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          Rheological properties were examined for styrene-butadiene (PS-PB) diblock copolymers dissolved in 
a PB-selective solvent, n-tetradecane (C14). At low temperatures, the PS-PB/C14 solutions contained 

       micelles with PS cores and PB corona and exhibited plasticity and nonlinear dynamic responses. These 
       unique properties were attributed to a macrolattice of micelles, that was in turn formed as a compromise 

       of contradicting thermodynamic requirement, an osmotic requirement of uniform PB concentration distribu-
       tion in the PB/C14 corona phase and an elastic requirement of randomizing the PB block conformation. 

       Effects of these requirements were observed also for dielectric relaxation of styrene-cis-isoprene (PS-Pl) 
       diblock copolymer lamellar systems in bulk states. The PI blocks having type-A dipoles exhibited dielec-
       tric relaxation that reflected their global motion, and this relaxation was highly retarded and broadened 

       due to the osmotic and elastic requirements. 

         KEY WORDS : Block Copolymers Micelles/ Thermodynamic Confinement/ Macrolattice/ 
      Plasticity/ Dielectric Relaxation/ Type-A Dipole 

                                 1. INTRODUCTION 

          Microdomain formation is the most prominent feature of block copolymer chains. In 
      strongly segregated state, the copolymer chains exhibit a variety of domain morphology 

      (sphere, cylinder, ordered bicontinuous double diamond, lamella) according to the block com-
      position and/or volume ratio of the domains." Such microdomains have a well known ther-
      modynamic origin:" Strongly segregated block copolymers are subjected to an osmotic re-

      quirement of maintaining uniform segment distribution in each microdomain and an interfacial 
      requirement of reducing contacts of chemically different blocks. These thermodynamic re-

      quirements constrain the block chain conformation and tend to decrease the conformational 
      entropy. On the other hand, an elastic requirement always tends to randomize the conforma-

      tion and increase this entropy. These contradicting requirements thermodynamically confine 
      the block copolymer chain, and their balance determines the microdomain morphology.' 

Such block copolymers exhibit unique dynamic properties that are not observed for 
      homogeneous homopolymer systems. Those properties are obviously influenced by the mic-

      rodomain structures and thus by the thermodynamic forces for domain formation. It is of our 

      particular interest to examine how the thermodynamic forces affect the dynamic properties. 
      From this point of view, we have studied 'Theology and structures of styrene-butadiene (PS-PB) 

      diblock copolymers dissolved in a PB-selective solvent, n-tetradecane (C14).v-" We also stu-
      died dielectric properties of styrene-cis-isoprene (PS-PI) diblock copolymers in bulk 
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 states.°'1 Dipoles of the PI blocks parallel to the chain contour enabled us to dielectrically 

observe global motion of the PI block. This paper summarizes the results, placing emphasis 

on the thermodynamic effects commonly observed for the rheological and dielectric properties. 

                          2. EXPERIMENTAL 

Material: Anionically polymerized PS-PB and PS-PI diblock copolymers were used. Their 

characteristics are summarized in Table I. 

Measurements: Rheological measurements were carried out on solutions of the PS-PB samples 

in a PB-selective solvent, n-tetradecane (C14).5 9 At low temperatures, spherical micelles with 

PS cores and PB corona were formed in the solutions. Higher order structure of those micel-

les was elucidated from small angle x-ray scattering (SAXS) measurements. 

   Dielectric measurements were carried out on the PS-PI samples in bulk states." The 

samples were cast on an electrode from homogeneous toluene solutions and thoroughly dried, 

and PS/PI alternating lamellae essentially parallel to the electrode were formed. At tempera-

tures well below the glass transition temperature TgPs of the PS blocks, time-temperature su-

perposition was valid for the dielectric data and the shift factor was identical to that for 
homo-PI9'10 meaning that the PS block motion was frozen and the dielectric dispersions 

observed were due only to the motion of the PI blocks. 

                     3. RESULTS AND DISCUSSION 

3-1 Rheology and Structure of Micellar Solutions. 

