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    The fold surfaces of solution-grown single crystal platelets of linear polyethylene JPEJ and of some 
cycloparaffins such as (CH2)36, (CH2)6o and (CH2)12e were decorated with vapor-deposited PE. The TEM 
micrographs of and their corresponding electron diffraction patterns from such surface-decorated single 
crystals demonstrated that the surface of PE single crystal is ordered enough to define the avarage direc-
tion of folding, but not so fully regular as those of the cycloparaffins. 

    Edge-on crystals of PE and (CH2)12o were epitaxially grown from respective solutions onto the (001) 
face of NaCI, and then their dark-field images were obtained by TEM. Negative staining of them with 
RuO.1 was also performed, to estimate their lamellar thicknesses. The results suggested that there exists 
a "disordered" surface layer on each side of the crystalline core in a PE single crystal. The surface 
layer is, however, not so seriously disordered because the average direction of folding should be defined 
as mentioned above. The surface of PE single crystal, accordingly, seems to be composed of adjacent-
reentrant folds with some fluctuation in contour length and its resultant fluctuation in conformation. 

    KEY WORDS : Polyethylene/ Cycloparaffin/ Folded-chain structure/ Fold surface/ 
Morphology/ Transmission electron microscopy/ Negative staining/ Ru04/ Electron diffrac-
tion/ Surface decoration/ Epitaxy 

                          INTRODUCTION 

    Polyethylene [PE] has the simplest repeating unit, -CH2-CH2-, of all the synthetic linear 

polymers. Accordingly, extensive studies on PE have been carried out so far as a model 
material representing crystallizable flexible polymers, especially to elucidate the relationship 
between their morphologies and physical properties. As known well broadly, the flexibility 
of PE chain is attributable to the relatively low energy barrier for rotation of chain segments 
around the carbon-carbon bonds. The chain segments which are accommodated as stems in 
the crystalline core of a PE crystal, of course, have the all-trans zigzag conformation (21 
helix). Nowadays nobody doubts the existence of the folded-chain lamellar structure of PE 
crystals grown under ordinary conditions, e.g., under an atmospheric pressure. However, 
many questions remain about the folding of PE chains,'-3' such as: Is the fold surface of the 

crystals ordered or not?; If it is ordered, what is the detailed strucure of the fold? 
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single  crystals:"  1) a regular sharp fold model'', 2) a switch board model'', and 3) a loose 
loop model1''. A "stacked-sheets" model was also proposed for rapidly solution-crystallized 

samples."' Some regularity of fold surface of PE single crystals was derived from ex-

perimental evidence obtained by a variety of methods such as selective oxidation of the fold 
surfaces with fuming nitric acid," obsevation of moire patterns and/or dislocation networks 

produced by bilayered lamellae," and infrared adsorption of mixed crystals of PE and per-
deuterated PE."' Sectorization recognized in some polymer single crystals seems also to be a 

direct evidence of fairly regular fold surfaces of the crystals.s' Wittmann and Lotz'" inferred 

a regular fold structure in the surfaces of PE single crystals from the fact that PE chains 

vapor-deposited onto PE single crystals orient parallel to each growth face which subtends to 

the corresponding sector of the crystals (see Figs. la and 5a). On the other hand, Yoon and 

Flory''' proposed again the switch board model based on the analysis of neutron scattering 

functions for the mixed crystal of protonated and deuterated PEs, and concluded that the adja-

cent reentry takes place infrequently in melt-crystallized PE and nonadjacent folds are pre-

dominant even in solution-grown crystals. Nowadays, however, the picture of PE single crys-

tal with fairly regular and sharp folds is widely believed to be the most probable."' Even if it 

is true, some problems such as the size of folds and the folding direction remain still un-

solved. In this communication, the folded-chain structure of PE single crystal is discussed by 
comparison with that of some cycloparaffins which undoubtedly have regular sharp folds. 

                          EXPERIMENTAL 

   Single crystals of fractionated PE (NBS reference material, SRM-1482/ M=13,600 and 

SRM-1483/ M=32,100) and some cycloparaffins ((CT-I2)36 [C36], (CH2)6o [C601, (CH2)m [C120]) 

were prepared from respective solutions. Lozenge-shaped single crystals of PE (SRM-1482) 

were grown from an 0.001wt% solution in p-xylene at 80°C1° using the self-seeding 

technique". The single crystal platelets of C36 were grown from a p-xylene solution by eva-

porating the solvent on the carbon-coated grid for transmission electron microscopy [TEM], 
and those of C60 were grown isothermally at 40°C from an 0.01wt% p-xylene solution.' 

