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   Electrostatic potentials in ionic crystals have been calculated with direct summation of the Coulomb 
potential of point charges by the Coker's method. The self-potentials for the lattice ions and the Madelung 
constants are obtained in high precision and accuracy for several compounds : NaC1, CsCl, CaF2, ZnS, Cu20, 
2-4 and 3-3 perovskites. The self-potentials and the Madelung constants for these compounds are consistent 
with each other and the electrostatic potentials at lattice interstitial points are checked. 
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                         I. INTRODUCTION 

   To understand the chemical bond and the electronic structure of ionic crystals, estimation of 
electrostatic potentials in the periodic arrangement of the ions is an inevitable task. There are 
two kinds of methods which carry out the estimation. Direct summation of electrostatic 
potentials due to the lattice ions is a straightforward method. Several methods have been 
proposed by Evjen,I) Frank2) and the others. However, most of the methods are applicable for 
only special cases. The direct sums are conditionally convergent. For the lattice self-potential 
for CsCl, for example, the Evjen's method approached to double limits erroneously, as mentioned 
in the original paper.l l Moreover, most of the direct-summation methods provide the potentials 
only at the lattice sites, not at the interstitial sites of the lattice, because these methods depend on 
symmetries about the sites of consideration. Generally applied methods3'4) are on the basis of 
the indirect method of Ewald.5) The ionic charges are distributed in the Gaussian form and the 
Poisson's equation is solved for the generated potential. Although some parameters are 
optimized for acceleration of convergence, the indirect methods require great effort and much 
time of computation. 

   As the Ewald's method is successful, there must exist an equivalent direct-summation 
method. A point charge produces the equal potential to that of corresponding ionic charge 
distribution at positions outside the ion. Hajj has proposed a direct-summation method along 
with an acceleration procedure of convergence which is applicable to the interstitial sites because 
of an appropriate symmetric property.6> Averaging the potentials which are calculated for some 
different unit cells are necessary to cancel out the potential due to the surface of the finite 

*1:4-I ,I6JLII : Division of States and Structures, Institute for Chemical Research, Kyoto 
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      crystallites. The Hajj's method is universal but the averaging procedure depends on the crystal 

      structure. Coker has reported a simple and universal method for the electrostatic potentials in 

      the crystals with direct summation.7)He has discussed that the residual potential due to the 

      surface structure of the finite crystallite causes the trouble in the previous direct-summation 

      methods. He uses asymmetric crystallites where the surface potential at one end cancels out 

      that at the opposite end. The remaining field due to the dipoles lying around the asymmetric 

      point is estimated separately and removed from the lattice  sums. Coker has analyzed the 
      convergence polynomials which express the difference between the sums for the finite crystallite 

      and for the infinite crystal. Removal of some lower order terms from the polynomials accelerates 

       the convergence. 

          The purpose of the present work is to study the Coker's direct-summation method whose 

      implementation is intended in a molecular orbital computational code. This method is applied 
      to calculations of the self-potentials, the Madelung constants and the electrostatic potential at the 

      interstitial positions of the lattice. The results are examined whether systematic errors occur 
      among the values of several compounds. 

                           II. COMPUTATIONAL METHOD 

         The lattice self-potential 95, for the ith ion in the reference cell is 
1 

,( 1 ) 2 
l 
      where the Coulomb interactions with the jth ion owning Z1 e charges in the lth unit cell are 

      summed up. The total electrostatic energy U per mole is expressed as 

U= (NA e2/2x) Z Ztct ,(2 ) 

      where NA is the Avogadro number and x is the total number of molecules in the unit cell. The 
      Madelung constant MR is connected with U by a characteristic length R of the crystal structure : 

U=—NA(e2/R)MR.(3 ) 

      The dimensionless quantity MR is calculated with the following equation : 

MR=-(R/2x)ZZ,q,.(4) 

      In the original definition by Madelung, the largest common factor of Z,'s is extracted from the 
      Madelung constant in Eq. (4). This factor is included here for the convenience of comparison of 

      the Madelung constant with the self-potential and between the compounds. 
          The direct-summation method by Cokern is briefly summarized. For the unit cell shown in 

      Fig. 1, component ions are a cation and an anion. A space filling procedure using the 

      translational vectors generates crystallites. An asymmetric point with a null electrostatic 

      potential resides at the midpoint between these ions. The pair of ions makes up a dipole and 
      then the method is called the dipolar-addition method. The potential due to the surface 

      structure is cancelled out because of the asymmetric property. The field produced by the dipole 

      p at a distant point r is expressed as follows : 

dE=6r/r3dv,(5) 
6=pn/abc,(6 ) 
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                 Fig. 1. Unit cell for the dipolar-addition method. White 
                         colored atoms belong to the adjacent cells. 

where a, b and c are the lattice parameters for an orthorhombic crystal. Coker has obtained the 

solutions of the total field in the crystallites for all the crystal  systems.7l The field for the 

orthorhombic crystal is estimated as 

EX=(8,ux/abc) tan-1(bc/aVa2+b2+c2) .( 7 ) 

Ey and Ec are obtained from Ex by cyclic permutation. Coker has found that the convergence 

polynomials for all the crystal symmetries include only even reciprocal powers beginning with the 
inverse quadratic. Elimination of some lower order terms among successive sums of the 

crystallites accelerates the convergence. 