Plasticity of Micellar Solutions: Figure 1 shows steady flow behavior at various temperatures 

for a 20 wt% n-tetradecane (C14) solution of the PS-PB 16-36 copolymer. At low tempera-

tures T < 60°C, the solution clearly exhibits plastic flow behavior that is never observed for 

usual homopolymer solutions. This unique feature, plasticity, disappears and the solution be-

comes a non-Newtonian viscous liquid as T is increased up to 70°C. At higher T>>95°C, the 

solution becomes a Newtonian liquid with low viscosity. 

   The PS-PB 16-36 copolymer chains in the PB-selective solvent, C14, form spherical micel-

les with PS cores and PB corona at low T. However, this micellar structure itself cannot pro-

vide plasticity to the solution, and we naturally expect a higher order structure of the micel-

les. This structure is identified in Figure 2 where SAXS profiles are compared for the 20 

wt% PS-PB 16-36/C14 solution at various temperatures. The profiles were diagonally shifted 

for easy comparison. 

    As seen _in Figure 2, the PS-PB/C14 solution at 25°C exhibits the first, second, and third 

order scattering peaks due to inter-micellar interference at angles of 11.9, 16.5, and 20.8 min, 

respectively. These peaks indicate that the micelles are arranged on a so-called macrolattice 

having a long-range order''79 (Detailed analysis of the SAXS data suggested that the macro-

lattice was most likely a simple-cubic lattice, or a body-centered cubic lattice, but not a face-

centered cubic lattice.'2) A lattice spacing (=450A) evaluated from the peak angles is smaller 

than the micelles size (= 620A),2'2 indicating a rather deep overlapping of the corona PB 

blocks of neighboring micelles. Up to 60°C the SAXS profile remains essentially the same, 

and the long-range order of the macrolattice is preserved. At 70°C the higher order peaks 

                            (395)



 B. tVATANABB 

    1200 --------------------------------------------------1 1 r 

                                 25°C 

N 800 --
                       IC 

                  C
U 

    -050°C i 

400 -60°C 

                                   70°C 

95•C 
0 
             0 0.5 1.0 1.5 

Shear Rate/s-1 

   Fig. 1. Steady flow behavior of the 20 wt% PS-PB 16-36/C14 solution examined in a Couette 
         geometry. Dashed curves indicate Bingham flow curves for the solution with the yield 

          values and plastic viscosities evaluated in a cone-and-plate geometry. 

disappear and the first order peak is broadened, indicating that the macrolattice is disordered 
but the micelles themselves are still preserved. Finally, at higher temperatures (>100°C) the 
micelles disappear due to mixing of PS and PB blocks, as noted from the disappearance of the 
first order peak. These structural changes well correspond to the rheological changes seen in 
Figure 1, and the plasticity of the PS-PB/C14 solution at low T is attributed to the macrolat-
tice of micelles: As seen later in Figure 3, the macrolattice elastically deforms for stresses a 
being smaller than the lattice strength (= yield value a,,) while it flows without disrupting 
micelles for a > a y. 

   Corresponding to the steady plastic flow behavior (Figure 1), PS-PB/C14 micellar solu-
tions exhibited unique dynamic responses against oscillatory strain. As an example, Figure 3 
shows Lissajous patterns (cw = 0.0524 s-1) obtained at 25°C for the 20 wt% PS-PB 16-36/C14 
solution containing a stable macrolattice (cf. Figure 2). As seen in Figure 3a, the solution ex-
hibits a rectilinear pattern against a small amplitude strain that induces a < a , (_400 dyn 
cm 2; cf. Figure 1). This pattern was independent of to (unless w was very high),' indicat-
ing the elastic response of the macrolattice before yielding. On the other hand, for a large 
amplitude strain inducing a > a ,„ the solution exhibits a lozenge-shaped pattern (Figure 3b). 
A similar pattern was observed also for an aqueous dispersion of charged PS latexes that 
formed a lattice due to electrostatic repulsion.' Thus, lattice forming fluids commonly exhibit 
nonlinear responses demonstrated in Figure 3. 

