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   A Monte Carlo code for calculating the electron-solid interaction processes has been developed. The 
individual scattering processes are taken into account in the calculation. We demonstrated that the 
backscattered electron spectrum for Al near the elastic peak calculated with the present code is in good 
agreement with the experimental result. 
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                          1. INTRODUCTION 

   In the last several years the study of the inelastic collision processes in the frame of the 

electron-solid interactions is in the center of the interest. A quantitative description of the 

spectra of electrons in keV region after scattering processes from solid is interesting in different 

fields of electron spectroscopy. Because of a large number of scattering events in solids and 

variety of scattering processes, analytical treatments are in general difficult and the Monte Carlo 

(MC) method, which simulates the electron scattering process with random numbers, is often 
used. 

   A variety of MC simulation methods for electron scattering have been developed and 

described in different papers.1-8l The computer codes based on these models have been 

successfully used for electron transmission and backscattering in solids. The conventional 

method to estimate electron energy-loss spectra is based on the continuous-slowing-down 

approximation,9l where the average rate of energy loss is estimated by the Bethe stopping power 

theory. However this approximation is inadequate to reproduce the fine structure in the energy 

spectrum of backscattered electrons near the elastic peak, because electrons occasionally loose a 

large fraction of their energy in a single collision and are deflected with a large scattering angle. 

In such a case, the most realistic model is the direct simulation method to trace the individual 

scattering event. 

   In the present work, an MC code has been developed and tested to study electron-solid 

interaction processes. The program is based on the algorthm similar to that of Shimizu et al.') 

The trajectories of the primary electron and of the created secondary electrons are traced in the 

solid. Our main aim is to define the complete inelastic processes which can yield the magnitudes 
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and the shapes of the energy-loss peaks close to the elastic peak in the backscattered electron 

spectrum. Our special interest lies in the energy region below 100 eV from the elastic peak. In 

this region the calculation is very sensitive to the computational model used and therefore it is a 

good test for a new computer code. The test calculaation has been made for the energy spectrum 
of electrons backscattered from Al metal at 5-keV incident energy  and compared with the 
experimental spectrum. 

                      2. MONTE CARLO METHOD 

   The present Monte Carlo calculation is based on the screened Rutherford formula for elastic 

scattering, the excitation by Gryzinski for core electrons,10) the Streitwolf excitation function for 
conduction electrons," and the mean free path formula of Quinn for the bulk and surface 

plasmon excitation.12) Figure 1 shows schematically the present model for MC simulation of 
electron penetration in solids. 
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          Fig. 1. Schematic drawing to illustrate the present model for Monte Carlo 
                  simulation of electron penetration in solids. 

2.1 Elastic Scattering 
   The screened Rutherford scattering formula is written by13) 

do _Z2e4 
    dO4E2(1—cos 0+2/3,N)2 i(1) 

where Z, O, e and E are the atomic number, the scattering angle, the charge of the electron, and 
the kinetic energy of the electron, respectively. The atomic screening parameter derived by 
Wenze1,13) NN, is defined as 

           /~ 3.42213  iN=--------
E(2) 
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   The total elastic cross section as a function of electron energy, 6e, is obtained by integrating 

Eq. (1) over all possible scattering angles and can be written as 
n-Z2e4 

6e 4E2
/3(fi+1) •(3) 

The scattering angle O of an individual elastic collision is determined by the use of a uniform 

random number R1 E (0, 1) : 

           fd6e(E, 0) dO      R1=2~rfa d,2sin 06.(4) 

                                                          e 

   The azimuthal angle after the elastic collision is selected by another random number R2 E 

(0, 1): 

95=22rR2.(5) 

The mean free path for elastic scattering )le is given by 

A  
                                             (6)          •l`= N

p6e' 
where A is the atomic weight of the target material, p is the density, and Na is the Avogadro's 

number. 

2.2 Inelastic Scattering 

   The inelastic processes considered in this model are ionization of core and conduction 

electrons, and plasmon excitation. The excitation of core electrons is described using the 

differential cross section developed by Gryzinski :10) 

doe(AE, E) 4 1 EB E 13/2LIEEB/(EB+CE) 
d(LE)=NBzce(LE)3 E(E+EB)(1—E1 
X----LIEEB(1—              EB)+31n (2.7+'\/E EB '(7) 

where LIE is the energy transferred from the primary electron to the bound electron, EB is the 

binding energy of the core electron, and NB is the occupation number of electrons in the ic shell. 

