the substrate. Increasing sputtering power will increase the thermal 

energy of the sputtered molecules, thus reduce the quenching rate of the sputtered molecules. 

Increasing sputtering time gives a similar effect as increasing power or increasing substrate 

temperature, but the true reason is not certain at the moment. One explanation is that the 
substrate temperature shifts toward higher temperature as the film grows thick and another 

explanation is a possible micro-structural change of the sputtered film as the film grows thick. 

After all, increasing substrate temperature, increasing sputtering power or increasing sputtering 

time affect the amorphous regions of sputtered films in a similar way as the decreasing cooling 

rate does for the glass-forming regions by the melt-quenched method. 
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           Fig. 9. Glass-forming regions by the melt-quenching method for various 

                  cooling rates in the B203-Na20 system. The lines indicate the critical 
                  cooling rate Q. 

                           4. CONCLUSION 

   The amorphous region in the sputtered films of the B203-Na20 system was determined 

under various sputtering conditions. The compositional range of the amorphous regions was 

found considerably larger than that of the melt-quenched glasses of the same system. This result 
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is reasonable if sputtering method is regarded as a modified melt-quenching technique of ultra-
high quenching rate. The amorphous regions were reduced with increasing sputtering power, 

substrate temperature and sputtering time. 
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