   The lozenge-shaped Lissajous pattern is phenomenologically related to the plasticity of 
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the system: In each cycle of oscillation, the elastic deformation followed by plastic flow is re-

peated twice in opposite direction to give that pattern.' The lozenge-shaped pattern should be 
also related to the lattice structure itself. From this point of view, we here examine a lattice 

model developed by Doi, Harden, and Ohta.73 Their results can be summarized as follows: 

For a lattice system composed of N lattice layers, the stress a (t) is considered to be uniform 

throughout the system. Then, a (t) is related to a local strain of k-th lattice layer Y r; (k = 

1,2,..,N) as 

a (t) = Go sin [Yk(t)]+Jt~dt'G1exp[—(t — t')/ r]ddt~t)(1) 
Here, the first term indicates the stress due to a thermodynamic potential for the lattice 

formation, and the second term, a contribution of some relaxation mechanism (like domain de-

formation) having a characteristic time r . Differing from the stress, the strain is not neces-

sarily uniform in the system. Then, the macroscopic strain Y is given as an average of Y k, 

1 
N  k(2) k=1 

Equations 1 and 2 provide a constitutive equation that describes rheological properties of the 

model lattice. (Modification of the potential and relaxation terms in eq 1 does not qualitative-

ly change the following model prediction.13) 

   For small Y , eqs 1 and 2 have a trivial solution, Y k = Y (k =1,2,..N). This solution cor-

responds to uniform deformation in the lattice and leads to a solid-like linear viscoelastic 

response.13 Specifically, at long time scales (at low w), the relaxation term in eq 1 vanishes 

and the elastic response with the equilibrium modulus Go is obtained. On the other hand, for 

large Y , the solution of eqs 1 and 2 is bifurcated and the trivial solution becomes unstable if 

the lattice includes even a tiny structural imperfection (that always exists in real lattice 

systems).13 For this case, eqs 1 and 2 have a stable solution representing a lattice plane slip-

page, Yk Y, and this solution leads to plastic steady flow behavior as well as nonlinear 

dynamic responses characterized with a lozenge-shaped Lissajous pattern.13 Thus, the Doi-

Harden-Ohta model qualitatively explains all characteristic features of the PS-PB/C14 micellar 

solution (Figures 1 and 3), suggesting that the plasticity of the solution is attributed to the 

slippage of the macrolattice planes. 

    Here, we would like to add a comment on structure-rheology relationship for lamellar 

block copolymer systems.'" Those systems exhibit very slow power-law type stress 

relaxation,'" as is similar to the elastic behavior of the PS-PB/C14 micellar systems in a 

sense that the terminal relaxation is not observed in usual time scales. However, the structural 

origin of the stress at long time scales is not the same for the two systems. The stress is 

generated whenever the macroscopic strain distorts the domain alignment. From this point of 

view, the stress for the lamellar systems at long time scales is attributed to defects of the 

lamellar alignment." 15 In fact, the stress is decreased when the lamellae are highly aligned to 

have less defects and the resulting one-dimensional long-range order of the lamellar alignment 

is not distorted by the applied strain."' On the other hand, the elastic stress of the micellar 

systems is due to deformation of the macrolattice: Any strain distorts the three-dimensional 

(cubic) order of the macrolattice and thus generates a restoring force even if no defect exists. 

Thus, the difference in rheological properties of the lamellar and micellar systems is related 

to the difference in the spatial symmetry of their domain alignment. (However, some effect of 
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defects exists also for the elasticity of the macrolattice, as discussed later in Figure 5.) 

Driving Force for Macrolattice Formation: The macrolattice of PS-PB micelles is formed most 

likely due to a balance of the thermodynamic requirements explained earlier. In the micellar 

solution examined in Figures  1 and 2, the PS-cores are glassy at low T. For such cases, the 

number of PS-PB contacts should be essentially the same for the two cases of randomly  dis-

persed and regularly arranged micelles, and the interfacial requirement would have no effect 

for the macrolattice formation. However, a balance of the osmotic and elastic requirements 

should still take place for the PB blocks that are tethered on the rigid PS cores. The macro-

lattice would have been formed so that the PB concentration (CpB) distribution in the PB/C14 

corona phase became as uniform as possible while the PB block conformation became as ran-

dom as possible. 

