Title

Studies on Alkyne-Based Transition Metal-Carbene and Vinylidene Complexes Aimed at Efficient Catalytic Reactions

Dissertation_全文

Author(s)

Miki, Koji

Citation

Kyoto University (京都大学)

Issue Date

2003-11-25

URL

https://doi.org/10.14989/doctor.k10499

Type

Thesis or Dissertation

Textversion

author
Studies on Alkyne-Based Transition Metal-Carbene and -Vinylidene Complexes Aimed at Efficient Catalytic Reactions

Koji Miki

2003
Studies on Alkyne-Based Transition Metal-Carbene and -Vinylidene Complexes Aimed at Efficient Catalytic Reactions

Koji Miki

Department of Energy and Hydrocarbon Chemistry
Graduate School of Engineering
Kyoto University

2003
Contents

General Introduction 1

Part I Generation of Cyclic Fischer-Type Carbene Complexes from Vinylidene Complexes and Their Application to Catalytic Reactions 13

Chapter 1 Synthesis of 2-Pyranlylidene Complexes from Conjugated Ene-Yne-Carbonyl Compounds with Group 6 Transition Metal Complexes 14

Chapter 2 Chromium- and Tungsten-Triggered Valence Isomerism of cis-1-Acyl-2-ethynylcyclopropanes via [3,3]Sigmatropy of (2-Acyclopropyl)vinylidene-Metal Intermediates 43

Part II Generation of (2-Furyl)carbene Complexes from π-Alkyne Complexes and Their Application to Catalytic Carbene Transfer Reactions 75

Chapter 3 Synthesis of (2-Furyl)carbene Complexes from Conjugated Ene-Yne-Ketones with Group 6 Transition Metal Complexes 76

Chapter 4 Novel Approach for Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne with Transition Metal Compounds 87
Chapter 5 Rhodium-Catalyzed Cyclopropanation Using Ene-Yne-Imino Ethers as Precursors of (2-Pyrrolyl)carbenoids

Chapter 6 Chromium- and Rhodium-Catalyzed Insertion Reactions Using Ene-Yne-Carbonyl Compounds as Precursors of (2-Furyl)carbenoids

Chapter 7 Doyle-Kirmse Reaction of Allylic Sulfides with Diazooalkane-Free (2-Furyl)carbenoid Transfer

Chapter 8 Polyaddition and Polycondensation Reactions of (2-Furyl)carbenoid as Step-Growth Polymerization Strategies: Synthesis of Furfurylidene-Containing Polymers

Part III Transition Metal-Catalyzed Carbene Transfer Reactions Using Propargylic Carboxylates as Precursors of Vinylcarbenoids

Chapter 9 Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Carboxylates as Precursors of Vinylcarbenoids

Chapter 10 Ruthenium-Catalyzed Ring-Opening Reactions of Heteroaromatic Compounds Using Propargylic Carboxylates as Precursors of Vinylcarbenoids

General Conclusion

List of Publications

Acknowledgments
General Introduction

Generation of Carbene, Vinylidene, and Allenylidene Complexes

Carbene complexes, which have formal metal-to-carbon double bonds, are known for metals across the entire transition series (Figure 1).\(^1\) Two extreme types of carbene complexes, \(\text{L}_n \text{M} = \text{CR}_2\), are represented by (1) Fischer-type carbene complexes which involve low oxidation state late transition metals, \(\pi\)-acceptor ligands, \(\pi\)-donor substituent \(R\) on carbene carbon, and \(\delta^+\) charged electrophilic carbene carbon, (2) Schrock-type carbene complexes which involve high oxidation state early transition metals, non-\(\pi\)-acceptor ligands, non-\(\pi\)-donor \(R\) groups, and \(\delta^-\) charged nucleophilic carbene carbon. The first isolated carbene complexes was characterized by E. O. Fischer in 1964.\(^2\) The first example of Schrock type carbene complex was alkylidene tantalum complexes discovered by R. R. Schrock in 1974.\(^3\) After these landmark discoveries this field has developed very rapidly,

\[
\begin{align*}
\text{carbene complex} & : \text{R} & \delta^+ \delta^- & \text{[M]} \\
\text{vinylidene complex} & : \text{R} & \delta^- & \text{[M]} \\
\text{allenylidene complex} & : \text{R} & \delta^+ & \delta^- & \text{[M]}
\end{align*}
\]

Figure 1. Transition Metal Complexes Having Metal-Carbon Double Bond

and new varieties of carbene complexes have been widely applied as versatile intermediates or catalysts to a variety of organic unit reactions, total synthesis of natural products, and polymer chemistry.\(^1\) From the 1980s, the \textit{in situ} generation of carbenoid species from diazoalkanes and transition metal complexes has been most widely used for catalytic carbene transfer reactions.\(^4\) Recently, much attention has been paid to activation of alkynes with transition metal complexes as another method to generate carbenoid species. For example, as shown in Scheme 1, it appears reasonable to anticipate that the pre-equilibrium between \(\eta^2\)-alkyne complex and charge separated \(\eta^1\)-vinyl cation complex would be responsible for generation of carbenoid and related species having a metal-carbon double bond from alkynes.
and transition metal compounds. In fact, it has been reported that a reactive carbene complex could be generated via an intramolecular nucleophilic attack of π-electron of alkenes and oxygen or nitrogen atoms to a cationic carbon of \(\eta^1 \)-vinyl cation complex and/or an internal carbon of \(\eta^2 \)-alkyne complex (Scheme 2).\(^{5-10}\)

Vinylidene and allenylidene complexes, in which transition metals stabilize otherwise reactive vinylidene and allenylidene species, are also known for many transition metals (See also Figure 1).\(^{11}\) The first isolated mononuclear vinylidene-metal complexes were prepared by migration of a chlorine atom from an \(\alpha \)-chloroalkenyl ligand with concomitant displacement of carbonyl ligands by a phosphine,\(^{12}\) although cationic vinylidene intermediates generated by protonation of alkynyl-metal species had so far been proposed.\(^{13}\) As shown in Scheme 1, the most straightforward route to vinylidene-metal complexes is indebted to 1,2-hydrogen migration from a \(\eta^2 \)-alkyne complex\(^{14}\) or 1,3-shift of a hydride from the metal center to the alkynyl ligand formed by oxidative addition of the alkynyl C-H bond to the metal.\(^{15}\) A vinylidene complex, which has a suitable functional group for elimination at a propargylic position of the starting alkyne, for example, propargyl alcohol,
could be converted to allenylidene complex. Since facile and useful methods to generate vinylidene and allenylidene complexes from alkynes were discovered, several catalytic reactions via vinylidene and allenylidene species as highly reactive intermediates have been reported to date.

The author focused his attention on the development of new catalytic reactions via transition metal complexes having a metal-carbon double bond (especially carbene and vinylidene complexes) generated from alkynes. The general concept in this thesis is shown in Figure 2: *in situ generation of reactive intermediary carbenoids from alkynes via intramolecular nucleophilic attack of a carbonyl oxygen to the initially formed vinylidene complexes or π-alkyne complexes leading to endo-dig and/or exo-dig cyclizations in which a pair of electrons is accommodated in the cyclic structure through its conjugation.*

![Figure 2. The General Concept for Synthesis of Reactive Intermediary Carbenoids](image)

Abstract of This Thesis

This thesis is composed of Parts I-III. Part I, which consists of two chapters, deals with synthesis of 2-pyrynylidene complexes via electrocyclization of vinylidene-ene-carbonyl complexes (Chapter 1) (eq 1) and their application to catalytic transformation of ethynylcyclopropanes (Chapter 2) (eq 2). Although many nucleophiles have been known to attack a vinylidene α-carbon in both of stoichiometric and catalytic reactions, few attentions have been paid for carbonyl oxygen as a nucleophile. The author first has demonstrated this concept in preparing cyclic Fischer-type carbene complexes which lead to arene derivatives by further transformation. This success stimulated him to make further efforts to investigate catalytic reactions using cyclic carbene complexes as intermediates. As shown in Chapter 2, the author has described the valence isomerism of 1-acyl-2-
ethynylcyclopropanes via [3,3]sigmatropy of cyclopropanes involving a vinylidene-metal moiety as a vinylogous function.19

\[
\begin{align*}
\text{[M]} &= [\text{Cr}], [\text{Mo}], [\text{W}] \\
R &= \text{OR}', \text{NR}^2
\end{align*}
\]

The author has next described the in situ generation of carbene complexes from ene-yne-carbonyl and -imino compounds, and their application to catalytic carbene transfer reactions in Part II which consists of Chapters 3-8. The in situ generation of carbenoid species from diazoalkanes with transition metal complexes has been well documented and the species are most applicable to various carbene transfer reactions.1,20 As mentioned above, activation of alkynes with transition metal complexes to generate carbenoid species is a powerful alternative method for catalytic carbene transfer reactions involving carbenoid intermediates. The author newly disclosed the formation of (2-furyl)carbene complexes generated in situ from ene-yne-ketones by nucleophilic attack of a carbonyl oxygen at an internal alkyne carbon activated by group 6 transition metal complexes (Chapter 3) (eq 3). The generation of (2-furyl)carbenoids led him to find the group 6 transition metal-catalyzed cyclopropanation reaction of alkenes with ene-yne-ketones leading to furylcyclopropanes (Chapter 4) (eq 4). Transition metal compounds which have been widely accepted as effective catalysts for cyclization and skeletal reorganization of 1,6-enynes proved to be effective for the present catalytic cyclopropanation reactions.5,6
In Chapter 5, the author has described the rhodium-catalyzed cyclopropanation via the formation of (2-pyrrolyl)carbenoid as a nitrogen analogue of (2-furyl)carbenoid (eq 5). The key intermediate of this cyclopropanation is (2-pyrrolyl)carbenoids generated by the nucleophilic attack of an imine nitrogen atom to an internal alkyne carbon activated by the rhodium complex. Similar cyclopropanation reactions with ene-yne-esters and -amides were unsuccessful (Chapter 1) (eq 1), while the reactions of ene-yne-imino ethers, which are structural isomers of ene-yne-amides, gave 2-pyrrolylcyclopropanes.

(2-Furyl)carbenoids generated in situ from ene-yne-ketones are also useful intermediates for other (2-furyl)carbene transfer reactions, such as σ-bond insertion reactions and ylide formation reactions, as shown in Chapters 6 and 7, respectively. In these cases, ene-yne-carbonyl compounds having an electron-withdrawing group R^2, which could be anticipated to enhance the electrophilicity of intermediary carbenoid species to carbene
acceptors, reacted efficiently rather than ene-yne-ketones having terminal alkynes to give carbenoid-insertion products (eqs 6 and 7).

In Chapter 8, the author has described results of application of the (2-furyl)carbene transfer reactions to polymer synthesis. As shown in Scheme 3, the rhodium-catalyzed polymerizations of ene-yne-ketones having suitable functionalities on phenyl ring as carbene acceptors gave furylcyclopropane- and furfurylidene-containing polymers. Unique structures of alternating copolymers having regularly embedded furylcyclopropanes or furfurylidenes would attract a great deal of interest in polymer chemistry.

Scheme 3

The author has finally described the catalytic reactions using propargylic carboxylates as vinylcarbenoid precursors (Part III). The author extended the principle of 5-exo-dig
cyclization mode of yne-carbonyl compounds activated by transition metals to the propargylic carboxylates, and succeeded in generation of vinylcarbenoids (Scheme 4). In Chapter 9, the author has demonstrated an efficient intermolecular catalytic cyclopropanation between alkenes and propargylic acetates for the first time (eq 8). In Chapter 10, the catalytic vinylcarbenoid transfer reactions to heteroaromatic compounds has been described (eq 9).24
References and Notes

Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (e)
Chem. 2002, 67, 5197. (f) Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren,

(7) For dialkylidene ruthenium species from ω-diynes, see: Yamamoto, Y.; Kitahara, H.;

(8) For transition metal-containing carbonyl ylides, see: (a) Iwasawa, N.; Shido, M.;
2002, 124, 11592.

(9) For copper-(isoindazolyl)carbenoids from (2-ethynylphenyl)triazenes, see: (a) Kimball,

(10) For vinylcarbenoids from propargylic carboxylates, see: (a) Rautenstrauch, V.
(c) Mainett, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew.
palladium catalyst has been reported, see: (d) Kataoka, H.; Watanabe, K.; Goto, K.

(11) For reviews on vinylidene transition metal complexes, see: (a) Bruce, M. I. Chem. Rev.

Part I

Generation of Cyclic Fischer-Type Carbene Complexes from Vinylidene Complexes and Their Application to Catalytic Reactions
Chapter 1

Synthesis of 2-Pyrynylidene Complexes from Conjugated Ene-Yne-Carbonyl Compounds with Group 6 Transition Metal Complexes

Abstract

The reaction of conjugated ene-yne-carbonyl compounds, such as 1-alkoxycarbonyl or 1-carbamoyl-2-ethynylcycloalkenes, with Cr(CO)₅(THF), Mo(CO)₅(NEt₃), or W(CO)₅(THF) gave the corresponding 6-alkoxy- and 6-amino-2H-pyrynylidene-chromium, -molybdenum, or -tungsten complex, respectively. A cycloisomerization reaction of the conjugated vinylidene-ene-carbonyl complexes generated from 1-alkoxycarbonyl- or 1-carbamoyl-2-ethynylcycloalkenes and transition metal complexes is a key route to these Fischer-type carbene complexes. The crystal structure of 6-methoxy-2H-pyrynylidene-tungsten complex 2b has been determined by X-ray diffraction. New pyrynylidene complexes undergo [4 + 2] cycloaddition reaction with acetylides to give aromatic rings together with the liberation of metal hexacarbonyls.
Introduction

Transition metal carbene complexes, especially Fischer-type carbene complexes, have been widely studied and applied to organic syntheses as versatile organometallic reagents.1,2 Typical carbene complexes like \((\text{CO})_5\text{M=C(OR')}\text{R}\) are readily prepared by the reaction of the metal hexacarbonyl with a range of organolithium reagents. It has also been demonstrated that nucleophilic addition of an alcoholic O-H bond to the \(\alpha\)- and \(\beta\)-carbons of a vinylidene complex \((\text{M=C}_\alpha=\text{C}_\beta, \text{M = Cr, Mo, W})\) generated from an \(\omega\)-alkynol provides new access to carbene complexes as intermediates in catalytic reactions and isolable intermediates in stoichiometric reactions.3-5 The author describes herein a new approach for 2-pyranlidene complex \(\text{2}\) as a group 6 transition metal cyclic carbene complex via vinylidene-ene-carbonyl complex \((\text{A})\) produced from the conjugated compound \(\text{1}\) (Scheme 1).6,7

![Scheme 1]

The structure of \(\text{2}\) represents the \(\alpha\)-metalo analogue of \(\alpha\)-pyrone.8 Although the reactivity as well as the structural feature is of much interest, the studies on 2-pyranlidene complexes are still limited.9,10 Thus, he also describes synthetic application of these 2-pyranlidene complexes \(\text{2}\) as an enophile to \([4 + 2]\) cycloaddition.
Results and Discussion

