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 A High-Temperature Furnace and a Heating/Drawing Device 

 Designed for Time-Resolved X-Ray Diffraction Measurements 

         of Polymer Solids Using Imaging Plates 
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For time-resolved X-ray diffraction measurements using the imaging plate system in the drawing 
and/or heating process of polymer solids, a high-temperature furnace for heat treatment and a 
heating/drawing device were newly designed and constructed. Then, to demonstrate their performance, 
some experimental results obtained in the drawing process of an extruded/blown. film of high-density 
polyethylene at room temperature and in the crystallization process of an oriented amorphous film of 
poly(ethylene naphthalene-2,6-clicarboxylate) by heating were presented. Other experimental results 
obtained using them were also briefly cited. 

   KEY WORDS : High-Temperature Furnace/ Drawing Device/ Stretching/ Oriented 
Crystallization/ X-ray Diffraction/ Imaging Plate 

1. INTRODUCTION 

   In the melt-processing of a crystallizable synthetic polymer into a factory product such as 

a uniaxially or biaxially stretched film, fibers, etc., it is quite important to leave inherent ex-
cellent properties of the polymer for such a product and to give sonic additional characteris-
tics to the product in compliance with its use. In particular, the degree of chain orientation 
and the crystallinity influence significantly the performance of the final product. Uniaxial 
drawing is frequently used as one of the ways to orient the molecular chains and to promote 
crystallization. There are several procedures to obtain higher orientation of polymer chains 
by uniaxial drawing such as: 1) crystallization by heating from an oriented amorphous solid 
which was made by drawing, 2) crystallization by cooling from a melt oriented by drawing, 3) 
drawing/crystallization of a polymer solid at a high temperature, 4) drawing of a polymer 
solid which was crystallized beforehand. So far, there have been ninny investigations of 
structural formation by drawing" and of structural change accompanied by phase transition in 
the drawing process'. As known well, high-strength/modulus fibers have been developed by 
ultra-drawing of polyethylene [PR] of ultra-high molecular weight' and by zone-drawing of ve-
rious polymers". 

   We have studied the structural changes of various polymers due to uniaxial drawing by 
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using X-ray diffraction. Present-day rotating-anode X-ray generators have been greatly ad-

vanced, for example owing to improvement in the vacuum technology, to be of high power: the 

generator used in this study is a  60kV-300mA type (Rigaku-Denki, RU-300). In addition, X-

ray detectors of high performance have also been developed, such as a TV system equipped 

with an image orthicon camera'', which system can record one 2-dimensional diffraction pat-

tern within one second, and an imaging plate [IP] system`''. The IP is 5-6 times more sensi-

tive against X-ray than highly sensitive X-ray photoemulsions, and has a wide dynamic range: 

each pixel (0.125 mm X 0.125 mm) of IP can store the integrated X-ray intensity of a dynamic 

range up to 10". Before the advent of such highly sensitive detectors, X-ray diffraction photo-

graghs were taken before and after deformation (or processing) and the structural difference 

between them was discussed. Using the highly sensitive detectors mentioned above, however, 

the structural changes of specimens during deformation/processing can be followed as a time-

resolved series of X-ray diffraction/scattering patterns. The desired X-ray sources and de-

tectors, therefore, are now available, but no apparatuses suitable for drawing/heating of po-

lymer films/fibers are on the market because the apparatuses must be designed for individual 

purposes depending upon the kinds of specimen and the experimental conditions. Thus we 

have tried to construct a heating/drawing device and a high-temperature furnace, both of 

which are appropriate to investigate structural changes of polymer solids using the X-ray dif-

fraction system equipped with IP. In this report, the mechanism and performance of the de-

vice and furnace will be mentioned, and then some experimental results obtained using them 

will be demonstrated. 