The lozenge-shaped single crystals of C120 were grown from an 0.01wt% p-xylene solution at 

55°C.'7.2" The truncated single crystals of PE (SRM-1483) were grown at 90°C from an 

0.01wt% solution in n-octane using the self-seeding method.' The fold surfaces of these 

single crystals were decorated with vapor-deposited PE under vacuum:" PE used for vapor 

deposition was a commercial product (Sholex 6009 or 6050).'''~ 2'' 

   Edge-on crystals (see Fig. 2b) of PE (SRM-1482) were grown isothermally at 80°C or 85°C 

on the newly cleaved (001) face of NaCI from an 0.01wt% p-xylene solution."''31 Edge-on 

crystals of C120 were also grown at 60°C on NaCI from an 0.01wt% p-xylene solution. Some 

of the dried edge-on crystals were annealed as they were on NaCl. Then, some of the edge-on 
crystals (PE and C120) thus prepared were stained with RuOri.''-''" 

   TEM of above-mentioned specimens was performed using a JEOL JEM-20005 operated at 

200kV. 
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O Fig. 2. Models of flat-on (a) and edge-on (b) lamellar crystals. Electron beams can be intro-
            duced normal (a) or parallel (b) to the fold surface of the crystals in transmission elec-
            tron microscopy [TEM]. 

                        RESULTS AND DISCUSSION 

  Surface Decoration of PE and Cycloparaffin Single Crystals With Vapor-deposited PE17'1920.22' 

     When the fold surfaces of monoclinic cycloparaffin (C36, C60) single crystals were deco-

  rated with vapor-deposited PE, rod-like crystals of PE were grown with their long axis being 

  perpendicular to the b-axis of the cycloparaffins (Fig. 3). Electron diffraction [EDI patterns 
  revealed that the rods are the "edge-on" crystals of PE and its chain axis is set perpendicular 

  to the rod axis. The chain axis of PE in a rod orients parallel to the b-axis, i.e., the folding 

  direction of the cycloparaffins:1 25 calculation of adsorption energy also explained well the 

  observed orientation of PE chains vapor-deposited onto C36 whose fold structure is fully 

known,' and it is deduced that the crystal structure of C60 is similar to that of C36.202 2 

     On the basis of the surface decoration of PE single crystal (Figs. la and la'), the depo-

  sited PE chains orient parallel to the (110) growth face in every (110) sector of a lozenge-

  shaped single crystal of PE (SRM-1482; M =13,600), and it is concluded that the (110) fold is 
• dominant in such a sector . Figure 4 shows the relation between the chain axis of vapor-depo-

  sited PE and the folding direction in the (110) sector of PE single crystal.20' As shown in Fig. 

  5, the PE chains also orient parallel to the (100) growth face in each (100) sector of a trun-

  cated single crystal of PE (SRM-1483; M=32,100). This result indicates that the (100) fold is 

  dominant in the (100) sectors of PE single crystals. It is, therefore, concluded that PE single 

  crystals have fairly ordered fold surfaces. Our results mentioned above of surface decora-

  tion of C36 and C60 with vapor-deposited PE strongly supported this conclusion which had 

  been made before by Wittmann and Lotz°'. In decorated PE single crystals, however, the 002 

  reflection of deposited PE is rather arc-shaped (see Figs. la' and 5b). The azimuthal angle 4 

  of the reflection, which angle shows the angular distribution of the c*-axis of the vapor-depo-

  sited PE crystals in the ED pattern, is estimated as follows: S a = ca. 30° for the (110) sector 

  of the lozenge-shaped single crystal (Fig. la'); 8 A, S B = ca. 28° for the (100) and (110) sec-

  tors of the truncated one, respectively (Fig. 5b). On the other hand, the 002 reflection in 
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Fig. 7. Edge-on crystals of PE stained with Ru01. 

   (a) Grown on NaCI at 80'C from an 0.01wt%p-xylene solution. 
   (b) Grown on NaC1 at 85'"C from an 0.01wt%, p-xvlene solution. 
   (c) Thickened crystals which were grown on NaC1 at 80"C from solution and then annealed there 

     at 120`C for 30 min after drying. 

thickness of crystalline core (crystalline lamellar interior) in one edge-on lamella of PE. We 

recognized the fact that here and there in the original negatives, two or more striations in a 

crystal block run parallel side by side with a certain spacing (Fig. 6d): this spacing (13 um) is 

regarded as the lamellar thickness and is equal to that estimated in the Ru0r-stained edge-on 

crystals (Fig. 7a). Figure 7b shows the Ru04-stained edge-on crystals of PE which were 

grown on NaCI at 85'C: the lamellar thickness is estimated at about 15 nm. The thickness of 

13 nm for 80'C and that of 15 nm for 85'C are almost similar to or slightly greater than the 

lamellar thicknesses/long periods reported in the literature''', which were measured by TEM, 

and/or by small-angle X-ray scattering of the respective single crystal mats made by 

sedimenting single crystals grown at 80`C and at 85-C from dilute xylene solutions. 