As a first attempt to investigate the idea described above, the author undertook reactions of conjugated ene-yne-carbonyl compounds with group 6 metal complexes, which are capable of the formation of stable Fischer-type carbene complexes. When 2-ethynyl-1-methoxycarbonylcyclopent-1-ene (1a) (0.5 mmol) was treated with 1.2 equiv of preformed W(CO)₅(THF)¹¹ at room temperature, the corresponding 2-pyranylidene-tungsten complex 2a was isolated in 38% yield (eq 1). The complex 2a is stable enough to be purified by silica gel column chromatography. The reaction condition was further optimized and the generality of the reaction of ene-yne-carbonyl compounds with group 6 metal carbonyl complexes was examined. Results are shown in Table 1. Reactions of 1a with an excess amount of W(CO)₅(THF) gave better yields of 2a, in 51% (2.0 equiv of W) and 75% (3.0 equiv of W), respectively (entries 2 and 3). Although the condition under THF reflux was required, the reaction of 2-ethynyl-1-methoxycarbonylcyclohex-1-ene (1b) with W(CO)₅(THF) was complete within 0.5 h to give the corresponding 2-pyranylidene-tungsten complex 2b in 63% yield as well (entry 4). Similar 2-pyranylidene-molybdenum complex 3b was obtained in 35% yield from 1b and preformed Mo(CO)₅(NEt₃)¹² (entry 5). An amide compound, 2-ethynyl-1-(N,N-diethylcarbamoyl)cyclohex-1-ene (1c), also reacted with W(CO)₅(THF) at reflux temperature in THF to give 6-(N,N-diethylamino)pyranylidene complex 2c in 68% yield (entry 6). The formation of 2-pyranylidene-tungsten complexes, 2d and 2e from 1d and 1e, demonstrated the tolerance of an ω-alkenyl or an internal alkynyl moiety in the substrate (entries 7 and 8). The simplest substrate, 2-phenylethyl (Z)-pent-2-en-4-ynoate (1f) was...
<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>conditions</th>
<th>product</th>
<th>isolated yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>W(CO)$_5$(THF) (1.2 equiv) THF, rt, 4 h</td>
<td></td>
<td>38%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>W(CO)$_5$(THF) (2.0 equiv) THF, rt, 4 h</td>
<td></td>
<td>51%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>W(CO)$_5$(THF) (3.0 equiv) THF, rt, 4 h</td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>W(CO)$_5$(THF) (2.0 equiv) THF, reflux, 0.5 h</td>
<td></td>
<td>63%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Mo(CO)$_5$(NEt$_3$) (1.2 equiv) Et$_2$O, Et$_3$N, rt, 3 h</td>
<td></td>
<td>35%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>W(CO)$_5$(THF) (3.0 equiv) THF, reflux, 0.5 h</td>
<td></td>
<td>68%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>W(CO)$_5$(THF) (3.0 equiv) THF, reflux, 0.5 h</td>
<td></td>
<td>55%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>W(CO)$_5$(THF) (2.0 equiv) THF, reflux, 0.5 h</td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>W(CO)$_5$(THF) (3.0 equiv) THF, reflux, 0.5 h</td>
<td></td>
<td>58%</td>
</tr>
</tbody>
</table>

Reactions were carried out with 1 (0.2-0.5 mmol) under Ar. The solution of M(CO)$_5$(L) was prepared by irradiating a THF or Et$_2$O solution of M(CO)$_6$ for 4 h with a high-pressure Hg lamp (450 W).
reacted with W(CO)\textsubscript{5}(THF) to give 6-(2-phenylethoxy)pyranylidene-tungsten complex \textbf{2f} in 58\% yield (entry 9).

Next, the author examined the preparation of 2-pyranylidene-chromium complexes from Cr(CO)\textsubscript{5}(L) (L = OEt\textsubscript{2}, THF), which was prepared by photo-irradiation, but the same procedure using W(CO)\textsubscript{5}(THF) was unsuccessful. When the reaction with these chromium complexes was examined in more detail, it was found that the reaction of ene-yne-carbonyl compounds \textbf{1b} with Cr(CO)\textsubscript{5}(NM\textsubscript{e}\textsubscript{3}), prepared from Cr(CO)\textsubscript{6} and Me\textsubscript{3}N+O-, gave 2-pyranylidene-chromium complex \textbf{4b} in 9\% yield (eq 2). The author considered that trimethylamine, which is generated from the reaction between Cr(CO)\textsubscript{6} and Me\textsubscript{3}N+O-, might play some role in the formation of the pyranylidene complex. Then, he tried the reaction using an amine as an additive (Table 2). Although the reaction of \textbf{1b} with Cr(CO)\textsubscript{5}(OEt\textsubscript{2}) in the absence of triethylamine gave none of \textbf{4b}, the reaction proceeded in the presence of triethylamine to give the complex \textbf{4b} in 27\% isolated yield together with the recovered \textbf{1b}

\begin{equation}
\begin{array}{ccc}
\text{OMe} & \text{3 equiv Cr(CO)}_{6} & \text{3 equiv Me}_{3}\text{N}^{+}\text{O}^{-} \\
\text{1b} & \text{Et}_{2}\text{O, rt, 3 h} & \text{4b (9\% yield)}
\end{array}
\end{equation}

\textbf{Table 2. Preparation of 2-pyranylidene-chromium Complex 4b}

<table>
<thead>
<tr>
<th>solvent</th>
<th>additive</th>
<th>isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et\textsubscript{2}O (30 mL)</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Et\textsubscript{2}O (30 mL)</td>
<td>Et\textsubscript{3}N (0.1 mL)</td>
<td>27</td>
</tr>
<tr>
<td>THF (20 mL)</td>
<td>Et\textsubscript{3}N (0.1 mL)</td>
<td>62</td>
</tr>
</tbody>
</table>

aThe solution of Cr(CO)\textsubscript{5}(L) was prepared by irradiating Cr(CO)\textsubscript{6} in Et\textsubscript{2}O or THF for 4 h with a high-pressure Hg lamp (450 W).
Table 3. Preparation of Pyranylidene-chromium Complexes from Conjugated Ene-yne-carbonyl Compounds and Cr(CO)$_5$(L)a, b

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>product</th>
<th>isolated yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>![Image of 1b]</td>
<td>![Image of 4b]</td>
<td>15%</td>
</tr>
<tr>
<td>2d</td>
<td>![Image of 1b]</td>
<td>![Image of 4b]</td>
<td>33%</td>
</tr>
<tr>
<td>3</td>
<td>![Image of 1b]</td>
<td>![Image of 4b]</td>
<td>62%</td>
</tr>
<tr>
<td>4e</td>
<td>![Image of 1c]</td>
<td>![Image of 4c]</td>
<td>68%</td>
</tr>
<tr>
<td>5e</td>
<td>![Image of 1g]</td>
<td>![Image of 4g]</td>
<td>69%</td>
</tr>
<tr>
<td>6e</td>
<td>![Image of 1h]</td>
<td>![Image of 4h]</td>
<td>50%</td>
</tr>
<tr>
<td>7e, f</td>
<td>![Image of 1i]</td>
<td>![Image of 4l]</td>
<td>8%</td>
</tr>
</tbody>
</table>

a Reactions were carried out with 1 (0.2 mmol) at room temperature for 2 h under Ar.
b The solution of Cr(CO)$_5$(L) was prepared by irradiating a solution of Cr(CO)$_6$ (0.6 mmol) and triethylamine (0.1 mL) in THF (20 mL) for 4 h with a high-pressure Hg lamp (450 W).
c 1b (0.5 mmol).
d 1b (0.3 mmol).
e Reaction time was 0.5 h.
f 1i (0.6 mmol) and triethylamine (1.0 mL) were used.
The use of THF instead of Et₂O as a solvent gave better yield of 4b. The reactions of other substrates with Cr(CO)₅(THF) in the presence of triethylamine were next examined. Selected results are shown in Table 3. Reactions of 1b with a lesser amount of Cr(CO)₅(THF) gave lower yields of 4b in 15% (1.2 equiv of Cr) and 33% (2.0 equiv of Cr), respectively (entries 1 and 2). The reaction of an amide 1c with Cr(CO)₅(THF) at room temperature for 0.5 h also gave the corresponding 2-pyranylidene-chromium complex 4c in 68% yield (entry 4). An ester 1g and an amide 1h gave similar complexes 4g and 4h in 69% and 50% yields, respectively (entries 5 and 6). However, when the reaction of ene-yne-ketone 1i instead of ene-yne-ester or -amide with chromium complex was examined in the presence of triethylamine, the corresponding 2-pyranylidene-chromium complex 4i was obtained in only 8% yield together with many unidentified products (entry 7). This result indicates that ene-yne-ketones are not suitable for synthesis of 2-pyranylidene complexes. [In the case of reactions of ene-yne-ketones without triethylamine, different reaction mode has been found and it will be discussed in Chapter 3.] At present, he assumes that triethylamine facilitates formation of a vinylidene-chromium intermediate from a Π-alkyne-chromium complex (Scheme 2).

![Scheme 2](image)

These are all new α,γ-dienyl Fischer-type carbene complexes, the structure of one of them being unambiguously determined by X-ray diffraction. An ORTEP drawing of the complex 2b is shown in Figure 1. The W(1)-C(1) bond length (2.215(6) Å) is almost similar to the W-C(carbene) bond (2.02-2.22 Å) in typical tungsten-oxacarbene complex. The C(1)-O(1) bond length of 1.430(7) Å indicates the lack of multiple bonding between pyrane
Figure 1. ORTEP drawing of the complex 2b. Selected bond lengths (Å): W(1)-C(1) = 2.215(6), C(1)-C(2) = 1.362(9), C(1)-O(1) = 1.430(7), C(2)-C(3) = 1.404(8), C(3)-C(8) = 1.383(8), C(8)-C(9) = 1.382(9), C(9)-O(1) = 1.321(7), C(9)-O(2) = 1.316(7).

oxygen and the carbene carbon, otherwise in typical oxacarbene complex C(carbene)-O(1) bond length being in the range of 1.30-1.35 Å. The O(1)-C(9) bond length of 1.321(7) Å as well as that of C(9)-O(2) bond of 1.316(7) Å indicates substantial multiple bonding in the complex 2b. ¹³C NMR chemical shifts of carbene carbons of the complexes 2 were all observed in the higher-field of 220-236 ppm compared with those observed in 321-347 ppm of typical carbene complex. These data strongly support the contribution of the resonance structures shown in Scheme 3.

Scheme 3
The structure of pyranylidene complexes represents α-metalopyrone. Therefore, the author envisaged cycloaddition reaction of these 2-pyranylidene complexes with dienophiles. The reaction of 2-pyranylidene-tungsten complex 2b with an excess amount of dimethyl acetylenedicarboxylate (DMAD, 15 equiv) gave the tetralin derivative 5b in 27% isolated yield (Table 4, entry 1). The complex 2c also reacted with DMAD to give the corresponding tetralin derivative 5c in 25% yield (entry 2). The tetralin derivatives 5b and 5c were also obtained from similar chromium complexes 4b and 4c in 26% and 25% yields, respectively (entries 3 and 4). The use of solvent, such as toluene, did not positively affect the reaction.

Table 4. Reaction of Pyranylidene Complex with Dimethylacetylene Dicarboxylate

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>solvent</th>
<th>product</th>
<th>yield (%)^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2b</td>
<td>—</td>
<td>5b</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>2c</td>
<td>—</td>
<td>5c</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>4b</td>
<td>—</td>
<td>5b</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>4c</td>
<td>—</td>
<td>5c</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>4b</td>
<td>toluene</td>
<td>5b</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>4b</td>
<td>dioxane</td>
<td>5b</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>4b</td>
<td>DMSO</td>
<td>5b</td>
<td>0^b</td>
</tr>
</tbody>
</table>

^a Isolated yield. ^b An enyne carbonyl compound 1b was obtained in 59% yield.

The reaction in DMSO resulted in demetallation leading to the formation of the compound 1b in 59% yield (entry 7). However, the reaction of 4b with an electron-rich dienophile, such as ethyl ethynyl ether gave only a trace amount of tetralin derivative as one isomer (eq 3). The transformation was explained by assuming [4 + 2] cycloaddition reaction between 2-pyranylidene complex and the acetylene followed by a pericyclic demetallation of group 6.
metal hexacarbonyl (Scheme 4). The demetallation step is quite similar to decarboxylation step in the [4 + 2] cycloaddition of \(\alpha \)-pyrone.

\[
\begin{align*}
\text{Scheme 4} \\
2 \text{ or } 4 & \xrightarrow{E \equiv \equiv E} \text{[Vinylidene-metal intermediate]} \xrightarrow{M(CO)_{10}} 5b \text{ or } 5c \\
\text{[Equation 3]} \\
\end{align*}
\]

In conclusion, the author demonstrated that a nucleophilic attack of a carbonyl oxygen to a vinylidene-metal intermediate generated from terminal acetylenes and group 6 metal carbonyl complexes provides new entry to a pyranlylidene-metal complex. Further, he disclosed the reactivity of newly prepared 2-pyranlylidene complexes in a [4 + 2] cycloaddition. Considering the facile formation of a vinylidene-metal complex from a terminal alkyne and the regeneration of a metal hexacarbonyl with [4 + 2] cycloaddition, this reaction protocol will be applicable to catalytic reactions.
Experimental

General Procedure. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone ketyl under argon. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl$_3$ or d_8-THF with Me$_4$Si as an internal standard (1H and 13C); the following abbreviations are used: s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL LMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University.

Synthesis of Substrates

Substrates 1 were prepared by the procedures shown in Scheme 5.

Scheme 5

6a ($n=1$)
6b ($n=2$)

1a, 1b

1c-1e

COOH (ref. 17)

8

1f-1h
Typical Procedure for Preparation of Aldehyde 6.15

2-Bromo-1-cyclopentene-carbaldehyde (6a).

To a mixture of DMF (50 mL) and CHCl₃ (100 mL) was slowly added PBr₃ (11.6 mL, 120 mmol) at 0 °C under N₂. The pale yellow slurry was stirred at room temperature for 2 h. A solution of cyclopentanone (8.8 mL, 100 mmol) in CHCl₃ (10 mL) was added dropwise to the above slurry at reflux temperature. The mixture was stirred at this temperature for 2 h, cooled to room temperature, poured into 1 N KOH aqueous solution (100 mL), and extracted with Et₂O (200 mL x 3). The extract was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to short column chromatography on SiO₂ with hexane/AcOEt (v/v=5/1) to afford 6a (8.8 g, 50 mmol, 50% yield) as a colorless liquid; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.70-1.74 (m, 4H), 2.41-2.45 (m, 2H), 2.60-2.66 (m, 2H), 10.97 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 21.3, 23.9, 28.6, 38.0, 129.4, 129.6, 172.2.

2-Bromo-1-cyclohexene-carbaldehyde (6b).

A colorless liquid (45% yield); ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.61-1.82 (m, 4H), 2.24-2.32 (m, 2H), 2.70-2.78 (m, 2H), 10.01 (s, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.1, 24.2, 25.0, 38.8, 135.2, 143.6, 193.7.