   This hypothesis was critically tested in two ways. In the first test, an overlapping con-

centration of micelles (C8) in PS-PB/C14 solutions was compared with the rheological transi-

tion concentration (CR*) above which the plasticity due to macrolattice emerges.' For the 

PS-PB samples listed in Table I, CR* and C* are summarized in Table II. As seen there, CR* 

is considerably close to C* and both CR* and C* decrease with increasing PB block molecular 

weight. This result suggests that the macrolattice is formed at around C* where the osmotic 

requirement on the PB blocks becomes enhanced, supporting the above hypothesis. 

    In the second critical test, rheological behavior was examined on ternary systems com-

posed of the PS-PB 16-36 copolymer, C14, and homo-PB (hPB) with M = 2000.E Figure 4 
shows their steady flow behavior at 25°C. In the systems examined, the PS-PB content was 

always 20 wt% and the hPB content w5PB in the remaining 80 wt% was varied. The PS-PB 

copolymers always formed spherical micelles with the PS cores and PB-corona, and the hPB 

molecules were involved in the PB/C14 corona phase. 

   As seen in Figure 4, the yield stress decreases with increasing w1,00 and finally vanishes 

for whpB 50 wt%. This result indicates that the hPB chains destroy the macrolattice, as 

                      Table I. Characteristics of PS-PB and PS-PI samples. 

         Code°10-3MP510 '8Tvl M,,./M„ 

                                PS-PB Diblock Copolymers 

       PS-PB 16-36`1636 1.5 

       PS-PB 20-462046 1.06 

       PS-PB 20-10020100 1.07 

       PS-PB 32-10232102 1.07 

       PS-PB 32-16032160 1.08 

       PS-PB 32-26232262 1.10 

PS-PI Diblock Copolymers 

PS-PI 5-55.34.6 1.05 

PS-PI 13-1012.59.5 1.06 

PS-PI 42-4341.542.5 1.07 

              a: code numbers indicate block molecular weights in unit of 1000. 
             b: polydiene block molecular weight; PD = PB or PI 

            c: Solprene 1205 (Phillips Co.) 
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                   Table II. Comparison of critical concentration  CR*  for 
                               plastic-to-viscous transition and micelle-over-

                            lapping concentration C* for PS-PB/C14 solu-
                             tions at 25°C. 

                   Sample Cz* (wt%) C* (wt%) 

           PS-PB 16-369-106.8 
           PS-PB 20-466-73.8 
           PS-PB 20-1002-32.5 
           PS-PB 32-1023-42.3 
            PS-PB 32-1601-22.2 

PS-PB 32-2621.2-1.51.6 
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   Fig. 4. Steady flow behavior of the PS-PB 16-36/hPB/C14 ternary systems at 25°C. The PS-PB 
          content is 20 wt% for all systems, and the numbers in the figure indicate the hPB content 

whpB (in wt%) in the remaining 80 wt%. 

also confirmed from SAXS measurements.' This effect of hPB supports the above hypothesis 

for macrolattice formation: A spatial variation of CYB due to randomization of PB block con-

formation can be compensated by the hPB chains that have no tethered ends and can move in 

the PB/C1 4 corona phase without a large burden on their conformation. Thus, in the ternary 

systems with large whPB, the osmotic and elastic requirements are no longer contradicting for 

the PB blocks and no driving force for macrolattice formation emerges. 

   As demonstrated in the above critical tests, the micelles are arranged on the macrolattice 

so that the osmotic and elastic requirements for the corona PB blocks are compromised. 
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   Fig. 5. Dependence of equilibrium modulus for PS-PB/C14 solutions at 25°C on number density 
         of PB blocks. Rigid macrolattices of spherical micelles are formed in all solutions. Un-

         filled circles: data for 20, 30, and 35 wt% PS-PB 16-36/C14 solutions; Unfilled squares: 
         data for 10 wt% C14 solutions of PS-PB 20-46 and 20-100; Unfilled triangles: data for 10 

         wt% C14 solutions of PS-PB 32-102, 32-162, and 32-262. Small filled symbols connected 
         with the dashed curves indicate entanglement plateau moduli for the solutions, and the 

         dash-dot line is the equilibrium modulus expected for a perfect macrolattice without de-
           fects. 