         2. CONSTRUCTION OF THE HEATING/DRAWING DEVICE AND 

            THE HIGH-TEMPERATURE FURNACE 

2.1. Heating/drawing device 

   Formerly a heating/drawing device for the X-ray TV system had been constructed and 

used for the study on the structural change accompanied by phase transition in the drawing 

process of PE: the specimen was stretched vertically in this device (prototype)°. The device 

is, therefore, modified for X-ray measurement using IP. As shown in Fig. 1, the new 

heating/drawing device is designed and constructed so that the specimen is to be stretched in 

the horizontal direction. In this device, the specimen temperature is controlled by blowing 

thermostated hot air vertically into the specimen chamber in order to attain a uniform dis-

tribution of temperature over the whole specimen and to raise the specimen temperature as 

quickly as possible up to a given temperature. To prevent heating up of the chucks (E and E' 

in Fig. 1(a)) which are to clamp the ends of specimen, two partition strips (D) are introduced 

between the chucks; of course, the strips are to be located outside the specimen area that is 

stretched and illuminated with the X-ray beams. The specimen temperature, namely the 

temperature of the air in the specimen chamber, is monitored with a chromel-alumel IC-Al 

thermocouple (B) placed in the vicinity of the specimen area which is illuminated with the X-

ray beams. Outside the metal inner framework (I in Fig. 1(a)) of the device, bakelite (G) is 

used for thermal insulation against the open air. The precision of temperature regulation is 

within ±1°C at a specimen temperature between room temperature [RT] and 160°C: Figure 2 is 

an example which demonstrates well the precision of temperature regulation. The load cell (J 

                            (419)



 S.  Ali i<n,iin. K Tvvoi, AI. T..i a and S. Ii<min < 

(a) 
        load cell 

f- 1 -1 i--------------65 ---------------2/., ------------------------------------ 

             T 

      ED E'  

  /--------------------------------------------------------- 

      0 C oF 

       ((ol'',-O'——_F.'_ _/ _--_----------------------------  _~ pulley 
       o A oand moter 

o        _r_ 
}recorder 
         thermostated H 

. hot air 

(b)M 

                              K 

             /.,LL 

                                                                                      - 

       —,_.,.,4,—mrtiq,.---H-.....„„L„.0.-.7;'-'-'-'7:-'7-'f'74-7.
/'-..,-:".Y_ 

           f 

        6.17:2-4"*",„ i:, Ni. 
ih 

      / . '„ iii,,,i
ti''-                                         LOINN 

Fig. 1 Heating dratning cicv ice. 

(a)Sketch of the heating draoo'ing chamber 

-A: specimen. B. C-.A thermocouple. C beryllium «indoa. D partition strips. E.E. 

chuck, F Neu'( to pull the chuck (E). Ci thermal insulator (6uhelit'), H theinial insula 

     tor (in/au/cll. I: metal inner h'ameuork. 

(b)A1 hole i'ieu. of the clew ice 

J. load cell. IN: metal outermost tramevoorle, L hot air blower, NI: ^wter to drioe the 
        check (E) in (a) 

(-IP())



           High-Temperature Furnace and Heating/Drawing Device for X-Ray Diffraction 

                   155°C 

 150°C---------------- " —   —  i------- r—   145°C 

                    0 10 20 30 - 40 (min.) 

   Fig. 2. Example of the output of the C-A thermocouple (B in Fig. 1(a)), demonstrating well the preci-
          sion of temperature regulation in the specimen chamber of the heating/drawing device. 

in Fig. 1(b)) can be attached to the chuck (E), which is fixed to the outermost framework (K in 

Fig. 1(b)), in order to measure the magnitude of stress during stretching. 

2.2. High-temperature furnace 

   The high-temperature furnace for X-ray measurement using IP has been newly con-

structed (see Fig. 3). The chamber (E) is made up of copper. Two rod-like heaters (C) are 

introduced into the copper block as shown in Fig. 3(a). The temperature of the chamber is to 

be monitored/controlled using a C-A thermocouple (B2). The outside of the chamber is ther-

mally insulated from the open air using micalex: this is a heat-stable material developed by 

TOSHIBA. The working temperature range of this furnace is from RT to 500°C. The speci-

men temperature is monitored with a C-A thermocouple (B1) which has been inserted into the 

specimen holder (D). The precision of temperature regulation is within +_0.5°C for a given 

temperature between RT and 200°C and within ±1°C for 200°C through 500°C. The specimen 

holder is made up of copper: a specimen (A) is set between two small plates of copper. The 

holder in which a specimen has been set is introduced into the furnace at RT for gradual heat-

ing with an increase in temperature or into the pre-heated furnace for heat treatment at a 

given constant temperature. A mica window is attached to (E) at the exit for scattered X-ray. 
For heat treatment, say at 180°C, it needs only 30 sec to reach 97% of the expected equilib-

rium temperature after introducing the holder into the furnace which is thermostated before-

hand at 180°C. After such gradual heating or isothermal heat-treatment, the specimen holder 

is taken out of the furnace, and then might be, for example, immediately transfered into ice-

cold water for quenching. 