Typical Procedure for Preparation of Carboxylic Acid 7.16

2-Bromo-1-cyclopentene-carboxylic acid (7a).

A solution of NaClO₂ (80% purity, 3.2 g, 28 mmol) in water (30 mL) was added dropwise to a stirred mixture of 6a (3.5 g, 20 mmol) in CH₃CN (20 mL), NaH₂PO₄ (0.64 g) in water (10 mL), and 30% aqueous H₂O₂ (2.4 mL), keeping the temperature at 10 °C with water cooling. Oxygen evolved from the solution was monitored until the end of the reaction (about 2 h) with a bubbler connected to the apparatus. The mixture was poured into saturated Na₂CO₃ aqueous solution (50 mL),
and washed with Et₂O (30 mL). The aqueous phase was poured into 1 N HCl solution (200 mL), and extracted with Et₂O (50 mL x 3). The extract was dried over MgSO₄. The organic solvent was removed under reduced pressure to afford 7a (2.9 g, 15 mmol, 76% yield) as a white solid; mp 119.5-120.9 °C; IR (KBr) 1670 (C=O), 1682 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.98 (q, J = 7.8 Hz, 2H), 2.63-2.70 (m, 2H), 2.81-2.87 (m, 2H), 7.52-10.25 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.6, 32.8, 43.5, 131.4, 135.6, 169.2. Anal. Calcd for C₆H₇BrO₂: C, 37.73; H, 3.69. Found: C, 37.46; H, 3.65.

2-Bromo-1-cyclohexenecarboxylic acid (7b).

A white solid (92% yield); mp 98.8-100.9 °C; IR (KBr) 1624 (C=O), 1690 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.70-1.74 (m, 4H), 2.41-2.45 (m, 2H), 2.50-2.56 (m, 2H), 2.97-3.02 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 21.3, 23.9, 28.6, 38.0, 129.4, 129.6, 172.2. Anal. Calcd for C₇H₉BrO₂: C, 41.00; H, 4.42. Found: C, 40.84; H, 4.29.

Typical Procedure for Esterification with Diazomethane. Diazomethane gas, which was generated from N-methyl-N-nitrosourea, was flowed into an ethereal solution of the carboxylic acid. The solvent was removed under reduced pressure to afford a colorless liquid of the methyl ester, quantitatively.

Methyl 2-bromo-1-cyclopentenecarboxylate (8a).

A colorless liquid (100% yield); IR (neat) 1712 (C=O), 1716 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.95 (q, J = 7.8 Hz, 2H), 2.60-2.65 (m, 2H), 2.77-2.82 (m, 2H), 3.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.6, 33.0, 43.0, 51.5, 131.7, 132.5, 164.5. Anal. Calcd for C₆H₇BrO₂: C, 41.00; H, 4.42. Found: C, 40.70; H, 4.25.

Methyl 2-bromo-1-cyclohexenecarboxylate (8b).

A colorless liquid (100% yield); IR (neat) 1732 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.68-1.72 (m, 4H), 2.32-3.38 (m, 2H), 2.55-2.61
Typical Procedure for Coupling Reaction of 8 with Trimethylsilylacetylene.

Methyl 2-(trimethylsilylethynyl)-1-cyclopentenecarboxylate (9a).

To a solution of trimethylsilylacetylene (0.50 mL, 3.5 mmol) in benzene (4 mL) were added n-BuNH₂ (1.7 mL) and 8a (0.61 g, 3.0 mmol) at room temperature under N₂. To the solution were added CuI (0.10 g, 0.50 mmol) and then Pd(PPh₃)₄ (0.17 g, 0.15 mmol). The mixture was stirred at room temperature for 2 h. The organic phase was washed with brine (10 mL), and the aqueous phase was extracted with Et₂O (20 mL x 2). The combined organic phase was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=10/1) to afford 9a (0.49 g, 2.2 mmol, 73% yield) as a colorless liquid; IR (neat) 1705 (C=C), 1726 (C=O), 2144 (C≡C) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.21 (s, 9H), 1.89 (quint, J = 7.8 Hz, 2H), 2.60-2.70 (m, 2H), 3.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 0.2, 22.2, 33.3, 39.3, 100.5, 106.0, 134.2, 139.2, 164.8. Anal. Calcd for C₁₃H₁₉O₂Si: C, 64.82; H, 8.16. Found: C, 64.71; H, 7.87.

Methyl 2-(trimethylsilylethynyl)-1-cyclohexenecarboxylate (9b).

A colorless liquid (90% yield); IR (neat) 1705 (C=C), 1727 (C=O), 2142 (C≡C) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.20 (s, 9H), 1.58-1.63 (m, 4H), 2.32-2.38 (m, 2H), 3.73-3.79 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 0.0, 21.6, 21.8, 26.4, 32.2, 51.5, 101.5, 104.6, 127.9, 135.6, 168.0. Anal. Calcd for C₁₃H₂₀O₂Si: C, 66.05; H, 8.53. Found: C, 66.25; H, 8.80.
2'-Phenylethyl (Z)-5-(trimethylsilyl)pent-2-en-4-ynoate (9f).

A colorless liquid (52% yield, for three steps); IR (neat) 1712 (\text{C}=\text{C}), 1728 (\text{C}=\text{O}), 2152 (\text{C}=\text{C}) \text{ cm}^{-1}; ^1\text{H NMR (300 MHz, CDCl}_3, 25 ^\circ\text{C}) \delta 0.24 (s, 9H), 3.00 (t, J = 6.9 Hz, 2H), 4.39 (t, J = 6.9 Hz, 2H), 6.07 (d, J = 11.7 Hz, 1H), 6.15 (d, J = 11.7 Hz, 1H), 7.18-7.35 (m, 5H); ^13\text{C NMR (75 MHz, CDCl}_3, 25 ^\circ\text{C}) \delta -0.4, 35.1, 65.0, 100.7, 108.4, 122.7, 126.5, 128.5, 128.9, 129.2, 137.7, 164.4. Anal. Calcd for C\text{\textsubscript{16}H\textsubscript{20}O\textsubscript{2}Si}: C, 70.54; H, 7.40. Found: C, 70.25; H, 7.38.

Typical Procedure for Preparation of 1.

Methyl 2-ethynyl-1-cyclopentene-carboxylate (1a).

To a solution of 9\text{a} (0.89 g, 4.0 mmol) in DMSO (10 mL) was slowly added KF (0.58 g, 10 mmol) at 0 °C. The suspension was stirred at room temperature for 10 min and then the mixture was poured into ice water (50 mL), and extracted with Et\textsubscript{2}O (50 mL x 3). The extract was dried over MgSO\textsubscript{4}. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v=10/1) as an eluent to afford 1\text{a} (0.60 g, 4.0 mmol, 100% yield) as a white solid; mp. 47.3-48.0 °C; IR (neat) 1716 (\text{C}=\text{O}), 2091 (\text{C}=\text{C}) \text{ cm}^{-1}; ^1\text{H NMR (300 MHz, CDCl}_3, 25 ^\circ\text{C}) \delta 1.92 (qunt, J = 7.8 Hz, 2H), 2.63-2.71 (m, 4H), 3.54 (s, 1H), 3.75 (s, 3H); ^13\text{C NMR (75 MHz, CDCl}_3, 25 ^\circ\text{C}) \delta 22.1, 33.2, 39.1, 51.4, 79.3, 87.5, 133.6, 139.8, 164.6. Anal. Calcd for C\text{\textsubscript{9}H\textsubscript{10}O\textsubscript{2}}: C, 71.98; H, 6.71. Found: C, 72.05; H, 6.74.

Methyl 2-ethynyl-1-cyclohexene-carboxylate (1b).

A colorless liquid (80% yield); IR (neat) 1716, 1723 (\text{C}=\text{O}), 2091 (\text{C}=\text{C}), 3285 (H–C=) \text{ cm}^{-1}; ^1\text{H NMR (300 MHz, CDCl}_3, 25 ^\circ\text{C}) \delta 1.62-1.66 (m, 4H), 2.32-2.38 (m, 4H), 3.37 (s, 1H), 3.77 (s, 3H); ^13\text{C NMR (75 MHz, CDCl}_3, 25 ^\circ\text{C}) \delta 21.5, 21.6, 26.1, 32.2, 51.6, 83.3, 84.0, 127.6, 136.0, 167.5. HRMS (FAB): calcd for C\text{\textsubscript{10}H\textsubscript{13}O\textsubscript{2} (M+H+):} 165.0916; found, 165.0909.
Preparation of \(N,N\)-diethyl 2-ethyl-1-cyclohexenecarboxamide (1c).

A solution of methyl 2-(trimethylsilyl)-1-cyclohexenecarboxylate (9b) (1.0 g, 4.2 mmol) in benzene (4 mL) was added to benzene-hexane solution of \(\text{Me}_2\text{AI} \text{NEt}_2 \) prepared from a hexane solution of \(\text{Me}_3\text{Al} \) and \(\text{Et}_2\text{NH} \). The resulting solution was heated under reflux for 44 h, cooled to room temperature, and hydrolyzed by slow and cautious addition of 0.67 M hydrochloric acid (7.0 mL). The upper organic layer was separated, and the aqueous layer was extracted with \(\text{AcOEt} \) (25 mL x 3). The organic extracts were combined, washed with brine, and dried over \(\text{MgSO}_4 \). The solvent was removed under reduced pressure to give the residual liquid, which was subjected to column chromatography on SiO\(_2\) with \(\text{CH}_2\text{Cl}_2/\text{AcOEt} \) (v/v=30/1) as an eluent to afford \(N,N\)-diethyl 2-(trimethylsilyl)-1-cyclohexenecarboxamide (1.1 g, 4.0 mmol, 95% yield) as a pale yellow liquid; \(^1\text{H NMR} \) (300 MHz, CDC\(_3\), 25 ℃) \(\delta \) 0.06 (s, 9H), 1.11 (t, \(J = 7.2 \) Hz, 3H), 1.11 (t, \(J = 7.2 \) Hz, 3H), 1.30-1.50 (br m, 4H), 1.80-2.95 (br m, 4H), 3.20-3.65 (br m, 4H).

To a solution of \(N,N\)-diethyl 2-(trimethylsilyl)-1-cyclohexenecarboxamide (1.1 g, 4.0 mmol) in THF (40 mL) was added tetrabutylammonium fluoride (1.0 M in THF, 4.2 mL) at 0 ℃, and the mixture was stirred for 0.5 h. The mixture was poured into saturated NH\(_4\)Cl aqueous solution, and extracted with \(\text{Et}_2\text{O} \) (25 mL x 3). The solvent was removed from the extract under reduced pressure. The residual liquid was subjected to column chromatography on SiO\(_2\) with \(\text{CH}_2\text{Cl}_2/\text{AcOEt} \) (v/v=30/1) as an eluent to afford 1c (0.82 g, 4.0 mmol, 99% yield) as a colorless liquid; IR (neat) 1286, 1435, 1620 (C=O), 2092 (C=C), 3218 (H-C=) cm\(^{-1}\); \(^1\text{H NMR} \) (300 MHz, CDC\(_3\), 25 ℃) \(\delta \) 1.17 (q, \(J = 7.2 \) Hz, 6H), 1.64-1.70 (m, 4H), 2.15-2.25 (m, 4H), 2.96 (s, 1H), 3.24-3.56 (m, 4H); \(^1\text{C NMR} \) (75 MHz, CDC\(_3\), 25 ℃) \(\delta \) 12.4, 14.4, 21.4, 21.7, 27.1, 28.9, 38.1, 42.3, 79.7, 82.4, 116.2, 142.8, 170.7. HRMS (FAB): calcd for C\(_{13}\)H\(_{20}\)NO (M+H\(^+\)), 206.1545; found, 206.1537.
4'-Pentenyl 2-ethynyl-1-cyclohexenecarboxylate (1d).

A colorless liquid (25% yield); IR (neat) 1703 (C=C), 1721 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.60-1.64 (m, 4H), 1.76 (quint, J = 6.6 Hz, 2H), 2.11-2.19 (dt, J = 6.6, 6.6 Hz, 2H), 2.23-2.41 (m, 4H), 3.33 (s, 1H), 4.17 (t, J = 6.6 Hz, 2H), 4.95-5.05 (m, 2H), 5.72-5.84 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.5, 21.6, 26.2, 27.8, 30.2, 32.3, 64.1, 83.4, 84.0, 115.2, 127.3, 136.2, 137.5, 167.1. HRMS (FAB): calcd for C₁₄H₁₉O₂ (M+H⁺), 219.1385; found, 219.1380.

3'-Hexynyl 2-ethynyl-1-cyclopentenecarboxylate (1e).

A colorless liquid (7% yield); IR (neat) 1705 (C=C), 1722 (C=O), 2341, 2360 (C≡C), 3281 (H–C≡) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.08 (t, J = 7.5 Hz, 3H), 1.59-1.63 (m, 4H), 2.08-2.20 (m, 2H), 2.26-2.42 (m, 2H), 2.44-2.55 (m, 2H), 3.34 (s, 1H), 4.21 (t, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 12.3, 14.1, 19.2, 21.5, 21.6, 26.1, 31.6, 32.3, 63.0, 74.9, 83.2, 83.4, 84.2, 127.8, 136.0, 166.7. HRMS (FAB): calcd for C₁₅H₁₉O₂ (M+H⁺), 231.1385; found, 231.1381.

2'-Phenylethyl (Z)-pent-2-en-4-ynoate (1f).

A colorless liquid (96% yield); IR (neat) 1716 (C=C), 1727 (C=O), 2098 (C≡C), 3282 (H-C≡) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 2.99 (t, J = 7.2 Hz, 2H), 3.57 (d, J = 2.1 Hz, 1H), 4.40 (t, J = 7.2 Hz, 2H), 6.12 (d, J = 2.1, 11.4 Hz, 1H), 6.19 (d, J = 11.4 Hz, 1H), 7.20-7.33 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 35.0, 65.1, 79.5, 89.3, 122.1, 126.6, 128.5, 128.9, 130.6, 137.7, 164.2. Anal. Calcd for C₁₃H₁₂O₂: C, 77.98; H, 6.04. Found: C, 77.94; H, 6.16.

Methyl (Z)-pent-2-en-4-ynoate (1g).

A colorless liquid; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 3.60 (d, J = 2.4 Hz, 1H), 3.75 (s, 3H), 6.11 (dd, J = 2.4, 11.4 Hz, 1H), 6.19 (d, J = 11.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 51.5, 79.4, 89.2, 122.1, 130.3, 164.7.
1-Morpholinyl-(Z)-pent-2-en-4-yne-1-one (1h).

A colorless liquid; \(^{1}\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 3.29 (dd, \(J = 0.9, 2.4\) Hz, 1H), 3.45-3.65 (m, 2H), 3.65-3.80 (m, 6H), 5.85 (dd, \(J = 2.4, 12.0\) Hz, 1H), 6.35 (dd, \(J = 0.9, 12.0\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 41.7 (br m), 46.7 (br m), 66.7 (br m), 66.9 (br m), 79.3, 85.5, 115.1, 133.7, 164.9.