   The edge-on crystals of PE grown on NaCI at 80' C were annealed on NaC1 at 120°C for 30 

min after drying and then stained with Ru0 i (Fig. 7c). The lamellar thickness certainly in-

creased to 23 nm by this annealing. Figure 8a1 shows the morphology of PE edge-on crystals 

which were grown on NaCI at 80'C and then annealed there at 125'C for 60 min after drying. 

The ED pattern (Fig. 8a2) from the annealed crystals shows better orientation than that (Fig. 

6b) from as-grown edge-on crystals. The 002 dark-field image (Fig. 8a:) of the crystals 

annealed at 125 C indicates that the lamellar thickness is ca. 36 nm and the crystalline core 

thickness is ca. 30 nm. The lamellar thickness of 23 nm for annealing at 120'C and that of 36 

urn for annealing at 125`C are greater than those obtained at respective annealing tempera-

tures in the literature.'' Edge-on crystals of PE grown on NaCI at 80'C were heated up to 

150°C after drying to be melted, and then re-crystallized at 125'C for 60 min while still on 

NaCI. Figure 8b1 shows the morphology of the crystals thus prepared. The corresponding 

ED pattern (Fig. 8b2) is similar to Fig. 8a',. The 002 dark-field image (Fig. 8b3) gives the 

lamellar thickness of ca. 42 nrn and the crystalline core thickness of 32 um, but the former 
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               Table 1. The average thickness of lamella and that of crystalline 
                         core estimated by various methods for PE. 

                  crystallizationaverage thickness (nm) 
                   or annealing 

          temperatureA BCD E h 

            80°C13 13 13 7 6 12-13 
       85°C1512-14 

             annealed at 120°C 23 26 26 20 6 15-20 

            annealed at 125°C36 36 30 6 19-30 
            melt-recrystallized42 42 32 10 20 

               at 125°C 

               A: lamellar thickness estimated by staining with Ru0 ~. 
                B: lamellar thickness estimated by metal-shadowing. 

               C: lamellar thickness estimated from dark-field image. 
                D: crystalline core thickness estimated from dark-field image. 

               E: difference between C and D. 
               F: lamellar thickness cited from Refs.27 and 28. 

                     Table 2. Sub-cell dimensions of (CI1 )12o [C120]'° 

       crystal a b c, a 13Y 

            system (nm) (nm) (nm) (°) (°)(°) 

               monoclinic 0.482 0.817 0.254 90. 90. 109.1 

                orthorhombic 0.746 0.498 0.254 90. 90. 90. 

value is much greater than that expected from the literature-°', probably because the real crys-

tallization temperature seems to have been higher than 125°C. The lamellar thickness and the 

thickness of crystalline core are summarized in Table 129', together with the lamellar thickness 

estimated by metal-shadowing and that cited from the literature.".") This table also shows 

the difference between the lamellar thickness and crystalline core thickness which were both 

estimated from the same dark-field image: here, this difference is important. This table de-

monstrates that the difference (6 nm) in thickness was practically independent of the 

crystallization/annealing temperatures in our experiment. It is concluded that there are sur-

face layers of about 3 nm thick on both sides of the crystalline core within a PE lamella. The 

existence of the surface layers of about 3 nm thick in the edge-on lamellae of isotactic polys-

tyrene was also inferred from the high-resolution TEM of the thin crystalline films.'' The 

thickness of surface layers for the melt-crystallized PE, however, seems to be greater than 3 

nm, as shown in Fig. 8b3 and in Table 1. 

Single Crystal of Orthorhombic C120 and Edge-on Crystals of C120".'"-''"' 

   Short-chain cycloparaffins such as C36 and C60 crystallize in monoclinic forms and the 

conformation of their folds is -t(ggtgg)t-.''='' Consequently they are not adequate as a model 

of folded-chain structure in orthorhombic PE. In contrast to them, C120 crystallizes with an 

orthorhombic sub-cell and occasionally with a monoclinic sub-cell.'" Sub-cell dimensions of 

these two are shown in Table 2. They are very similar to the unit cell dimensions of 
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   Fig. 10. Edge-on crystals of C120 stained with RuOi. 
   (a) Monoclinic C120 grown at 60-C on NaCI from a p-xylene solution. 