                    III. RESULTS AND DISCUSSION 

   The self-potentials and the Madelung constants for several compounds are summarized in 

Table I. In the present calculations, 14 shells around the central unit cell are included. The 

results contain the decimal figures unchanged between calculations of 14 shells and 15 shells. 

The first two terms of the convergence polynomial were removed among three successive 

crystallite sums. For NaC1 and CsCI, the Madelung constants in high precision have been 

reported.6'7l The present results agree with them within the significant decimal figures. For 

simple structures such as NaC1 and CsC1, the Madelung constants Ma is equal to the absolute 

value of the self-potential for the cation and the anion in units of e/a, where the lattice parameter a 

is adopted as the characteristic length for the Madelung constant. These values agree in high 

precision with each other. No surface potentials contribute to the Madelung constants for these 
structures because the contribution to the cation site cancels out that to the anion site. The 
agreement between the Madelung constant and the self-potentials in the present work means that 
the surface contribution to the potentials at the lattice sites is throughly removed. 

   For ZnS, Cu20, CaF2, SrTO3 and LaA1O3, the Madelung constants and the self-potentials 
agree with the reported values and the higher precision is achieved. For comparison of the 
values among these compounds, alternative estimation was also made. The self-potentials for a 
compound relate to the Madelung constants for other compounds. For CaF2, these relation-
ships areL~1 

0(Ca)=Ma(ZnS)/2,(8 ) 
2Ma(CsC1)+Ma(NaCI) ,(9 ) 
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 qi(F) =Ma(ZnS)/2-Ma(NaC1) ,(10) 
2Ma(CsC1) .(11) 

For the perovskite structure of A+zB+(3-z)X3-1, they are12) 

95(A)=z ao-3a2+(3-z)a3 ,(12) 

95(B) = (3-z)ao-3a1 +z a3 ,(13) 

q(X) = -ao+ (3-z)a1 + (z-2)a2 ,(14) 
ao=3ai +3a2+a3,(15) 

a1= [Ma(NaC1) - 2Ma(CsC1)]/6a ,(16) 
a2= -Ma(NaC1)/6a ,(17) 

       a3= [Ma(NaC1) + 6Ma(CsC1) - 2Ma(Cu20)]/6a .(18) 

These equations relate all the values in Table I. The solutions with the direct summation 

completely agree with the values derived with the above relations. It is proved that the present 

values are in high accuracy and precision. 

            Table I. Self-potentials and Madelung constants for several compounds. 

                  Potential (e/a)Madelun 
 Compound Ref.* -----------------------------------------------------Ref.* constant (Ma**) 

                 Cation siteAnion site 

NaC1 TW - 3.495129189273.49512918927 TW 3.49512918927 

                                                   6 3.495129189266 

CsC1 TW - 2.0353615092.035361509 TW 2.035361509 

                                                 7 2.035361509426 

  ZnS TW - 7.5658522087.565852208 TW 15.131704417 

                                                 8 15.13168 

  Cu20 TW - 3.7829261046.476530930 TW 10.259457034 

      9 - 3.786.47710 10.25946. 

  CaF2 TW - 7.5658522084.070723019 TW 11.636575227 

TW1 - 7.5658522084.070723019 TW1 11.636575227 

           TW2 - 7.5658522084.070723019 TW2 11.636575227 

     9 - 7.5664.078 11.63656 

  SrTiO3 TW - 5.387209651 Srt2 6.455908803 TW 49.50987212 
-12 .377468029 Ti+4 

           TW3 - 5.387209651 Sr+2 6.455908803 TW3 49.50987212 
                   -12 .377468030 Ti+4 

       9 - 5.389Srt2 6.45510 49.509872 
           -12 .38Ti+4 

LaA103 TW - 7.422571160 Lat3 5.969319576 TW 44.55497525 

10.342106520 Al+3 

           TW3 7.422571160 Lat3 5.969319576 TW3 44.55497525 
                   -10 .342106520 Al+3 

       9 - 7.424Lat3 5.96910 44.55489 
           -10 .34Al+3 

   * Numbers indicate the reference number , TW : this work with the direct summation, TW1 : this work 
  using Eq. (8), (10), TW2: this work using Eq. (9), (11), TW3: this work using Eq. (12)-(18). 