2-Ethynyl-1-cyclohexenyl phenyl ketone (1i)

A solution of methyl 2-(trimethylsilylethynyl)-1-cyclohexenecarboxylate (9b) (3.6 g, 15 mmol) in benzene (5 mL) was added to benzene (40 mL) and hexane (45 mL) solution of Me\(_2\)AlNMe(OMe) prepared from a hexane solution of Me\(_3\)Al (45 ml, 45 mmol) and \(N, O\)-dimethylhydroxylamine hydrochloride (4.4 g, 45 mmol). The resulting solution was heated under reflux for 3 h. The reaction mixture was cooled down to room temperature, and hydrolyzed by slow and cautious addition of 1 N HCl aqueous solution (30 mL). The upper organic layer was separated, and the aqueous layer was extracted with AcOEt (30 mL x 3). The organic extracts were combined, washed with brine, and dried over MgSO\(_4\). The solvent was removed under reduced pressure to give the residual liquid, which was subjected to column chromatography on SiO\(_2\) with hexane/AcOEt (v/v=4/1) as an eluent to afford \(N\)-methyl \(N\)-methoxy 2-(trimethylsilyl)-1-cyclohexenecarboxamide (10) (3.6 g, 14 mmol, 92% yield) as a pale yellow liquid; IR (KBr) 845, 1659 (C=O), 2144 (C=C) cm\(^{-1}\); \(^{1}\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 0.12 (s, 9H), 1.57-1.65 (m, 4H), 2.14-2.27 (m, 4H), 3.23 (s, 3H), 3.71 (s, 3H); \(^{13}\)C NMR (100 MHz, CD\(_2\)Cl\(_2\), -25 °C) \(\delta\) -0.1 (SiCH\(_3\)), -0.1 (SiCH\(_3\)), 21.5 (CH\(_2\)), 21.5 (CH\(_2\)), 21.8 (CH\(_2\)), 21.9 (CH\(_2\)), 26.5 (CH\(_2\)), 26.7 (CH\(_2\)), 28.8 (CH\(_2\)), 29.5 (CH\(_2\)), 31.8 (NCH\(_3\)), 35.7 (NCH\(_3\)), 60.3 (OCH\(_3\)), 62.0 (OCH\(_3\)), 96.4 (C\(\equiv\)), 97.2 (C\(\equiv\)), 103.0 (C\(\equiv\)), 104.5 (C\(\equiv\)), 116.7 (C\(\equiv\)), 119.4 (C\(\equiv\)), 140.0 (C\(\equiv\)), 143.1 (C\(\equiv\)), 166.4 (C=O), 170.8 (C=O) as a mixture of rotamers. Anal. Calcd for C\(_{14}\)H\(_{23}\)NO\(_2\)Si: C, 63.35; H, 8.73; N, 5.28. Found: C, 63.07; H, 8.47; N, 5.21.
To a solution of 10 (0.47 g, 2.0 mmol) in THF (10 mL) was added preformed phenylmagnesium bromide (4.2 mmol) in THF (15 mL) at 0 °C, and the mixture was stirred at room temperature for 4 h. The reaction mixture was poured into saturated NH₄Cl solution (30 mL), and the aqueous layer was extracted with AcOEt (20 mL x 3). The combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and then 1 N KOH solution (2.0 mL) was added to the residue in MeOH (20 mL) at room temperature. After stirring for 0.5 h, this solution was poured into saturated NH₄Cl solution (50 mL). The aqueous layer was extracted with AcOEt (20 mL x 3) and the combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=20/1) as an eluent to afford 1i (0.22 g, 1.0 mmol, 52% yield) as a colorless liquid; IR (neat) 648, 690, 709, 732, 916, 1662 (C=O), 3292 (H-C=) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.71-1.77 (m ,4H), 2.28-2.38 (m, 4H), 2.81 (s, 1H), 7.40-7.48 (m, 2H) 7.50-7.57 (m, 1H), 7.85-7.92 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.4, 21.8, 27.3, 29.8, 82.2, 82.3, 119.8, 128.5, 129.5, 133.2, 136.0, 145.8, 199.0 (C=O). HRMS (FAB): calcd for C₁₅H₁₄O (M+H+), 211.1119; found, 211.1123.

Typical Procedure for Synthesis of 2-Pyrylidene-metal Complex 2.

2-Pyrylidene-tungsten complex 2a.

A solution of W(CO)₆ (0.21 g, 0.06 mmol) in THF (10 mL) under Ar was irradiated by Hg lamp (450 W, 350 nm) at room temperature for 4 h. To this yellow solution under Ar was added a solution of 1a (75 mg, 0.5 mmol) in THF (1 mL) by a syringe. The solution was stirred at room temperature for 4 h. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 10/1) as an eluent to afford 2a (90 mg, 0.19 mmol, 38% yield) as a yellow solid; mp. 106.1 °C (dec); IR (KBr) 1909, 1957, 2058 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 2.10 (quint, J = 7.8 Hz,
2H), 2.75 (t, J = 7.8 Hz, 2H), 2.81 (t, J = 7.8 Hz, 2H), 4.30 (s, 3H), 7.61 (s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 23.8, 27.0, 33.8, 56.9, 114.4, 132.2, 166.0, 170.1, 199.1 (W-CO), 204.0 (W-CO), 235.4 (W=C). Anal. Calcd for C$_{14}$H$_{10}$O$_7$W: C, 35.47; H, 2.13. Found: C, 36.39; H, 2.28. HRMS (FAB): calcd for C$_{14}$H$_{10}$O$_7$W (M$^+$), 473.9933; found, 473.9938.

2-Pyranylidene-tungsten complex 2b.

The reaction was carried out in THF at reflux temperature for 0.5 h. A yellow solid (63% yield); mp. 103.8-105.6 °C; IR (KBr) 1882, 1920, 1962, 2059 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.77-1.78 (m, 4H), 2.43-2.50 (m, 2H), 2.55-2.65 (m, 2H), 4.30 (s, 3H), 7.34 (s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 20.5, 21.1, 21.3, 29.2, 57.1, 109.3, 135.7, 157.1, 171.1, 199.2 (W-CO), 203.9 (W-CO), 228.1 (W=C). Anal. Calcd for C$_{15}$H$_{12}$O$_7$W: C, 36.91; H, 2.48. Found: C, 36.82; H, 2.57.

2-Pyranylidene-tungsten complex 2c.

A yellow solid (68% yield); mp. 99.0-101.8 °C; IR (KBr) 1881, 1894, 1922, 1964, 2053 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.35 (t, J = 7.2 Hz, 6H), 1.70-1.77 (m, 4H), 2.45-2.53 (m, 2H), 2.53-2.61 (m, 2H), 3.60 (q, J = 7.2 Hz, 4H), 6.97 (s, 1H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 13.7, 21.1, 22.6, 25.6, 29.6, 44.9, 109.4, 133.1, 153.1, 169.1, 199.7 (W-CO), 204.3 (W-CO), 220.0 (W=C). Anal. Calcd for C$_{18}$H$_{19}$NO$_6$W: C, 40.85; H, 3.62; N, 2.65. Found: C, 41.10; H, 3.70; N, 2.64.

2-Pyranylidene-tungsten complex 2d.

A yellow liquid (55% yield); IR (neat) 1907, 1915, 1965, 2058 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.74-1.80 (m, 4H), 1.99 (quint, J = 6.9 Hz, 2H), 2.20-2.27 (m, 2H), 2.35-2.42 (m, 2H), 2.45-2.55 (m, 2H), 4.65 (t, J = 6.9 Hz, 2H), 5.02-5.09 (m, 2H), 5.75-5.88 (m, 1H), 7.31 (s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 20.6, 21.1, 21.3, 27.7, 29.1, 29.7, 70.2, 109.3, 116.1, 135.5, 136.5, 157.1, 170.8, 199.2 (W-CO), 204.0 (W-CO), 227.4 (W=C). Anal. Calcd
for C\textsubscript{19}H\textsubscript{18}O\textsubscript{7}W: C, 42.09; H, 3.35. Found: C, 43.50; H, 3.57. HRMS: (FAB) calcd for C\textsubscript{19}H\textsubscript{18}O\textsubscript{7}W (M+), 542.0562; found, 542.0554. (This complex is unstable to air and light to obtain the correct elemental analytical data.)

2-Pyranlylidene-tungsten complex 2e.

\[
\begin{align*}
\text{W(CO)}_5
\end{align*}
\]

A yellow solid (71% yield); mp. 73.6-75.4 °C (dec); IR (KBr) 1896, 1923, 1976, 2059, 2366 (C=C) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) \delta 1.10 (t, \textit{J} = 7.6 Hz, 3H), 1.78-1.79 (m, 4H), 2.15 (qt, \textit{J} = 2.6, 7.6 Hz, 2H), 2.39-2.53 (m, 2H), 2.53-2.71 (m, 2H), 2.75 (tt, \textit{J} = 2.6, 6.2 Hz, 2H), 4.69 (t, \textit{J} = 2.6 Hz, 2H), 7.35 (s, 1H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) \delta 12.3, 13.9, 19.6, 20.5, 21.1, 21.3, 29.2, 68.7, 73.5, 84.5, 109.4, 135.8, 157.2, 170.6, 199.7 (W-CO), 203.9 (W-CO), 228.2 (W=C). Anal. Calcd for C\textsubscript{20}H\textsubscript{18}O\textsubscript{7}W: C, 43.34; H, 3.27. Found: C, 43.26; H, 3.18.

Pyranlylidene-tungsten complex 2f.

\[
\begin{align*}
\text{Ph}
\end{align*}
\]

An orange solid (58% yield); mp. 78.4-79.8 °C; IR (KBr) 1904, 1921, 1939, 1981, 2059 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}, 25 °C) \delta 3.12 (t, \textit{J} = 6.8 Hz, 2H), 4.77 (t, \textit{J} = 6.8 Hz, 2H), 6.14 (d, \textit{J} = 8.0 Hz, 1H), 7.10-7.30 (m, 6H), 7.56 (d, \textit{J} = 8.0 Hz, 1H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) \delta 35.0, 71.2, 98.5, 127.2, 128.8, 128.9, 135.3, 136.1, 142.4, 173.7, 198.7 (W-CO), 203.0 (W-CO), 242.3 (W=C). Anal. Calcd for C\textsubscript{18}H\textsubscript{12}O\textsubscript{7}W: C, 41.25; H, 2.31. Found: C, 40.76; H, 2.27. HRMS (FAB): calcd for C\textsubscript{18}H\textsubscript{12}O\textsubscript{7}W (M+), 524.0096; found, 524.0078.

Synthesis of 2-Pyranlylidene-molybdenum Complex 3b.

\[
\begin{align*}
\text{Me}
\end{align*}
\]

A solution of Mo(CO)\textsubscript{6} (82 mg, 0.31 mmol) in Et\textsubscript{2}O (25 mL) and Et\textsubscript{3}N (4 mL) under Ar was irradiated by Hg lamp (450 W, 350 nm) at room temperature for 1 h. A solution of 1b (42 mg, 0.26 mmol) in Et\textsubscript{2}O (1 mL) was added to this yellow solution. The mixture was stirred at room temperature for 3 h. The solvent was removed under reduced pressure, and the residue was
subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v=10/1) as an eluent to afford 3b (35 mg, 0.09 mmol, 35% yield) as a yellow solid; mp. 89.5-90.8 °C; IR (KBr) 1884, 1927, 1968, 2060 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) δ 1.76-1.79 (m, 4H), 2.42-2.46 (m, 2H), 2.58-2.62 (m, 2H), 4.31 (s, 3H), 7.30 (s, 1H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) δ 20.5, 21.2, 21.3, 29.1, 56.9, 109.1, 134.7, 155.8, 171.5, 207.4 (Mo-CO), 213.6 (Mo-CO). Anal. Calcd for C\textsubscript{15}H\textsubscript{12}O\textsubscript{7}Mo: C, 45.02; H, 3.02. Found: C, 44.54; H, 2.87. HRMS (FAB): calcd for C\textsubscript{15}H\textsubscript{12}O\textsubscript{7}Mo (M+), 401.9637; found, 401.9644.

2-Pyranylidene-chromium complex 4b.

\[
\text{4b} \quad \begin{array}{c}
\text{OMe} \\
\text{Cr(CO)}_5
\end{array}
\]

A solution of Cr(CO)\textsubscript{6} (0.13 g, 0.60 mmol) in THF (20 ml) and Et\textsubscript{3}N (0.1 mL) under Ar was irradiated by a Hg lamp (450 W, 350 nm) at room temperature for 4 h. To this orange solution under Ar was added a solution of 1b (33 mg, 0.20 mmol) in THF (1 mL) by a syringe. The mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v=10/1) as an eluent to afford 4b (44 mg, 62% yield) as an orange solid; mp. 92-94 °C; IR (KBr) 1897, 1935, 1976, 2053 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) δ = 1.72-1.84 (m, 4H), 2.38-2.49 (m, 2H), 2.55-2.64 (m, 2H), 4.32 (s, 3H), 7.33 (s, 1H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) δ 20.4, 21.2, 21.4, 29.0, 56.9, 108.2, 134.7, 154.9, 171.9, 218.6 (Cr-CO), 223.4 (Cr-CO), 251.0 (Cr=C). HRMS (FAB): calcd for C\textsubscript{15}H\textsubscript{12}O\textsubscript{7}Cr (M+), 355.9995; found, 355.9988.

2-Pyranylidene-chromium complex 4c

\[
\text{4c} \quad \begin{array}{c}
\text{NEt}_2 \\
\text{Cr(CO)}_5
\end{array}
\]

An orange solid (68% yield); mp. 118.4-121.5 °C; IR (KBr) 1888, 1909, 1965, 2045 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) δ 1.36 (t, J = 6.9 Hz, 6H), 1.69-1.79 (m, 4H), 2.44-2.50 (m, 2H), 2.53-2.60 (m, 2H), 3.63 (q, J = 6.9 Hz, 4H), 6.96 (s, 1H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) δ 13.7, 21.1, 22.6, 25.4, 29.5, 44.7, 108.6, 132.0, 151.2, 170.1, 219.3 (Cr-CO), 223.9 (Cr-CO),
240.7 (Cr=C). Anal. Calcd for \(\text{C}_{18}\text{H}_{19}\text{NO}_6\text{Cr} \): C, 54.41; H, 4.82; N, 3.53. Found: C, 54.27; H, 5.03; N, 3.40.

2-Pyranildene-chromium complex 4g

An orange solid (69% yield); mp. 71.0-73.5 °C; IR (KBr) 1898, 1917, 1976, 2053 cm\(^{-1}\); \(^{1} \)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta \) 4.32 (s, 3H), 6.15 (d, \(J = 8.1 \) Hz, 1H), 7.15 (dd, \(J = 8.1, 8.1 \) Hz, 1H), 7.68 (d, \(J = 8.1 \) Hz, 1H); \(^{13} \)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta \) 57.0, 96.9, 134.1, 139.6, 175.0, 217.9 (Cr-CO), 223.4 (Cr-CO), 269.6 (Cr=C). HRMS (FAB): calcd for \(\text{C}_{11}\text{H}_{8}\text{O}_7\text{Cr} \) (M\(^{+}\)), 301.9518; found, 301.9519.