Thus, the thermodynamic stability of the macrolattice is determined by those requirements. 

This stability is observed as the modulus Go of the PS-PB/C14 solutions at sufficiently low w 

where the solutions exhibit elastic responses against small amplitude strain (cf. Figure 3a). 

Figure 5 shows dependence of Go/kT at w = 0.0136 s-1 (kT = thermal energy) on the PB 

block number density v en (CC CPB/MPB) for C14 solutions of the PS-PB samples listed in 

Table I. The data for 20, 30, and 35 wt% PS-PB 16-36/C14 solutions are indicated with the 

unfilled circles, and those for 10 wt% C14 solutions of the other five PS-PB samples, with the 

unfilled squares and triangles. These concentrations are well above CR* (Table II) and the 

solutions contain rigid macrolattices. 

   Figure 5 clearly demonstrates differences between Go and the entanglement plateau mod-

ulus Gent (small filled symbols): Go is significantly smaller than Goa, meaning that Go shown 

here has no entanglement contribution and is regarded as the equilibrium modulus. In addi-

tion, Go is proportional to v en irrespective of Men, while Gent (cc Cpu2) depends on both v PB 
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and MiB. The proportionality between Go and v PB indicates that each PB block works as an 

elastic strand to resist the small strain applied on the system. This result is in accordance 

with the feature of the driving force for macrolattice formation: In concentrated solutions ex-

amined in Figure 5, an osmotic compressibility is considerably small' so that the strain should 

hardly change the CpB-distribution in the PB/C14 corona phase. Then, the strain is directly 

transmitted to PB block conformation and each PB block as a whole behaves as the elastic 

strand," leading to the relation Go o v PB. 

   In Figure 5, we also find a puzzling result. The observed Go is 10 times smaller than the 

equilibrium modulus expected for a perfect macrolattice without defects, Go° = v pBkT (dash-

dot line). This result suggests that defects involved in actual macrolattices reduce the lattice 

rigidity. However, details of the reduction of rigidity due to defects are not yet clarified, and 

a further study is desired. 

3-2 Dielectric Relaxation of Block Copolymer Lamellar Systems. 

   The previous section examined thermodynamic effects on very slow dynamics of strongly 

segregated block copolymers through rheological tests. It is also interesting to study the 

effects on faster dynamics. For this purpose, we here examine dielectric relaxation of 

styrene-cis-isoprene (PS-PI) diblock copolymers at time scales covering both segmental and 

global motion of the PI blocks. 
PI chains have so-called type-A dipoles's parallel along their contour, so that their global 

motion (end-to-end vector fluctuation) induces prominent dielectric relaxation at long time 

scales.' "19'V0 In addition, PI chains also have type-B dipoles' perpendicular to the contour 

and exhibit fast dielectric relaxation corresponding to their segmental motion.°11y'° Thus, at 

T well above TgP' of the PI blocks but well below TNPS of the PS blocks, PS motion is frozen 

and we can clearly observe the segmental and global motion of the PI blocks through the 

dielectric behavior of the PS-PI copolymers. 

   Figure 6 shows dielectric loss (e ") curves at 0°C for the bulk PS-PI copolymers listed in 

Table I (symbols). PS/PI lamellae essentially parallel to the electrodes of a dielectric cell are 

formed in the system, and the dielectric dispersions seen here are attributed to motion of the 

PI blocks tethered on glassy PS domains. For comparison, e " data for precursor homo-PI 

(hPI) chains with molecular weights being identical to MN of the PI blocks are indicated with 

the clotted, solid, and clashed curves. Both PI block and hPI exhibit two distinct relaxation 

processes: The MN-independent relaxation at high w is induced by the segmental motion, 

while the MN-dependent relaxation at low co is due to the global motion. 

   The PI blocks in the lamellae should be thermodynamically confined by the osmotic and 

elastic requirements explained in the previous section, while the hPB chains are not. Never-

theless, Figure 6 indicates that the shape and location of the s " curve at high- co are nearly 

the same for the PI block and hPI. (The difference in the e " peak height is mainly due to 

the difference of the PI content in the system.) This result suggests that the segmental mo-

tion of the PI blocks is hardly affected by the thermodynamic confinement. 