   ** The lattice parameter a is the characteristic length for the Madelung constant . 
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   Three kinds of unit cells for CsC1 were used to examine the present computational code for 

the consistency among different crystal systems. The lattice parameters and the atomic 

positions are as follows. 
   Cubic 

 a=b=c=1 Cs: 1/2 1/2 1/2 Cl: 0 0 0 

   Tetragonal 

a=b =V2 Cs : 0 0 1/2 CI: 1/2 0 0 

c=1 Cs: 1/2 1/2 1/2 Cl: 0 1/2 0 
   Orthorhombic 

a=2S Cs : 0 0 1/2 Cl: 1/4 0 0 
       b ='^/ Cs: 1/4 1/2 1/2 Cl: 0 1/2 0 

c=1Cs: 1/2 0 1/2 CI : 3/4 0 0 
Cs: 3/4 1/2 1/2 CI: 1/2 1/2 0 

The self-potentials agree with each other as shown in Table II. 
   To provide an implement of the present code for molecular orbital calculations, rapid 

execution is preferable. The self-potentials were obtained with two shells around the central 

unit cell. The first term of the convergence polynomial expressing the difference between the 

                     Table II. Consistency of self-potentials for CsCI in 
                                different crystal systems. 

                                       Potential (e/a) 
        Crystal system ----------------------------------------- 

                                       Cation site Anion site 

                  Cubic2.0353615092 2.0353615092 
                    Tetragonal2.0353615093 2.0353615095 
                   Orthorhombic2.0353615094 2.0353615094 

             Table III. Comparison in precision of self-potential calculations 
                       between crystallites with 14 shells and 2 shells around the 

                         central unit cell. 

                                    Potential (e/a) 
     Compound Site --------------------------------------diff. % 

                                 14 shells 2 shells 

         NaC1 Cl3.49512918927 3.4955 0.01 
CsC1 Cl2.035361509 2.0350 -0.02 

        ZnSS-27.565852208 7.5648 -0.01 
         Cu20 Cu+- 3.782926104 3.7831 0.00 

0-26.476530930 6.4791 0.04 
          CaF2 Ca+2- 7.565852208 - 7.5676 0.02 
               F4.070723019 4.0707 0.00 
          SrTiO3 Sr+2- 5.387209651 - 5.3878 0.01 

Ti+412.377468029 -12.3788 0.01 
0-26.455908803 6.45660.01 

LaA1O3 Lat3- 7.422571160 - 7.4228 0.00 
Al ±3 -10.342106520 -10.3438 0.02 
0-25.969319576 5.96980.01 
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             Table IV. Electrostatic potentials at interstitials in the CsC1 crystal. 

          PositionsPotential (e/a) 

       x/a y/a z/a 15 shells2 shells Hajj* 

         0.0 0.25 0.0  -2.0000000001 -2.00022 -2.0000000001 
          0.05 0.25 0.0 -1.9183377003-1.91853 -1.9183377003 
          0.10 0.25 0.0 -1.6988081207-1.69897 -1.6988081207 
          0.15 0.25 0.0 -1.3991350747-1.39927 -1.3991350747 
          0.20 0.25 0.0 -1.0763748116-1.07647 -1.0763748116 
          0.25 0.25 0.0 -0.7700854509-0.77015 -0.7700854509 
          0.30 0.25 0.0 -0.5029159551-0.50294 -0.5029159551 
         0.35 0.25 0.0 -0.2869294567-0.28693 -0.2869294567 
          0.40 0.25 0.0 -0.1287699935-0.12876 -0.1287699935 
          0.45 0.25 0.0 -0.0323793066-0.032365 -0.0323793066 
         0.50 0.25 0.0 0.00000000000.000000 0.0000000000 

            * Ref. 6. 

sums for the finite crystallite and for the infinite crystal was eliminated. The precision is better 

than 0.04% as shown in Table III. This percentage roughly corresponds to 0.01 eV of the self-

potential for real compounds. 
    For interstitial positions of the lattice, the electrostatic potentials calculated with the present 

procedure is compared with those obtained with another direct-summation method by Hajj61 

(Table IV). Complete agreement is achieved between two methods. The evaluation with two 
shells around the central unit cell is found enough for the present requirement for the electronic 

structure calculations. Contours of the electrostatic potential are plotted in the (100) cross 

section of the CaF2 structure as shown in Fig. 2. This figure has no fault in the symmetrical 
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                 Fig. 2. Electrostatic potential of the (100) plain for CaF2. 
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property in contrast to that by the  Evjen's method. As an additional remark connecting with the 

property of this structure, a region of low gradient electric field spreads around the center of the 
cross section. 
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