2-Pyranildene-chromium complex 4h

An orange solid (50% yield); mp. 128.3-129.5 °C; IR (KBr) 1906, 1966, 2052 cm\(^{-1}\); \(^{1} \)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta \) 3.75-3.87 (m, 8H), 6.00 (m, 1H), 6.97 (m, 1H), 7.26 (m, 1H); \(^{13} \)C NMR (75 MHz, CDCl\(_3\), 25 °C): \(\delta \) 44.7, 65.9, 95.4, 129.4, 137.6, 169.2, 218.7 (Cr-CO), 223.8 (Cr-CO), 258.1 (Cr=C). HRMS (FAB): calcd for \(\text{C}_{14}\text{H}_{11}\text{NO}_7\text{Cr} \) (M\(^{+}\)), 356.9934; found, 356.9941.

2-Pyranildene-chromium complex 4i

The ketone 1i (0.13 g, 0.61 mmol) and Et\(_3\)N (1.0 mL) were used. A red solid (8% yield); mp. 132.0-134.6 °C; IR (KBr) 1918, 1974, 2051 cm\(^{-1}\); \(^{1} \)H NMR (300 MHz, \(d_8 \)-THF, 25 °C) \(\delta \) 1.78-1.91 (m, 4H), 2.76-2.84 (m, 4H), 7.56-7.62 (m, 3H), 7.79-7.86 (m, 2H), 7.95 (s, 1H); \(^{13} \)C NMR (75 MHz, \(d_8 \)-THF, 25 °C) \(\delta \) 22.0, 23.0, 26.2, 29.6, 124.8, 129.6, 129.7, 132.0, 133.1, 141.0, 150.6, 175.5, 219.2 (Cr-CO), 224.3 (Cr-CO), 268.8 (Cr=C). HRMS (FAB): calcd for \(\text{C}_{20}\text{H}_{14}\text{NO}_6\text{Cr} \) (M\(^{+}\)), 402.0185; found, 402.0196.

X-ray Crystallography of 2b.

Yellow prismatic crystals were obtained from a hexane solution at 23 °C. A crystal of dimensions 0.20 x 0.20 x 0.20 mm was mounted on a glass fiber. Bond lengths and bond angles are given in Table 5. Main features of the refinement appear in Table 6. The intensity data were measured on a Rigaku AFC-7R four-circle
automated diffractometer with Mo-Kα radiation and a graphite monochromator at 23 °C using the ω–2θ scan technique. The structure was solved by Direct Methods (SIR92) and expanded using Fourier techniques. All the calculations were performed using the teXsan crystallographic software package. The final cycle of full-matrix least-squares refinement was based on 3142 observed reflections (I > 3.00σ(I)) and 220 variable parameters and gave R = 0.031 and R_w = 0.034. The value of the goodness of fit indicator was 3.07. Lorentz and polarization corrections and secondary extinction were applied for the structure.

Table 2. Selected Interatomic Distances (Å) and Angles (°) for 2b

<table>
<thead>
<tr>
<th>Bond lengths</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W(1)–C(1)</td>
<td>2.215(6)</td>
<td>W(1)–C(11)</td>
<td>2.023(8)</td>
</tr>
<tr>
<td>W(1)–C(12)</td>
<td>2.018(8)</td>
<td>W(1)–C(13)</td>
<td>2.042(8)</td>
</tr>
<tr>
<td>W(1)–C(14)</td>
<td>2.054(8)</td>
<td>W(1)–C(15)</td>
<td>2.021(7)</td>
</tr>
<tr>
<td>O(1)–C(1)</td>
<td>1.430(7)</td>
<td>O(1)–C(9)</td>
<td>1.321(7)</td>
</tr>
<tr>
<td>O(2)–C(9)</td>
<td>1.316(7)</td>
<td>O(2)–C(10)</td>
<td>1.448(9)</td>
</tr>
<tr>
<td>O(3)–C(11)</td>
<td>1.146(9)</td>
<td>O(4)–C(12)</td>
<td>1.153(9)</td>
</tr>
<tr>
<td>O(5)–C(13)</td>
<td>1.138(8)</td>
<td>O(6)–C(14)</td>
<td>1.136(9)</td>
</tr>
<tr>
<td>O(7)–C(15)</td>
<td>1.145(8)</td>
<td>C(1)–C(2)</td>
<td>1.362(9)</td>
</tr>
<tr>
<td>C(2)–C(3)</td>
<td>1.404(8)</td>
<td>C(3)–C(8)</td>
<td>1.383(8)</td>
</tr>
<tr>
<td>C(8)–C(9)</td>
<td>1.382(9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)–W(1)–C(11)</td>
<td>89.4(3)</td>
<td>C(1)–W(1)–C(12)</td>
<td>92.8(3)</td>
</tr>
<tr>
<td>C(1)–W(1)–C(13)</td>
<td>88.5(3)</td>
<td>C(1)–W(1)–C(14)</td>
<td>87.8(3)</td>
</tr>
<tr>
<td>C(1)–W(1)–C(15)</td>
<td>177.1(3)</td>
<td>C(11)–W(1)–C(12)</td>
<td>86.4(3)</td>
</tr>
<tr>
<td>C(11)–W(1)–C(13)</td>
<td>177.9(3)</td>
<td>C(11)–W(1)–C(14)</td>
<td>90.3(3)</td>
</tr>
<tr>
<td>C(11)–W(1)–C(15)</td>
<td>92.5(3)</td>
<td>C(12)–W(1)–C(13)</td>
<td>93.3(3)</td>
</tr>
<tr>
<td>C(12)–W(1)–C(14)</td>
<td>176.7(3)</td>
<td>C(12)–W(1)–C(15)</td>
<td>89.6(3)</td>
</tr>
<tr>
<td>C(14)–W(1)–C(15)</td>
<td>90.0(3)</td>
<td>C(1)–O(1)–C(9)</td>
<td>123.0(5)</td>
</tr>
<tr>
<td>C(9)–O(2)–C(10)</td>
<td>119.5(6)</td>
<td>W(1)–C(1)–O(1)</td>
<td>113.8(4)</td>
</tr>
<tr>
<td>W(1)–C(1)–C(2)</td>
<td>133.2(5)</td>
<td>O(1)–C(1)–C(2)</td>
<td>112.9(5)</td>
</tr>
<tr>
<td>C(1)–C(2)–C(3)</td>
<td>124.5(6)</td>
<td>C(2)–C(3)–C(8)</td>
<td>120.1(6)</td>
</tr>
<tr>
<td>C(3)–C(8)–C(9)</td>
<td>115.6(6)</td>
<td>O(1)–C(9)–O(2)</td>
<td>115.8(6)</td>
</tr>
<tr>
<td>O(1)–C(9)–C(8)</td>
<td>123.8(5)</td>
<td>O(2)–C(9)–C(8)</td>
<td>120.3(6)</td>
</tr>
<tr>
<td>W(1)–C(11)–O(3)</td>
<td>178.1(8)</td>
<td>W(1)–C(12)–O(4)</td>
<td>176.7(6)</td>
</tr>
<tr>
<td>W(1)–C(13)–O(5)</td>
<td>177.4(6)</td>
<td>W(1)–C(14)–O(6)</td>
<td>179.3(7)</td>
</tr>
<tr>
<td>W(1)–C(15)–O(7)</td>
<td>178.7(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{15}H_{12}O_{7}W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fw</td>
<td>488.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal syst</td>
<td>monoclinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P21/n (No. 14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryst color</td>
<td>yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice params</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>16.141(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.909(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c (Å)</td>
<td>18.592(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β (Å)</td>
<td>114.17(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1617(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³)</td>
<td>2.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ(Mo Kα) (cm⁻¹)</td>
<td>71.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(000)</td>
<td>928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Rigaku AFC7R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71069 Å)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (°C)</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan type</td>
<td>ω-2θ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. 2θ (°)</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of reflns measd</td>
<td>total, 1280; unique, 1239 (R_{int} = 0.045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observns (I > 3.00σ(I))</td>
<td>3142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure soln</td>
<td>direct methods (SIR92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinement</td>
<td>full-matrix least squares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of variables</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflection/parameter ratio</td>
<td>14.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuals: R; R_w</td>
<td>0.031; 0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodness of fit (GOF)</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. shift/error in final cycle</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum peak in final diff map (e Å⁻³)</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum peak in final diff map (e Å⁻³)</td>
<td>-1.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Procedure for [4 + 2] Cycloaddition of 2 or 4 with Acetylene.

Dimethyl 5,6,7,8-tetrahydro-1-methoxy-2,3-naphthalenedicarboxylate (5b).

A mixture of complex 2b (0.15 g, 0.30 mmol) and dimethyl acetylenedicarboxylate (0.55 mL, 4.5 mmol) in a sealed tube was stirred at 90 °C for 12 h under N2. The mixture was subjected to column chromatography on SiO2 with hexane/AcOEt (v/v=10/1) as an eluent to afford 5b (22 mg, 0.080 mmol, 27% yield) as a colorless liquid; IR (neat) 791, 1042, 1146, 1274, 1294, 1328, 1727 (C=O), 1738 (C=O), 2861, 2947, 3430 cm⁻¹; ¹H NMR (300 MHz, CDCl3, 25 °C) δ 1.77-1.84 (m, 4H), 2.74-2.82 (m, 4H), 3.79 (s, 3H), 3.86 (s, 3H), 3.94 (s, 3H), 7.52 (s, 1H); ¹³C NMR (75 MHz, CDCl3, 25 °C) δ 22.2, 22.4, 23.7, 29.3, 52.3, 52.6, 61.7, 125.3, 126.6, 127.2, 136.9, 140.4, 155.0, 165.8, 168.4. Anal. Calcd for C₁₅H₁₈O₅: C, 64.74; H, 6.52. Found: C, 64.79; H, 6.64.

Dimethyl 1-diethylamino-5,6,7,8-tetrahydro-2,3-naphthalenedicarboxylate (5c).

A yellow liquid (25% yield); IR (neat) 1141, 1277, 1731 (C=O), 1738 (C=O), 1916, 2341, 2360, 2859, 2933, 3436 cm⁻¹; ¹H NMR (300 MHz, CDCl3, 25 °C) δ 1.00 (t, J = 7.2 Hz, 6H), 1.72-1.82 (m, 4H), 2.65-2.75 (m, 2H), 2.75-2.86 (m, 2H), 2.90-3.12 (m, 4H), 3.85 (s, 3H), 3.89 (s, 3H), 7.57 (s, 1H); ¹³C NMR (75 MHz, CDCl3, 25 °C) δ 14.4, 22.4, 22.6, 26.6, 29.6, 47.4, 52.1, 52.2, 124.7, 128.1, 134.9, 139.4, 144.2, 146.8, 166.2, 169.8. Anal. Calcd for C₁₈H₂₅NO₄: C, 67.69; H, 7.89; N, 4.39. Found: C, 67.67; H, 7.86; N, 4.30.
References and Notes

(10) In the course of this study Iwasawa and co-workers have reported the formation of benzopyranylidene-tungsten complexes from o-ethynylphenyl ketones and tungsten carbonyl and its application to [4 + 2] cycloaddition reactions with electron-rich alkenes, see: ref. 6b.

Chapter 2

Chromium- and Tungsten-Triggered Valence Isomerism of

cis-1-Acyl-2-ethynylcyclopropanes via [3,3]Sigmatropy of

(2-Acylcyclopropyl)vinylidene-Metal Intermediates

Abstract

The reaction of cis-1-acyl-2-ethynylcyclopropanes in the presence of a catalytic amount of Cr(CO)₅(THF) or W(CO)₅(THF) gave the corresponding phenol derivatives, respectively. A [3,3]sigmatropy of cyclopropanes involving a vinylidene-metal moiety as a vinylogous function is a key step to seven-membered cyclic carbene complex intermediates. Triethylamine as an indispensable additive seems to facilitate the formation of a vinylidene complex from a π-alkyne metal complex. The reaction of cis-1-ethynyl-2-vinylcyclopropanes as a carbon analogue of cis-1-acyl-2-ethynylcyclopropanes also gave a mixture of two cycloheptatrienes via [1,3]- or [1,5]-hydrogen shifts followed by reductive elimination of M(CO)₅ in the seven-membered cyclic carbenoid intermediates.
Introduction

The author describes herein the novel group 6 metal-triggered [3,3]sigmatropy of cis vicinal acyl- or vinyl-ethynylcyclopropanes 1 (X = O, CH₂) via cyclopropylvinylidene complexes 2, as shown in Scheme 1a.

Vinylidene complexes which can be generated directly from terminal alkynes and a variety of transition metal complexes have been identified as particularly versatile synthetic intermediates during the past decade. The author has already found that group 6 transition metal complexes undergo pericyclic or pseudopericyclic reaction of ene-yne-carbonyl compounds 4 via ene-carbonyl-vinylidene complexes 5 to produce 2-pyranylidene complexes 6 (Scheme 1b and see also Chapter 1).

Scheme 1

\[
\begin{align*}
1 & \quad [M] \quad 2 \quad 3 \\
X = O, CH₂; R = alkyl, aryl, OR', NR''_2 \\
[M] = M(CO)₅; M = Cr, Mo, W
\end{align*}
\]

\[
\begin{align*}
4 & \quad [M] \quad 5 \quad 6 \\
R = OR', NR''_2 \\
[M] = M(CO)₅; M = Cr, Mo, W
\end{align*}
\]

Scheme 2

\[
(X, Y) = (CH₂, CH₂), (NR', CH₂), (O, CH₂), ([M], CH₂)
\]

\[
(X, Y) \{O, C=\{M\}\}, (CH₂, C=\{M\})
\]
As shown in Scheme 2, [3,3]sigmatropy of vinylcyclopropanes bearing a variety of unsaturated substituents, such as vinyl,3 iminyl,3 carbonyl,3 heterocumulenyl,3,4 and metal-carbene,5 heretofore has been well investigated,6 whereas there has been no report on [3,3]sigmatropy of cyclopropanes involving a vinylidene-metal moiety (Y = C=[M]) as a vinylogous function. The author decided to extend this pericyclic mode to a cyclopropane system having both a vinylidene-metal moiety and an unsaturated side chain, which could exemplify [3,3]sigmatropy represented with a $[\pi 2_s+\pi 2_s+\pi 2_s]$ process (Scheme 3).