   On the other hand, significant differences are found in Figure 6 for the low- w relaxation 

of the PI blocks and corresponding hPI: For hPI the terminal relaxation characterized by a re-

lation, e " cc w, is observed as soon as co is decreased below the e "-peak frequency 1N, 

while for the PI block E" is almost proportional to col/2-1 /3 and terminal relaxation is not 
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attained even at w Gwp. (Note that Che E"peals of Che Pl block does not con-espond to the

terminal relaxation.) Thus, the low-w relaxation due to end-to-end vector fluctuation is much

slower and broadei-for the PI block than for hPI having the sanle MPI.

   Figure 7 compares the shape(w dependence)of the e°curves at low w for the PI
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blocks and hPI examined in Figure 6. For easy comparison, the curves are reduced at their 

peaks. The shape of the E " curve reflects the dielectric mode distribution. Figure 7 indi-
cates that the mode distribution of hPI is quite insensitive to Mnr at long time scales (cf. dot-

ted, solid, and dashed curves), as also found in a previous study.-0 More importantly, almost 

MpI-independent mode distribution is observed also for the PI blocks (symbols). 

   The shortest PI block examined in Figures 6 and 7 has Mr1 well below M° (=10 X 103; en-

tanglement molecular weigle) and is in the non-entangled state, while the other two PI blocks 

(with MPr - Me and 4Mg) are entangled. Nevertheless, the unentangled and entangled PI 
blocks exhibit essentially the same relaxation mode distribution (cf. Figure 7). In addition, at 

low- w relative location of the c" curves for the PI block and corresponding hPI is insensi-

tive to Mph as seen in Figure 6. These results strongly suggest that the broad and retarded 

dielectric relaxation of the PI blocks is not due to entanglements but is essentially due to the 

thermodynamic requirements that constrain the global motion of the PI block. 

   The osmotic requirement is extremely strong for the PI blocks in bulk state, so that the 

motion of the PI blocks should be highly cooperative to maintain the uniform PI segment dis-

tribution in the PI lamellae. During this cooperative motion, the PI blocks having tethered 

ends should violate the elastic requirement and pay some entropic penalty to take distorted 

conformations. These cooperativity and penalty most likely lead to the very' slow and broad 

relaxation behavior of the PI blocks. The relaxation of the PI blocks looks similar to that of 

entangled star chains" in a sense that the retardation takes place due to an entropic penalty, 

although the penalty emerges from the thermodynamic confinement for the former but from 

the entanglement effect for the latter. 

   From the above argument, we expect that the dielectric behavior of PS-PI copolymers be-

comes closer to that of hPI chains when a PI-selective solvent is added, because the solvent in-

creases the osmotic compressibility and weaken the above requirement of cooperativity. This 

expectation was confirmed experimentally." Another consequence of the above argument is 

for the Mp1 dependence of the longest relaxation time r r of the PI blocks. Although r r 

were too long to be determined in our experiments, the similarity between the PI blocks and 

entangled star chains suggests r i for the PI blocks to increase exponentially with Mp1.2' A 

test for this expectation is interesting future work. 

                      4. CONCLUDING REMARKS 

   We have found that PS-PB/C14 micellar solutions exhibit plasticity and nonlinear dyna-

mic responses that are attributed to the macrolattice of micelles. The macrolattice is formed 

so that the osmotic and elastic requirements are compromised. Thus, the plasticity and non-

linearity of the micellar solutions are a rheologically observed thermodynamic effect. The 

effect was also observed for the slow dielectric relaxation of PS-PI diblock copolymers that re-

flects global motion of the PI blocks. The relaxation is strongly retarded and broadened due 

to the osmotic and elastic requirements on the PI blocks. Thus, the slow relaxation of the PI 

blocks and the unique rheology of the micellar solutions commonly have a thermodynamic ori-

gin. It is of particular interest to interrelate other characteristic properties of block copolym-

ers (like enhanced adhesion''°) under the concept of thermodynamic confinement. 
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