      3. EXAMPLES OF X-RAY DIFFRACTION MEASUREMENTS USING THE 

         HEATING/DRAWING DEVICE AND THE HIGH-TEMPERATURE FURNACE 

3.1. Stretching of extruded/blown [E/B] films of high-density PE using the 

    heating/drawing device" 

   In melt-processing a crystalline polymer, the crystallites are sometimes oriented with a 

certain crystallographic plane of them being parallel to a surface of the final product of the 

polymer. For example, in the E/B film of high-density PE, the (001) planes are preferentially 
oriented parallel to the film surface. Figure 4(a) is the wide-angle X-ray diffraction [WAXD] 

pattern when the X-ray beams are incident onto such a film in the direction perpendicular to 
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   Fig. I. Change in the A\ AND pattern from an E I) film of high-density PC during drawing at 
room temperature Hai and a drawing rate of 5 mill min along \ID. The X-ray exposure 
time is ltt see for each pattern. The specimen thickness is (LT mm 115 films). The fi-

          guru written and the oblique dark rod in each pattern show a draw ratio (UiI and the 
beam stop, respectively. The drawing direction is vertical. 

its surface: in this figure. machine dirce-tior IiIDI is vertical. In the nteridional direction, 

namely in the vertical direction of Fig. -1(a), the strong arc-shaped (200) reflection is observed. 

The (110) reflections which are stronger than the (200) one are also observed inside of the 

(200). The maxima of these arc-shaped (110) reflections toe located in the off-meridional 

directions, ris. in the diagonal directions of Fig. 1(a). The weak (020) reflection is observed 

on the equator. Consegtrently, the crystallographic a-axis is preferentially oriented parallel 

to MD, and naturally is parallel to the film surface. The b-axis is also parallel to the film 

surface hut perpendicular to MD. ri>., parallel to trunsecrsc direction [TD[. As known well. 

the b-axis is the growing direction of crystalline lamellae. The c-axis is. thus, perpendicular 

to the film surface. The left half of Fig.5 illustrates the arrangement of crystallites in such 

an F B film of high-density PE. 

Figure -1 shows a time-resolved series of \\ AND patterns of the B B film, which Were 

obtained using the new heating drawing device during stretching at room temperature [RTI 

along MD, namely in the a-axis direction. Just before the onset of necking, the monoclinic re-

flection appears inside the (110) one of the orthorhombic form: according to Seto and others', 

this monoclinic reflection comes front the crystallographic (00I) plane parallel to the chain 

axis (b-axis), which plane corresponds to the orthorhombic (110) plane. When necking takes 

place, the orthorhombic (POP) and (110) reflections and the monoclinic (001) one start to move 
together onto the equator. At a draw ratio [Dk[ of about 2. some of the crystalline lamellae 

are broken and the film partly shows a fiber structure in which the c-axis (chain axis) of the
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orthorhombic form is aligned in the stretching direction. By the way, as to the estimation of 

DR during stretching with the device except for DR  =1 and the final DR, for example, Ref. 9 

should be consulted. 

   Figure 6 shows a time-resolved series of WAXD patterns of the E/B film, which were 

obtained using the heating/drawing device during stretching at RT along TD, namely in the b-

axis direction. At DR =1.3, necking takes place and the corresponding WAXD pattern (Fig. 

6(d)) shows the onset of the c-axis orientation (fiber orientation). In this case, however, no 

monoclinic reflections are observed. From Figs. 4 and 6, we deduce as follows: In stretching 

the E/B film along MD, the crystalline lamellae are bent, twisted and then broken, and finally 

the film comes to have a fiber structure with re-arranging polymer chains and being accompa-
nied by phase transition. On the other hand, in stretching the E/B film along TD, there occur 

no bending nor twisting of lamellae, and the transformation of the lamellar structure to a fiber 

structure appears to occur via successive unfolding proposed by Kobayashi" (see Fig. 5) due 

to stress concentration in the film. 
   Structural changes of the E/B film during stretching isothermally along MD at various 

temperatures were also investigated using the heating/drawing device in question: The monoc-

linic reflection appeared definitely in the drawing process below 50°C. Though the faint 

monoclinic reflection was observed in drawing at 60°C, it was not recognized above 70°C. 