Scheme 3

The author therefore set out to prepare the vicinal carbonyl- or vinyl-substituted ethynylcyclopropanes, and demonstrated the group 6 metal-triggered valence isomerization of cis vicinal acyl- or vinyl-ethynylcyclopropanes in stoichiometric and catalytic process. This represents the first example of [3,3]sigmatropy in which a vinylidene-metal works as a function of two-π-electron moiety like a ketene.
Results and Discussion

When the reaction of cis-vicinal acetylenylcyclopropane 1a was carried out under the identical conditions for the synthesis of 2-pyranylidene-chromium complexes 6 employing Cr(CO)$_5$(THF)10 in the presence of Et$_3$N at room temperature, an unanticipated product, phenol $7a$ was isolated in 69% yield, not a seven-membered Fischer-type carbene complex 3 (eq 1). This result shows that valence isomerization of 1a was promoted by chromium.

\[
\text{Ph} \quad \text{3 equiv} \quad \text{Cr(CO)}_5(\text{THF}) \quad \text{THF, Et}_3\text{N, rt, 24 h} \quad \text{Ph} \quad 7a \quad (69\%)
\]

The author next examined the reaction using other group 6 metal carbonyls and other cyclopropanes having an alkoxy carbonyl or a carbamoyl group (Table 1). The reaction of 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>M</th>
<th>additiveb</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>Cr</td>
<td>Et$_3$N</td>
<td>24</td>
<td>7a</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>Cr</td>
<td>---</td>
<td>72</td>
<td>NRd</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>W</td>
<td>Et$_3$N</td>
<td>24</td>
<td>7a</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>W</td>
<td>---</td>
<td>72</td>
<td>NRd</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>Mo</td>
<td>Et$_3$N</td>
<td>72</td>
<td>7a</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>OCH$_2$CH$_2$Ph (1b)</td>
<td>Cr</td>
<td>Et$_3$N</td>
<td>72</td>
<td>NRd</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>morpholino (1c)</td>
<td>Cr</td>
<td>Et$_3$N</td>
<td>72</td>
<td>NRd</td>
<td></td>
</tr>
</tbody>
</table>

a Reactions were carried out at room temperature with 1 (0.2 mmol) and M(CO)$_5$(THF) prepared by irradiating a solution of M(CO)$_6$ (0.6 mmol) in THF (20 mL). b 0.6 mmol. c Isolated yield. d 1 was completely recovered.
with 3 equiv of W(CO)$_5$(THF) also gave 7a in 72% yield (entry 3), while Mo(CO)$_5$(THF) was almost ineffective in the reaction (entry 5). Reactions required the addition of Et$_3$N and no reactions occurred in the absence of it (entries 2 and 4). Triethylamine seems to facilitate the formation of a vinylidene complex.11 When reactions of other cyclopropanes such as an ester 1b and an amide 1c were carried out with 3 equiv of Cr(CO)$_5$(THF) in the presence of Et$_3$N, no reactions took place, and both of 1b and 1c were recovered intact (entries 6 and 7). The lack of reaction of an ester and an amide is in sharp contrast with pyranylidene-complex formation (see Chapter 1).

As it was found that the group 6 metals induce valence isomerization of cis-1-acyl-2-ethynylcyclopropanes 1 leading to phenols 7, catalytic reactions of 1 were next examined. Selected results on catalytic reactions are shown in Table 2. Both chromium and tungsten showed the catalytic activity to a similar extent (entries 1 and 2). The use of 5 mol% Cr(CO)$_5$(THF) is enough to induce catalytic valence isomerization of 1a to give 7a quantitatively (entry 3). Reactions of n-butyl and cyclopentyl ketones 1d and 1f gave 7d and 7f in almost quantitative yields, respectively (entries 4 and 6), while the reaction of tert-butyl ketone 1e gave 7e in moderate yield (entry 5). The reaction of 1-cyclohexyl ketone 1g as a substrate gave 7g in good yield (entry 7). Next, reactions of various aromatic ketones were examined. When the reactions of p-substituted phenyl ketone 1h-1j gave 7h-7j were examined, more electron-donating substituents on a phenyl group (e.g., OCH$_3$ and CH$_3$) enhanced the reaction rate (entries 8-10). These results suggest that nucleophilic attack of a carbonyl oxygen to a center carbon of vinylidene plays a pivotal role in this reaction. While the reaction of 1-naphthyl ketone 1k gave 7k with much lower yield probably due to the steric hindrance,12 the reaction of 2-naphthyl ketone 1l gave the corresponding product 7l in 92% yield (entries 11 and 12). Heterocycles such as 2-furyl or 2-thienyl tolerated in the reactions (entries 13 and 14), but 2-pyridyl substituent slightly precluded the product formation (entry 15). The reaction of 1-hexyn-1-ylketone 1p gave benzofuran derivative 8p in 24% yield together with 7p as a minor product (eq 2). The formation of 8p is explained by assuming the formation of 7p isomerized from 1p followed by intramolecular addition of a hydroxyl
Table 2. Catalytic Valence Isomerization of 1 (X = O) with M(CO)$_5$(THF)a

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>M</th>
<th>mol%b</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>Cr</td>
<td>20</td>
<td>20</td>
<td>7a</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>W</td>
<td>20</td>
<td>24</td>
<td>7a</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>CH$_2$CH$_2$Ph (1a)</td>
<td>Cr</td>
<td>5</td>
<td>24</td>
<td>7a</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>n-Bu (1d)</td>
<td>Cr</td>
<td>5</td>
<td>24</td>
<td>7d</td>
<td>95</td>
</tr>
<tr>
<td>5d</td>
<td>t-Bu (1e)</td>
<td>Cr</td>
<td>30</td>
<td>26</td>
<td>7e</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>(1f)</td>
<td>Cr</td>
<td>5</td>
<td>20</td>
<td>7f</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>(1g)</td>
<td>Cr</td>
<td>5</td>
<td>12</td>
<td>7g</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>C$_6$H$_4$CH$_3$-p (1h)</td>
<td>Cr</td>
<td>5</td>
<td>24</td>
<td>7h</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>C$_6$H$_4$OCH$_3$-p (1i)</td>
<td>Cr</td>
<td>5</td>
<td>18</td>
<td>7i</td>
<td>96</td>
</tr>
<tr>
<td>10</td>
<td>C$_6$H$_4$CF$_3$-p (1j)</td>
<td>Cr</td>
<td>5</td>
<td>72</td>
<td>7j</td>
<td>72</td>
</tr>
<tr>
<td>11d</td>
<td>1-naphthyl (1k)</td>
<td>Cr</td>
<td>5</td>
<td>24</td>
<td>7k</td>
<td>trace</td>
</tr>
<tr>
<td>12</td>
<td>2-naphthyl (1l)</td>
<td>Cr</td>
<td>5</td>
<td>6</td>
<td>7l</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>2-furyl (1m)</td>
<td>Cr</td>
<td>5</td>
<td>5</td>
<td>7m</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>2-thienyl (1n)</td>
<td>Cr</td>
<td>5</td>
<td>17</td>
<td>7n</td>
<td>92</td>
</tr>
<tr>
<td>15d</td>
<td>2-pyridyl (1o)</td>
<td>Cr</td>
<td>5</td>
<td>24</td>
<td>7o</td>
<td>42</td>
</tr>
</tbody>
</table>

a 1 (0.5 mmol), Et$_3$N (1.5 mmol), and THF (5 mL) at room temperature.

b Based on the amount of M(CO)$_6$ loaded. c Isolated yield. d At reflux temperature.
group to the alkylnyl moiety.

To gain a further insight into a mechanism for the group 6 metal triggering valence isomerism of 1, two sets of experiments were next carried out. Thus, the author undertook the reaction of cis-1-ethynyl-2-vinylcyclopropane as a carbon-analogue, in which a carbonyl oxygen of 1 was replaced with CH₂. The reaction of 1q (0.3 mmol) with 1 equiv of Cr(CO)₅(THF) in THF (10 mL) in the presence of Et₃N at room temperature for 6 h gave a mixture of 1- and 2-substituted 1,3,5-cycloheptatrienes 10q and 11q in 34 and 10% yields, respectively (eq 3).¹³ Reaction of vinylcyclopropane 1r also gave a mixture of cycloheptatrienes 10r (24%) and 11r (7%). Vinylcyclopropanes 1q and 1r were immediately used for the reaction without further purification after desilylation of ethynylcyclopropane 9,¹⁴ since 1q and 1r were labile and gradually decomposed under ambient conditions. The formation of cycloheptatrienes clearly indicates that [3,3] sigmatropy of a vinylcyclopropylvinylidene intermediate 2 (X = CH₂) proceeds to give a seven-membered carbene complex 3 (X = CH₂) as shown in Scheme 1. Formation of two isomeric 1,3,5-cycloheptatrienes 10 and 11 can be explained by assuming the subsequent [1,5]- and [1,3]-hydrogen shifts in the complex 3 (X = CH₂) followed by reductive elimination of pentacarbonylchromium, Cr(CO)₅ from hydride complexes 10 and 11, respectively (Scheme 4). Accordingly, isomerism of cis-1-acyl-2-ethynylcyclopropane 1 (X = O) can be also explained by assuming a multistep-pathway as shown in Scheme 5. Thus, [1,5]-H shift from CH₂ in a seven-membered ring of 1-oxa-3,6-cycloheptadien-2-ylidene complex 3 (X = O) to a metal and the subsequent reductive elimination of M(CO)₅ from 12 give rise to the formation
of an oxepin 13 as a primary product. The oxepin 13, which is in equilibrium with the arene oxide 14, cannot be isolated, but it is converted into phenol 7 under the present reaction conditions. Aumann et al. have reported that the reaction of an equilibrium mixture of an oxepin and a benzene oxide with Fe(CO)₅ under irradiation conditions gave benzene and phenol together with an (η⁴-oxepin)Fe(CO)₃ complex as minor product (eq 4). This strongly supported that phenol 7 as a final product was given with the assistance of M(CO)₅ as a Lewis acid under the present reaction conditions.

Finally, [3,3]sigmatropic rearrangement of acylethynylcyclopropane 1a using other transition metal complexes was examined. When 2-phenylethyl ketone 1a was reacted with
5 mol% of [RuCl\(_2\)(CO)\(_3\)]\(_2\) or 5 mol% of [RhCl(CO)\(_2\)]\(_2\) in toluene at 70 °C in the presence of Et\(_3\)N, isomerization occurred to give a mixture of ortho-phenylethyl phenol (7a) and deoxygenated product 17a (eq 5). However, the yield of desired phenol 7a was much lower in comparison with the case of group 6 metal complexes. The formation of deoxygenated product, i.e. 1,2-diphenylethane (19a), is in sharp contrast with reactions using group 6 metal complexes. Further studies are awaited to clarify the precise mechanism using ruthenium or rhodium as a catalyst.

In conclusion, the author has demonstrated the group 6 and other transition metal complexes-triggered valence isomerization of cis vicinal acyl- or vinyl-ethynylcyclopropanes in stoichiometric and catalytic processes. Isomerization of cis vicinal ethynylvinylcyclopropanes in the presence of group 6 metal complex leading to cycloheptatrienes was also investigated. The isomerism can be explained by [3,3]sigmatropic rearrangement of cyclopropylvinylidene-metal intermediates generated from acyl- or vinylethynylcyclopropanes. This represents the first example of [3,3]sigmatropy in which a vinylidene-metal works as a function of a two-\(\pi\)-electron moiety like a ketene.
Experimental

General Procedures. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone ketyl under argon. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ with Me₄Si as an internal standard (¹H and ¹³C); the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, sex: sextet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL LMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University. All new compounds prepared were fully characterized.

Synthesis of Substrates.

All substrates were prepared by the following procedures (Scheme 6).
Preparation of (Z)-Ethyl 5-Trimethylsilyl-2-penten-4-ynoate (18).

To a solution of trimethylsilylacetylene (6.1 mL, 43 mmol), tert-butylamine (19 mL, 180 mmol) and (Z)-ethyl 3-iodo-2-propenoate\(^\text{18}\) (8.1 g, 36 mmol) in benzene (470 mL) were added CuI (1.0 g, 5.3 mmol) and Pd(PPh\(_3\))\(_4\) (2.1 g, 1.8 mmol) at 0 °C under N\(_2\). The resulting pale yellow suspension was stirred at room temperature for 1 h. The suspension was washed with saturated NH\(_4\)Cl solution (100 mL), and the aqueous layer was extracted with Et\(_2\)O (50 mL \(\times\) 3). The combined organic layer was dried over MgSO\(_4\). The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 10/1) as an eluent to afford 18 (7.0 g, 36 mmol, 99% yield) as a pale yellow liquid; IR (neat) 1713, 1731 (C=O), 2150 (C=C), 2927, 2961 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 0.21 (s, 9H), 1.29 (t, \(J = 7.2\) Hz, 3H), 4.22 (q, \(J = 7.2\) Hz, 2H), 6.05 (d, \(J = 11.4\) Hz, 1H), 6.12 (d, \(J = 11.4\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 0.4, 14.2, 60.5, 100.7, 108.0, 122.4, 129.5, 164.6. Anal. Calcd for C\(_{10}\)H\(_{16}\)O\(_2\)Si: C, 61.18; H, 8.21. Found: C, 61.41; H, 8.44.

Preparation of cis-1-Ethoxycarbonyl-2-(trimethylsilyl)ethynylcyclopropane (19a).

Diazomethane, prepared by the reaction of CH\(_3\)N(NO)CONH\(_2\) in Et\(_2\)O with 30% KOH aqueous solution, was bubbled into a solution of 18 (2.0 g, 10 mmol) and Pd(OAc)\(_2\) (67 mg, 0.30 mmol) in \(t\)-butyl methyl ether (200 mL). After continuous bubbling of diazomethane for 1 h, the black suspension was filtered with a Celite pad. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 30/1) as an eluent to afford 19a (0.98 g, 4.7 mmol, 47% yield) as a pale yellow liquid; IR (neat) 1731 (C=O), 2171 (C≡C), 2901, 2957 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 0.11 (s, 9H), 1.16 (ddd, \(J = 4.5, 8.0, 8.0\) Hz, 1H), 1.26 (t, \(J = 6.9\) Hz, 3H), 1.44 (ddd, \(J = 4.5, 6.3, 6.3\) Hz, 1H), 1.79 (ddd, \(J = 6.3, 8.0, 8.0\) Hz, 1H), 1.91 (ddd, \(J = 6.3, 8.0, 8.0\) Hz, 1H), 4.16 (m,
2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 0.0 (SiCH$_3$), 10.0 (cyclopropane-CH$_2$), 14.3 (CH$_2$CH$_3$), 14.4 (CH-C=), 21.8 (CH-CO), 60.7 (OCH$_2$), 84.0 (==C-Si), 103.6 (C-C=), 169.8 (C=O). Anal. Calcd for C$_{11}$H$_{18}$O$_2$Si: C, 62.81; H, 8.63. Found: C, 62.55; H, 8.82.

cis-1-(2-Phenylethoxycarbonyl)-2-(trimethylsilyl)ethynylcyclopropane (19b).