The total ionization cross section 6c(E) is obtained by integrating Eq. (7) over all possible values 

of LIE :1 
          1 EB E—EB2 EB       6e=ne4NBEB2--------E(E-FEB)lsi211+3(l2E) 

1E—AE     Xln(2.7+ EB )~(8) 
   The energy-loss of the primary electron resulting from an inelastic scattering with the ic 

shells is determined using random number R3 E (0, 1) and by finding a value of LIE which satisfies 

the relation 

           f4E doe(LE',E)dLE'    R3=J 
EB dLE6e(E).(9) 

   The energy of a conduction electron excited by the primary electron, Es, is assumed to have a 

distribution approximated by the Streitwolf's excitation function,11) which is given by 
e4kf  (

10)         S(ES) =3 71E(Es—EF)2 
where E is the energy of the primary electron, EF is the Fermi energy, and kf is the wave vector 
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corresponding to the Fermi energy. 

    In Eq.  (10),  S(Es) is the number of secondary electrons excited per unit energy into an 

energy interval between Es and Es+dE5 per unit path length of the primary electron. In a 

practice this energy distribution is obtained by numerically by using random number R4 E (0, 1). 
The secondary electron energy, Es, is given by the following equation : 

    fEs  S(Es) dEs'()         R4=J EdEso (Es)•11 
where Ec=EF+ 0, 0 is the work function, and 6c(Es) can be written by 

               e4kfE—EF— 
  6c(Es)=~(12)                3 1.E0(E—EF) 

    We have used this function because it is a simple and reasonably accurate expression 
consistent with the level of approximation used to represent the other inelastic events. The same 
function has been successfully used by -other workers.' 

    In the case of core and conduction electron excitation, the angular distribution of primary 
and created secondary electrons after the inelastic collision is estimated by the classical binary 
collision model./ °) The energy of the primary electron after the collision is written as 

E'=E cos2 0,(13) 

where 0 is the scattering angle. 
   The energy of the created secondary electron is given by 

E"=Esin2 0,(14) 

where E'=E or Es depending on the observed inelastic process. 
    The expression of the mean free path for the excitation of bulk plasmons of energy Epl is 

derived by Quinn :12) 
             2a0E (EF+Ep1)1/2_E,F112 Ap1=EplIn [ E112—(E—Epl)112].(15) 

The differential cross section for the scattering angle of an electron which excites a plasmon is 

given by 
d6pl(E,O)    1 OE  

     d,(2 2nn0a0 02+OE2,(16) 

where no is the free electron density and 0E=EpI/2(E—EF). The energy loss of an primary 

electron after the bulk plasmon excitation is equal to Epl. 

    From Eq. (16) we obtain the following expression for an polar scattering angle as a function 

of R5 E (0, 1) random number : 
                     2+ OE      O= OE yexp(R5 In OE) —1 .(17) 

The azimuthal angle after all inelastic collisions is determined by Eq. (5). The same formalism 
is used in the case of surface plasmon excitation with energy Epl/1/2- as in a bulk plasmon 
excitation. The mean free path for the inelastic scattering process, .2i,,,, is related to the partial 

mean free path for the different inelastic scattering processes by 
     1 1 1 1  

       7                                                 (8)     Lin—'IC+U t pl >1V 

where A ,A,,, and A 1 are the mean free paths for core electron, valence electron and plasmon 
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excitation, respectively. 

2.3 Computation Procedures 

   Figure 2 shows the flow diagram of the MC program which simulates the primary electron 
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   Fig. 2. Flow diagram of the Monte Carlo program. The symbols N and L denote the number of 
          traced electrons and the number of steps of the tracing electron, respectively, N and L,,, 

          are their maximum values, N is the number of secondary electrons, z is the depth of the 
          tracing electron, E is the kinetic energy of the electron, and E is the cut off energy. 
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and secondary electron trajectories in solids. The total average mean free path between 

scattering events,  Ala, is defined by 

     1 1 1 
  tt+(19)•             Atot /LeA-in 

   The path length s between any two scattering events has the Poisson distribution 

P(s)=Atot 1e s ao,(20) 

and can be obtained with a uniform random number R7 E (0, 1) via the relation 

s=—Atoiln (R7).(21) 

    The type of scattering for each scattering event is selected by using a random number R8 

according to the relation 
.1 11 1 

   Atot l------<R8 Atot(22) 
i=1 i-1a=1 

where j denotes the type of scattering (i.e. elastic, conduction band, core electron or plasmon). 