Detailed discussion on these results will be reported elsewhere". 

   Using this heating/drawing device, the following experiments for various kinds of speci-

mens have been done: 

1) We investigated the structural change in the drawing process of ultra-high-molecular-

weight [UHMW] PE.") 

2) Highly drawn films of UHMW PE reactor powder were stretched further at a constant rate 

of drawing and a high temperature, showing that deformation proceeds after transition of the 

hexagonal form to orthorhombic one.' 

3) There have been recognized two crystalline forms (a and j9) in poly(tetramethylene 

terephthalate). Transition from a to jS by adding a tensile stress was traced using the 

device.' 

4) Stress-induced transition from the 41 helix to 247 one of polyvinylcyclohexane was ex-

amined using the device."' 

5) Comparison of ultra-drawing behaviour between the gel-like spherulite press method and 

the gel-casting method was carried out using two kinds of specimens prepared from solution 

of UHMW PE, between which only the cooling rate of solution was greatly different.''' 

6) When an unoriented amorphous film of poly(ethylene naphthalene-2,6-dicarboxylate) [PEN] 

was drawn at 150°C, the film exhibited a fiber structure accompanied by a lattice distortion 

due to the axial shift of neighbouring chain stems relative to one another along the chain axis. 

The film, thereafter, frequently showed the uniplanar axial orientation in which naphthalene 

rings in the chain are preferentially aligned parallel to the film surface.' 

3.2. Crystallization of an oriented amorphous PEN film by heating using the high-

     temperature furnace`' 

   When an unoriented amorphous film of PEN is stretched below its T" (=117°C), it can be 

elongated up to a DR of 4--5 via necking and becomes an oriented amorphous film.Figure 7 
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is a time-resolved series of WAXD patterns from the pre-oriented amorphous film of PEN in 

the heating process at a heating rate of  3°C/min using the new high-temperature furnace: the 

pre-oriented film was made by drawing an unoriented amorphous film to DR = 3.6 at 65°C. 

Figure 8 shows the change in the equatorial intensity profiles of the WAXD patterns of Fig. 7. 

In the unoriented amorphous film, crystallization started at about 185°C. Figures 7 and 8, 

however, well demonstrate that crystallization begins just above Tg, for example even at 

120°C, in the oriented amorphous film. As illustrated in Fig. 7, the crystalline reflections on 

the equator become sharper with increasing temperature above 120°C, being accompanied by 

streaks on the off-equatorial layer lines: the streaks come from the lattice distortion mentioned 

before. In addition, the profile obtained at 255°C in Fig. 8 shows that the (010) reflection is 

much stronger than the others and its width at half-maximum is smaller than those of the 

others: the profile, thus, indicates a fiber orientation with fairly high crystallinity though it 

also suggests the presence of slight uniplanar axial texture. It should be noted here that the 

value of specimen temperature written in Figs. 7 and 8 corresponds to that at the mid-time of 

each X-ray exposure (2 min) to the IP in the heating process" 

   Using this high-temperature furnace, we investigated the phase transition of triphenylene 

hexa-n-octanoate in the heating process.' 

                      4. CONCLUDING REMARKS 

    In order to investigate the structural formation during drawing, crystal growth, structu-

ral changes accompanied by phase transition and so on, we have designed and constructed the 

heating/drawing device and the high-temperature furnace for X-ray measurement. The pro-

totypes of the device and furnace were utilized, being combined with the X-ray TV system. 

The new device and furnace have been utilized for X-ray measurement, being combined with 

the IP system. For example, using the new heating/drawing device, we could catch well the 

monoclinic reflection in the drawing process of high-density PE' and UHMW PE"' as de-

scribed in 3.1: because this reflection disappears immediately when drawing is discontinued, 

it is not easy to catch it by WAXD photographing. The device, however, should be modified 

further so as to move both the chucks clamping the ends of a specimen at an identical speed in 

order to suppress shifting away of the specimen area during stretching, which area is illumin-

ated by X-ray beams. In addition, the maximum working temperature of the device should be 

raised up to, at lowest, 250°C. We are planning on designing and constructing such a more 

improved heating/drawing device for time-resolved X-ray measurements using the IP system. 
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