(Z)-2-Phenylethyl 5-trimethylsilyl-2-penten-4-ynoate2a was used as a starting compound. A colorless liquid (50% yield); IR (neat) 700, 760, 843, 1171, 1249, 1737 (C=O), 2171 (C=C), 2958 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 0.11 (s, 9H), 1.17 (ddd, J = 5.8, 8.4, 8.4 Hz, 1H), 1.44 (ddd, J = 5.8, 6.4, 6.4 Hz, 1H), 1.82 (ddd, J = 6.4, 8.4, 8.4 Hz, 1H), 1.93 (ddd, J = 6.4, 8.4, 8.4 Hz, 1H), 2.95 (t, J = 7.2 Hz, 2H), 4.26 (dt, J = 5.4, 7.2 Hz, 1H), 4.37 (dt, J = 5.4, 7.2 Hz, 1H), 7.22-7.32 (m, 5H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 0.0 (SiCH$_3$), 10.2 (cyclopropane-CH$_2$), 14.4 (CH-C=), 21.8 (CH-CO), 35.3 (Ph-CH$_2$), 65.3 (OCH$_2$), 84.2 (==C-Si), 103.6 (C-C=), 126.5 (Ph), 128.5 (Ph), 128.9 (Ph), 137.8 (Ph), 169.8 (C=O). Anal. Calcd for C$_{17}$H$_{22}$O$_2$Si: C, 71.28; H, 7.74. Found: C, 71.17; H, 7.66.

Preparation of cis-1-(N-Methoxy-N-methyl)carbamoyl-2-(trimethylsilyl)-ethynylcyclopropane (20a).

According to the reported method,19 to a suspension of N,O-dimethylhydroxyamine hydrochloride (1.8 g, 18 mmol) in THF (20 mL) was added a solution of AlMe$_3$ in hexane (1.0 M, 18 mL, 18 mmol) at room temperature under N$_2$. After stirring for 15 min, to the solution was added a solution of 19a (1.5 g, 7.1 mmol) in THF (2 mL) at room temperature. The resulting brown solution was stirred at reflux temperature for overnight. The reaction mixture was cooled to room temperature, and slowly poured into ice-cooled 0.5 N HCl solution (50 mL). The organic layer was separated, and the aqueous layer was extracted with CH$_2$Cl$_2$ (20 mL x 3). The combined organic layer was dried over MgSO$_4$. The organic solvent was removed under reduced pressure and the residue was subjected to column
chromatography on SiO2 with hexane/AcOEt /CH2Cl2 (v/v/v = 5/1/1) as an eluent to afford 20a (1.0 g, 4.4 mmol, 63% yield) as a pale yellow liquid; IR (neat) 641, 759, 843, 1100, 1253, 1424, 1653, 1668 (C=O), 2171 (C=C), 2359, 2960 cm⁻¹; ¹H NMR (300 MHz, CDCl3, 25 °C) δ 0.09 (s, 9H), 1.10 (ddd, J = 4.5, 8.3, 8.3 Hz, 1H), 1.53 (ddd, J = 4.5, 6.3, 6.3 Hz, 1H), 1.78 (ddd, J = 6.3, 8.3, 8.3 Hz, 1H), 2.39 (br m, 1H), 3.23 (s, 3H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl3, -40 °C) [as a mixture of rotamers] δ -0.4 (SiCH₃), 9.0 (cyclopropane-CH₂), 9.1 (cyclopropane-CH₂), 12.2 (CH-C≡), 19.9 (CH-CO), 20.0 (CH-CO), 32.1 (NCH₃), 32.1 (NCH₃), 61.4 (OCH₃), 83.1 (=C-Si), 104.5 (CH-C≡), 168.8 (C=O). Anal. Calcd for C₁₁H₁₉N₀₂Si: C, 58.63; H, 8.50; N, 6.22. Found: C, 58.59; H, 8.28; N, 6.24.

cis-1-Morpholinocarbamoyl-2-(trimethylsilyl)ethynylcyclopropane (20b).

![Image of compound 20b]

A colorless liquid (86% yield); IR (neat) 638, 760, 844, 859, 1116, 1230, 1249, 1434, 1463, 1651 (C=O), 2169 (C≡C), 2961 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.06 (s, 9H), 1.08 (ddd, J = 5.4, 8.4, 8.4 Hz, 1H), 1.50 (ddd, J = 5.4, 6.0, 6.0 Hz, 1H), 1.73 (ddd, J = 5.4, 8.4, 8.4 Hz, 1H), 1.90 (ddd, J = 6.0, 8.4, 8.4 Hz, 1H), 3.33-3.89 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 0.0 (SiCH₃), 8.4 (cyclopropane-CH₂), 12.7 (CH-C≡), 22.0 (CH-CO), 42.9 (NCH₂), 45.8 (NCH₂), 67.0 (OCH₂), 83.4 (=C-Si), 104.3 (C-C≡), 166.8 (C=O). HRMS (FAB): calcd for C₁₃H₂₁N₀₂Si (M+H⁺), 252.1420; found, 252.1416.

Preparation of cis-1-Acyl-2-ethynylcyclopropanes from 20a with Organomagnesium Reagents.

cis-1-Ethynyl-2-(3-phenylpropanoyl)cyclopropane (1a).

![Image of compound 1a]

To a solution of 20a (0.84 g, 3.7 mmol) in THF (5 mL) was added a solution of 2-phenylethylmagnesium bromide (about 2 equiv) in THF (5 mL) at 0 °C under N₂. The mixture was stirred at 0 °C for 0.5 h. The reaction mixture was poured into saturated aqueous NH₄Cl solution (20 mL) and extracted with AcOEt (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent
was removed under reduced pressure to leave a brown oil, which was treated with K₂CO₃ (0.77 g, 5.6 mmol) in MeOH (30 mL) at room temperature for 3 h. The obtained brown suspension was poured into saturated NH₄Cl solution (100 mL) and extracted with AcOEt (50 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 8/1) as an eluent to afford 1a (0.63 g, 3.2 mmol, 85% yield) as a yellow liquid; IR (neat) 669, 1092, 1387, 1705 (C=O), 2121 (C=C), 2923, 3289 (=C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.17 (ddd, J = 4.8, 8.1, 8.1 Hz, 1H), 1.55 (ddd, J = 4.8, 6.3, 6.3 Hz, 1H), 1.84 (dddd, J = 2.1, 6.3, 8.1, 8.1 Hz, 1H), 1.93 (d, J = 2.1 Hz, 1H), 2.22 (ddd, J = 6.3, 8.1, 8.1 Hz; 1H), 2.89-3.00 (m, 4H), 7.16-7.31 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.0 (cyclopropane-CH₂), 14.5 (CH-C≡), 27.6 (CH-CO), 29.6 (CO-CH₂), 45.5 (CH₂-Ph), 68.0 (≡C-H), 81.2 (CH-C≡), 126.1 (Ph), 128.4 (Ph), 128.4 (Ph), 141.1 (Ph), 204.2 (C=O). Anal. Calcd for C₁₄H₁₄O: C, 84.81; H, 7.12. Found: C, 84.88; H, 7.02.

cis-1-Ethynyl-2-cyclopentylmethanoylcyclopropane (1f).

To a solution of 20a (0.28 g, 1.2 mmol) in THF (5 mL) was added a solution of cyclopentylmagnesium bromide in THF (5 mL) which was prepared from bromocyclopentane (0.36 g, 2.4 mmol) and Mg (58 mg, 2.4 mmol) in THF (3 mL) at 0 °C under N₂. The mixture was warmed to room temperature and stirred for 2 h. The reaction mixture was poured into aqueous 1 N HCl solution (20 mL), and extracted with Et₂O (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure to leave a brown oil, which was treated with tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 1.3 mL, 1.3 mmol) in THF (10 mL) at 0 °C for 10 min. The obtained brown solution was poured into saturated NH₄Cl solution (10 mL), and extracted with Et₂O (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 8/1) as an eluent to afford 1f (85 mg, 0.53 mmol, 44% yield) as a colorless oil; IR (neat) 641, 873,
900, 966, 1026, 1058, 1106, 1385, 1431, 1461, 1698, 1703 (C=O), 2122 (C=C), 2870, 2956, 3268, 3289 (≡C-H) cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 25 °C) δ 1.16 (ddd, J = 4.3, 7.6, 7.6 Hz, 1H), 1.54 (ddd, J = 4.3, 6.2, 6.2 Hz, 1H), 1.56-1.72 (m, 4H), 1.81-1.92 (m, 4H), 1.86 (ddd, J = 2.4, 6.2, 7.6, 7.6 Hz, 1H), 1.94 (d, J = 2.4 Hz, 1H), 2.29 (ddd, J = 6.2, 7.6, 7.6 Hz, 1H), 3.05 (quint, J = 7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃, 25 °C) δ 11.3 (cyclopropane-CH₂), 14.4 (CH-C≡), 25.9, 26.1, 26.8, 28.1, 28.6, 52.6, 67.7 (≡C-H), 81.5 (CH-C≡), 206.7 (C=O). Anal. Calcd for C₁₁H₁₄O: C, 81.44; H, 8.67. Found: C, 81.58; H, 8.74.

cis-1-Ethynyl-2-(p-methylbenzoyl)cyclopropane (1h).

A white solid (82% yield); mp. 58.2-60.1 °C; IR (KBr) 507, 660, 698, 771, 830, 939, 999, 1177, 1229, 1383, 1407, 1605, 1671 (C=O), 2122 (C≡C), 3269 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 4.2, 7.8, 7.8 Hz, 1H), 1.79 (ddd, J = 4.2, 6.3, 6.3 Hz, 1H), 1.87 (d, J = 2.1 Hz, 1H), 2.04 (ddd, J = 2.1, 6.3, 8.7, 8.7 Hz, 1H), 2.42 (s, 3H), 2.92 (ddd, J = 6.3, 8.7, 8.7 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.94 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.6 (cyclopropane-CH₂), 14.1 (CH-C≡), 21.6 (CH-CO), 24.6 (CH₃), 67.8 (≡C-H), 81.2 (CH-C≡), 128.3 (Ph), 129.2 (Ph), 135.4 (Ph), 143.8 (Ph), 194.5 (C=O). Anal. Calcd for C₁₃H₁₂O: C, 84.75; H, 6.56. Found: C, 84.64; H, 6.47.

cis-1-Ethynyl-2-(p-methoxybenzoyl)cyclopropane (1i).

A white solid (78% yield); mp. 93.5-95.5 °C; IR (KBr) 529, 605, 656, 778, 803, 847, 1028, 1174, 1233, 1259, 1387, 1422, 1601, 1651 (C=O), 2115 (C≡C), 2345, 3274 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.29 (ddd, J = 4.5, 8.4, 8.4 Hz, 1H), 1.78 (ddd, J = 4.5, 6.6, 6.6 Hz, 1H), 1.87 (d, J = 2.1 Hz, 1H), 2.02 (ddd, J = 2.1, 6.6, 8.4, 8.4 Hz, 1H), 2.89 (ddd, J = 6.6, 8.4, 8.4 Hz, 1H), 3.88 (s, 3H), 6.94-6.99 (m, 2H), 8.01-8.06 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.4 (cyclopropane-CH₂), 14.0 (CH-C≡), 24.4 (CH-CO), 25.5 (OCH₃), 67.7 (≡C-H), 81.3 (CH-C≡), 113.7 (Ph), 130.5 (Ph), 130.9 (Ph), 163.4 (Ph), 193.4 (C=O). HRMS (FAB): calcd for C₁₃H₁₃O₂ (M⁺), 201.0916; found, 201.0915.
cis-1-Ethynyl-2-(p-trifluoromethylbenzoyl)cyclopropane (1j).

A white solid (38% yield); mp. 64.5-66.5 °C; IR (KBr) 677, 705, 855, 997, 1065, 1153, 1222, 1328, 1382, 1413, 1511, 1583, 1676 (C=O), 2119 (C=C), 3253 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.38 (ddd, J = 4.5, 8.4, 8.4 Hz, 1H), 1.84 (ddd, J = 4.5, 6.6, 6.6 Hz, 1H), 1.90 (d, J = 1.8 Hz, 1H), 2.13 (dddd, J = 1.8, 6.6, 8.4, 8.4 Hz, 1H), 2.94 (dddd, J = 6.6, 8.4, 8.4 Hz, 1H), 7.76 (d, J = 8.1 Hz, 2H), 8.13 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 12.3 (cyclopropane-CH₂), 14.5 (CH-C≡), 25.1 (CH-CO), 68.2 (≡C-H), 80.8 (CH-C≡), 121.8 (Ph), 125.4 (Ph), 125.7 (q, J_{C,F} = 3.8 Hz, CF₃), 128.5 (Ph), 134.1 (Ph), 134.5 (Ph), 140.4 (Ph); 194.2 (C=O). Anal. Calcd for C₁₃H₉OF: C, 65.55; H, 3.81. Found: C, 65.34; H, 3.89.

cis-1-Ethynyl-2-(1-naphthoyl)cyclopropane (1k).

A white solid (82% yield); mp. 87.8-90.8 °C; IR (KBr) 684, 778, 793, 992, 1099, 1178, 1231, 1370, 1508, 1664 (C=O), 2113 (C=C), 2365, 3066, 3249 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.39 (ddd, J = 4.2, 7.5, 7.5 Hz, 1H), 1.93 (ddddd, J = 4.2, 6.0, 6.0 Hz, 1H), 1.98 (d, J = 2.4 Hz, 1H), 2.14 (dddd, J = 2.4, 6.0, 7.5, 7.5 Hz, 1H), 2.90 (ddddd, J = 6.0, 7.5, 7.5 Hz, 1H), 7.51-7.62 (m, 2H), 7.55 (d, J = 7.8 Hz, 1H), 7.89 (dd, J = 1.8, 7.8 Hz, 1H), 8.00 (d, J = 7.8 Hz, 2H), 8.61 (d, J = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 12.9 (cyclopropane-CH₂), 15.2 (CH-C≡), 28.4 (CH-CO), 68.4 (≡C-H), 81.1 (CH-C≡), 124.5 (naphthyl), 125.8 (naphthyl), 126.5 (naphthyl), 127.7 (naphthyl), 127.8 (naphthyl), 128.4 (naphthyl), 130.1 (naphthyl), 132.4 (naphthyl), 133.9 (naphthyl), 137.1 (naphthyl), 198.4 (C=O). Anal. Calcd for C₁₆H₁₂O: C, 87.25; H, 5.49. Found: C, 87.07; H, 5.51.
cis-1-Ethynyl-2-(2-naphthoyl)cyclopropane (11).

A white solid (82% yield); mp. 101.8-103.4 °C; IR (KBr) 692, 785, 1124, 1171, 1388, 1465, 1668 (C=O), 2116 (C≡C), 3251 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.38 (ddd, J = 4.5, 7.8, 7.8 Hz, 1H), 1.87 (dd, J = 4.5, 6.6, 6.6 Hz, 1H), 1.89 (d, J = 2.1 Hz, 1H), 2.14 (dddd, J = 2.1, 6.6, 7.8, 7.8 Hz, 1H), 3.11 (ddd, J = 6.6, 7.8, 7.8 Hz, 1H), 7.58 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 8.08 (dd, J = 1.8, 8.4 Hz, 1H), 8.57 (s, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.9 (cyclopropane-CH₂), 14.4 (CH-C≡), 24.9 (CH-CO), 68.0 (≡C-H), 81.2 (CH-C≡), 124.0 (naphthyl), 126.8 (naphthyl), 127.8 (naphthyl), 128.4 (naphthyl), 128.6 (naphthyl), 129.6 (naphthyl), 129.9 (naphthyl), 132.5 (naphthyl), 135.2 (naphthyl), 135.2 (naphthyl), 194.9 (C=O). Anal. Calcd for C₁₆H₁₂O: C, 87.25; H, 5.49. Found: C, 87.19; H, 5.39.