   (b) Orthorhombic C120 transformed from the monoclinic form by annealing while still on NaC1 at 
110°C for 60 min after drying. 

orthorhombic and monoclinic PE, respectively.' 

   The lozenge-shaped single crystal of orthorhombic C120 is very similar to that of PE in 

morphology, and surface decoration also reveals similar features as in a PE single crystal 

(Figs. lb and 1b')."" Thus, the orthorhombic single crystal of C120 with a lozenge-shaped 
lateral habit has (110) folds in each (110) sector. As shown in Fig. lb', the 002 reflection of 

vapor-deposited PE on the C120 orthorhombic single crystal is arc-shaped, like that on the PE 

single crystal (compare Fig. lb' with Figs. la' and 5h). The angle Si„ which shows the angu-

lar distribution of the c*-axis of deposited PE crystals, is cu. 15 . This value is definitely 

smaller than that for PE (Figs. la' and 5b), but rather greater than that expected from the re-

sults obtained for C36 and C60 (Fig. 3). On the other hand, the angle in question for the C120 

monoclinic single crystal decorated with vapor-deposited PE was smaller than 5 ' which fact 

is analogus to C36 and C60 and indicates that the fold surface of orthorhombic C120 is less 

ordered than that of monoclinic C120. The 002 arc-shaped reflection of the deposited PE on 

orthorhombic C120 was, in our previous paper'',attributed to the fact that the purity of the 

sample is about 90%, the impurities of which are mainly (CH3)ie and (CH2)132- The monocli-

nic single crystal, however, is assumed to be composed of pure (CH2)120. and accordingly to 

give better orientation of deposited PE chains than the orthorhombic one. 
   Figure 9a is the edge-on crystals of C120 which were grown on NaC1 at 60'C . showing the 
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similar texture to that in Fig. 6a. The corresponding ED pattern (Fig. 9b) indicates that the 

molecular axis of C120 is oriented in the <110> directions of NaC1 because the reflections cor-

responding to 002 of  PE appear in these directions. The crystal forni of these as-grown edge-

on crystals is, however, monoclinic, judging from appearance of the reflections marked with 

the letters A, B and C.2` 3J According to the TEM observation of these edge-on crystal blocks 

by tilting, the blocks seem to stand upright on NaCI like a wall.3" The as-grown monoclinic 

form of C120 was transformed while still on NaCI into the orthorhombic one by annealing.'" 

Staining of C120 edge-on crystal blocks with RuOa clearly visualized the stacked lamellar 

structure in the blocks (Fig. 10).223' The spacing (7.7 nm) between parallel dark striations 

corresponds to the molecular length of C120, namely to the thickness of mono-molecular layer 

in both of the monoclinic and orthorhombic forms, as demonstrated in Fig. 10. Thus, the 

crystallographic c-dimensions for both forms were assumed to be 7.7 nm."'31 The dark-field 

images of edge-on crystals of monoclinic C120 taken using the reflection corresponding to 002 

of PE, however, do not show any fine striations in the edge-on crystal blocks of C120: the 

width of bright band in Fig. 9c is practically identical to the whole width of the block (see 

also Fig. 9d).'" This fact is easily understood because the fold surface of cycloparaffins is 

expected to be much more regular than that of PE. 

                       CONCLUSING REMARKS 

   There exist surface layers on both sides of the crystalline core in a PE single crystal. 

The core gives the 002 reflection, while the surface layer including folds makes a small or no 

contribution to the reflection due to, probably, its disorder. The surface is, however, not so 

seriously disordered as that of a switch board model because the average direction of folding 

can be defined in a PE single crystal. Consequently, the surface seems to be composed, basi-

cally, of adjacent-reentrant folds, which have, however, some fluctuation in contour length and 

its resultant fluctuation in conformation." "' The solid-state "C NMR study on the phase 

structure of PE crystal suggests that the solution-grown PE crystal is composed of the crystal-

line core and the noncrystalline interfacial component with no rubbery contribution.33' The 

component seems to be attributable to the surface layer mentioned above. 

   Recently, scanning probe microscopy such as atomic force microscopy [AFM] of the fold 

surface of PE single crystal was reported, showing that the surface is fairly regular, in par-

ticular in the directionality of folding." 35' A similar result was also obtained for the polyox-

ymethylene single crystal.36' Individual chains and a hairpin chain fold were visualized in the 
"
atomic-level" AFM image of highly oriented PE." In the near future, therefore, a clear pic-

ture of the fold surface in PE single crystals will be given by such new techniques. 
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