   The scattering angles, 19 and co, are referenced to the local coordinate system of the electron 

just before the scattering event (see Fig. 1) and must be converted into the coordinate system of 
the laboratory according to the following relations :13) 

cos On= cos Bn-1 cos 19+sin 0n-1 sin 19 cos Co,(23) 

                          cos t9— cos 0,, cos On_1  
  cos (1)=(24) 

                            sin On_ 1 sin en 

                            ,/               sin 6/sinq),
sin (On—On-1)=

sin Bn,(25) 

where 0n-1 and ybn— I denote the direction of motion of an electron before scattering and 0, 95n are 

its direction just after scattering through the scattering angle of 19 and co being the azimuthal 

scattering angle. The electron goes forward one step with a defined orientation and its position 

at the next scattering point is given by the equation : 

xn+l i Xn^ sin On cos On 

yn+1 = yn +sn sin On sin On • (26) 
zn+ 1 Zn  COS On 

   We have made an assumption in the simulation that an electron transverses the first stop, so, 

without scattering at the sample vacuum interface, as shown in Fig. 1. The terminal point of the 

first flight is the first scattering point. The flow diagram of the code is given in Fig. 2. First, a 

primary electron trajectory is simulated and all the parameters (energy, position, and scattering 
angle) of produced secondary electrons by the primary electron in core and conduction band 

excitation events are stored. After completion of tracing the primary electron, all the stored data 

on the secondary electrons are recalled and their trajectories are simulated in the same way as for 
the primary electron. This cascade process is continued until all electrons either escape from the 

solid by backscattering or come to rest within the sample. It should be noted that we introduce 

one more channel, the so-called anomaly trajectory, for the end of history. This situation 

corresponds to the case when the electron neither escapes nor stops and the number of steps to 

trace electrons exceeds a certain maximum value. 
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           Fig. 3. Scheme showing the energy-loss correction for the emerging electron. 

   When the electron emerges from the solid surface, the energy-loss correction is made if the 

final scattering event is a core or conduction band excitation process (see Fig. 3). The energy-

loss of the escaping electron by the last collision is defined as 

  AEt.s`=dEL(27) 
where l is the distance between the final point of the calculated trajectory and the last scattering 

position in the specimen, 11 is the distance between the solid surface and the last scattering 

position, and dE is the calculated energy-loss of the electron during the last inelastic process. 

                     3. RESULTS AND DISCUSSION 

   Based on the computational method described above, a computer code to trace the electron 

penetration in solids has been written. All the numerical computations in the present work have 
been performed on the CRAY Y-MP2E supercomputer in the Institute for Chemical Research, 

Kyoto University. 

   In order to test the present code, the energy distribution of electrons backscattered from the 

amorphous Al was calculated and compared with the experimental spectrum. The 

backscattered electron spectrum near the elastic peak was measured with an electrostatic electron 

spectrometer at the Institute of Nuclear Research of the Hungarian Academy of Sciences 

(ATOMKI).15) The energy of the primary electron beam was 5 keV and the incident angle of 
the beam was 36°. 

   In the present calculation, the binding energies of K and L shells in Al were taken to be 1560 

and 84.5 eV, respectively. The occupation number of core electrons is assumed to be 2 for K 
shell and 8 for L shell. In order to obtain the fine structures near the elastic peak of the 

backscattered electrons, a large number of histories of the incident electrons are necessary. We 

simulated 106 primary electron trajectories in the present work. 
   Figure 4 shows the comparison between the calculated and measured electron spectra. The 

calculated distribution of the backscattered electrons was convoluted with the finite relative 

energy resolution of the electron spectrometer, (dE/E=0.035%). It is clar from the figure that 
the calculated spectrum agrees well with the measured one both in magnitude and in shape of the 

electron peaks. In the figure, the plasmon loss peaks appear on the low energy side of the elastic 

peak located at 5000 eV. The slight discrepancy between the calculated and measured positions 
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            Fig. 4. Electron spectra backscattered from the amorphous aluminum sample 
                near the elastic peak: ------ measured by Nemethy et al. (Ref. 15) ; (~ 

                  calculated (The spectrum was convoluted for finite relative energy 
                 resolution, E=5keV and dE/E=0.035%.) 

of the plasmon loss peaks can be ascribed to the difference between the calculated and measured 

plasmon energies. 
    In conclusion, we have developed the MC code for electron transport in solids, based on 

seveal scattering models. To demonstrate the validity of the approximations used in the present 

code, the calculation of the energy spectrum of backscattered electrons from Al was performed 

and the obtained result was compared with the experimental data. It is confirmed that the 

calculated energy distribution can well reproduce the fine structures in the measured spectrum 

nesar the elastic peak. This fact indicates that the present MC code is useful to estimate electron 

transport in solids. 
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