Preparation of cis-1-Acyl-2-ethynylcyclopropanes from 20a and Organolithium Reagents.

cis-1-Ethynyl-2-pentanoylcyclopropane (1d).

To a solution of 20a (0.33 g, 1.5 mmol) in THF (20 mL) was added butyllithium in hexane (1.6 M, 2.0 mL, 3.2 mmol) at -20 °C under N₂. After stirring at -20 °C for 40 min, the mixture was poured into saturated NH₄Cl solution (50 mL) and extracted with AcOEt (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure to give a brown oil, which was treated with K₂CO₃ (0.30 g, 2.2 mmol) in MeOH (25 mL) at room temperature for 3 h. The resulting brown suspension was poured into saturated NH₄Cl solution (100 mL) and extracted with AcOEt (50 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 15/1) as an eluent to afford 1d (0.15 g, 1.0 mmol, 69% yield) as a colorless liquid; IR (neat) 1074, 1387, 1705 (C=O), 2876, 2933,
2959, 3289 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.90 (t, J = 7.4 Hz, 3H), 1.13 (ddd, J = 4.4, 7.5, 8.4 Hz, 1H), 1.32 (sex, J = 7.4 Hz, 2H), 1.53 (ddd, J = 4.4, 6.4, 6.4 Hz, 1H), 1.56-1.66 (m, 2H), 1.81 (ddddd, J = 2.4, 6.4, 8.4, 8.4 Hz, 1H), 1.90 (d, J = 2.4 Hz, 1H), 2.22 (ddd, J = 6.4, 7.5, 8.4 Hz, 1H), 2.56 (t, J = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 10.8 (cyclopropane-CH₂), 13.8 (CH-C≡), 14.3 (CH-CO), 22.4 (butyl), 25.8 (butyl), 27.4 (butyl), 43.8 (butyl), 67.8 (≡C-H), 81.3 (CH-C≡), 205.4 (C=O). Anal. Calcd for C₁₀H₁₄O: C, 79.96; H, 9.39. Found: C, 79.57; H, 9.42.

cis-(2,2-Dimethylpropanoyl)-1-ethynylcyclopropane (1e).

To a solution of 20a (0.34 g, 1.5 mmol) in THF (20 mL) was added tert-butyllithium in pentane (1.4 M, 1.6 mL, 2.3 mmol) at -78 °C under N₂. After stirring at -78 °C for 1 h, the mixture was poured into aqueous 1 N HCl solution (20 mL) and extracted with Et₂O (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure to give a brown oil, which was treated with TBAF (1.0 M in THF, 1.7 mL, 1.7 mmol) in THF (10 mL) at 0 °C for 15 min. The resulting brown suspension was poured into saturated NH₄Cl solution (20 mL) and extracted with Et₂O (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 8/1) as an eluent to afford 1d (0.13 g, 0.89 mmol, 59% yield) as a white solid; mp. 60.5-61.7 °C; IR (KBr) 843, 1084, 1249, 1367, 1393, 1692 (C=O), 2162 (C≡C), 2346, 2372, 2927, 2960, 3309 (≡C-H), 3400 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.15 (ddd, J = 4.5, 8.1, 8.1 Hz, 1H), 1.22 (s, 9H), 1.55 (ddd, J = 4.5, 6.3, 6.3 Hz, 1H), 1.83 (ddddd, J = 2.1, 6.6, 8.1, 8.1 Hz, 1H), 1.89 (d, J = 2.1 Hz, 1H), 2.49 (ddd, J = 6.6, 8.1, 8.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.3 (cyclopropane-CH₂), 14.0 (CH-C≡), 23.3 (CH-CO), 26.1 (C-CH₃), 44.3 (C-CH₃), 67.5 (≡C-H), 81.6 (CH-C≡), 209.1 (C=O). HRMS (FAB): calcd for C₁₀H₁₅O (M⁺), 151.1123; found, 151.1128.
cis-1-Cyclohexenyl 2-ethynylcyclopropyl ketone (1g).

To a solution of 20a (0.41 g, 1.8 mmol) in THF (dry, 20 mL) was added 1-cyclohexenyllithium in n-hexane which was prepared from cyclohexanone p-tosylhydrazone (0.96 g, 1.0 mmol), tetramethylethlenediamine (1.3 mL, 8.6 mmol) and sec-butyllithium (1.0 M in n-hexane and cyclohexane, 2.0 mL, 2.0 mmol) at 0 °C under N2. After stirring at room temperature for 20 min, the mixture was poured into aqueous 1 N HCl solution (20 mL) and extracted with Et2O (20 mL x 3). The organic layer was dried over MgSO4. The organic solvent was removed under reduced pressure to give a brown oil, which was treated with TBAF (1.0 M in THF, 2.0 mL, 2.0 mmol) in THF (18 mL) at 0 °C for 1 h. The resulting brown suspension was poured into saturated NH4Cl solution (20 mL) and extracted with Et2O (20 mL x 3). The organic layer was dried over MgSO4. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO2 with hexane/AcOEt (v/v = 8/1) as an eluent to afford 1g (53 mg, 0.31 mmol, 17% yield) as a white solid; mp. 49.2-50.5 °C; IR (KBr) 509, 688, 845, 898, 998, 1049, 1182, 1208, 1402, 1645 (C=O), 2118 (C≡C), 2346, 2929, 3251 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDC13, 25 °C) δ 1.16 (ddd, J = 4.2, 7.8, 7.8 Hz, 1H), 1.61 (ddd, J = 4.2, 6.6, 6.6 Hz, 1H), 1.63-1.71 (m, 4H), 1.85 (ddd, J = 2.1, 6.6, 7.8, 7.8 Hz, 1H), 1.90 (d, J = 2.1 Hz, 1H), 2.21-2.40 (m, 4H), 2.62 (ddd, J = 6.6, 7.8, 7.8 Hz, 1H), 7.03 (m, 1H); ¹³C NMR (75 MHz, CDCl3, 25 °C) δ 10.9 (cyclopropane-CH2), 13.8 (CH-C≡), 21.6 (CH2), 23.3 (CH2), 23.3 (CH-CO), 26.1 (CH2), 67.5 (≡C-H), 81.7 (CH-C≡), 140.1 (vinyl), 140.2 (vinyl), 195.4 (C=O). HRMS (FAB): calcd for C12H13O (M⁺), 175.1123; found, 175.1122.

cis-2-Ethynylcyclopropyl 2-furyl ketone (1m).²⁰

A yellow solid (75% yield); mp. 73.0-73.9 °C; IR (KBr) 616, 657, 800, 881, 908, 1002, 1066, 1264, 1467, 1561, 1656 (C=O), 2166 (C≡C), 3121, 3138, 3292 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl3, 25 °C) δ 1.33 (ddd, J = 4.5, 8.4, 8.4 Hz, 1H), 1.75 (ddd, J = 4.5, 6.6, 6.6 Hz, 1H), 1.96 (d,
$J = 2.1$ Hz, 1H), 2.02 (ddddd, $J = 2.1, 6.6, 8.4, 8.4$ Hz, 1H), 2.92 (dd, $J = 6.6, 8.4, 8.4$ Hz, 1H), 6.57 (dd, $J = 1.8, 3.6$ Hz, 1H), 7.27 (d, $J = 3.6$ Hz, 1H), 7.61 (d, $J = 1.8$ Hz, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 11.9 (cyclopropane-CH$_2$), 14.4 (CH-C=), 24.1 (CH-CO), 68.3 (CH=H), 80.8 (CH-C=), 112.2 (furyl), 116.8 (furyl), 146.3 (furyl), 153.2 (furyl), 183.5 (C=O). Anal. Calcd for C$_{10}$H$_8$O$_2$: C, 74.99; H, 5.03. Found: C, 74.87; H, 5.08.

cis-2-Ethynylcyclopropyl 2-thienyl ketone (1n).21

A yellow liquid (76% yield); IR (neat) 725, 856, 908, 1064, 1237, 1386, 1417, 1517, 1651 (C=O), 2120 (C≡C), 3292 (≡C-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.32 (dddd, $J = 4.5, 7.8, 7.8$ Hz, 1H), 1.74 (dd, $J = 4.5, 6.6, 6.6$ Hz, 1H), 1.93 (d, $J = 2.1$ Hz, 1H), 2.01 (ddddd, $J = 2.1, 6.6, 7.8, 7.8$ Hz, 1H), 2.83 (dd, $J = 6.6, 7.8, 7.8$ Hz, 1H), 7.14 (dd, $J = 3.3, 4.8$ Hz, 1H), 7.63 (d, $J = 4.8$ Hz, 1H), 7.80 (d, $J = 3.3$ Hz, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 11.9 (cyclopropane-CH$_2$), 14.6 (CH=C=), 25.3 (CH-CO), 68.3 (CH=H), 80.9 (CH=C=), 128.1 (thienyl), 131.8 (thienyl), 133.5 (thienyl), 144.9 (thienyl), 187.2 (C=O). Anal. Calcd for C$_{10}$H$_8$OS: C, 68.15; H, 4.58. Found: C, 67.99; H, 4.56.

cis-2-Ethynylcyclopropyl 2-pyridyl ketone (1o).

A white solid (47% yield); mp. 73.9-75.3 °C; IR (KBr) 678, 689, 763, 1003, 1218, 1383, 1438, 1582, 1682 (C=O), 2109 (C≡C), 3263 (≡C-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.42 (dddd, $J = 4.2, 7.8, 7.8$ Hz, 1H), 1.75 (dd, $J = 4.2, 6.6, 6.6$ Hz, 1H), 1.96 (d, $J = 2.1$ Hz, 1H), 2.11 (ddddd, $J = 2.1, 6.6, 7.8, 7.8$ Hz, 1H), 3.86 (dd, $J = 6.6, 7.8, 7.8$ Hz, 1H), 7.47-7.52 (m, 1H), 7.83-7.89 (m, 1H), 8.10-8.13 (m, 1H), 8.71-8.73 (m, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 13.0 (cyclopropane-CH$_2$), 16.1 (CH-C=), 22.9 (CH-CO), 68.2 (≡C-H), 81.5 (CH=C=), 122.0 (pyridyl), 127.1 (pyridyl), 137.0 (pyridyl), 148.9 (pyridyl), 153.6, (pyridyl), 195.8 (C=O). Anal. Calcd for C$_{11}$H$_9$NO: C, 77.17; H, 5.30; N, 8.18. Found: C, 76.95; H, 5.39; N, 8.07.
cis-2-Ethynylcyclopropyl 1-hex-1-ynyl ketone (1p).

To a solution of 20a (0.30 g, 1.3 mmol) in THF (8 mL) was added 1-hexynyllithium (2.0 mmol) which was prepared from 1-hexyne (0.27 g, 3.3 mmol), and n-butyllithium (1.6 M in n-hexane, 1.6 mL, 2.6 mmol) at room temperature under N₂. After stirring at room temperature for 1 h, the mixture was poured into aqueous 1 N HCl solution (20 mL) and extracted with Et₂O (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure to give a brown oil, which was treated with KF (0.19 g, 3.3 mmol) in DMSO (10 mL) at room temperature for 9 h. The resulting purple solution was poured into H₂O (20 mL) and extracted with Et₂O (20 mL x 3). The organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 8/1) as an eluent to afford 1p (0.20 g, 1.1 mmol, 86% yield) as a yellow liquid; IR (neat) 642, 926, 1000, 1057, 1121, 1171, 1191, 1265, 1380, 1429, 1661 (C=O), 2210 (C=C), 2873, 2934, 2960, 3297 (=C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.97 (t, J = 7.2 Hz, 3H), 1.26 (ddd, J = 4.5, 8.1, 8.1 Hz, 1H), 1.42 (sex, J = 7.2 Hz, 2H), 1.51-1.61 (m, 2H), 1.65 (ddd, J = 4.5, 6.6, 6.6 Hz, 1H), 1.93 (ddddd, J = 2.1, 6.6, 8.1, 8.1 Hz, 1H), 1.98 (d, J = 2.1 Hz, 1H), 2.36 (dd, J = 6.6, 8.1, 8.1 Hz, 1H), 2.37 (t, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.3 (cyclopropane-CH₂), 14.0 (CH-C=), 23.3 (CH-CO), 26.1 (C-CH₃), 44.3 (C-CH₃), 67.5 (≡C-H), 81.6 (CH-C≡), 209.1 (C=O). HRMS (FAB): calcd for C₁₂H₁₄O (M⁺), 174.1045; found, 174.1041.

Preparation of 1b and 1c (Deproteetion of Trimethylsilyl Group).

cis-2-Ethynyl-1-(2-phenylethoxyxycarbonyl)cyclopropane (1b).

To a solution of 19b (0.29 g, 1.0 mmol) in MeOH (10 mL) was added 1 N KOH aqueous solution (1 mL) at 0 °C. The resulting brown solution was stirred at room temperature for 1 h, poured into saturated
N\textsubscript{2}Cl solution (30 mL), and extracted with AcOEt (10 mL x 3). The organic layer was dried over MgSO\textsubscript{4}. The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v = 15/1) as an eluent to afford Ib (0.16 g, 0.76 mmol, 76% yield) as a colorless liquid; IR (neat) 654, 700, 750, 819, 1123, 1174, 1402, 1732 (C=O), 2124 (C≡C), 2956, 3289 (≡C-H) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) δ 1.22 (dd, J = 5.6, 8.4, 8.4 Hz, 1H), 1.44 (dd, J = 5.6, 6.3, 6.3 Hz, 1H), 1.81 (dd, J = 2.1, 6.3, 8.4, 8.4 Hz, 1H), 1.92 (d, J = 2.1 Hz, 1H), 1.94 (dd, J = 6.3, 8.4, 8.4 Hz, 1H), 2.97 (t, J = 7.2 Hz, 2H), 4.35 (dt, J = 5.1, 7.2 Hz, 2H), 7.23-7.33 (m, 5H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) δ 14.2 (CH-C=), 20.9 (CH-CO), 35.1 (Ph-CH\textsubscript{2}), 65.3 (OCH\textsubscript{2}), 67.7 (≡C-H), 81.2 (CH-C≡), 126.4 (Ph), 128.4 (Ph), 128.8 (Ph), 137.7 (Ph), 170.0 (C=O). Anal. Calcd for C\textsubscript{14}H\textsubscript{14}O\textsubscript{2}: C, 78.48; H, 6.59. Found: C, 78.20; H, 6.63.

cis-2-Ethynyl-1-morpholinocarbamoylcyclopropane (1c).

A colorless liquid (81% yield); IR (neat) 845, 1032, 1067, 1114, 1234, 1436, 1471, 1646 (C=O), 2121 (C≡C), 2861, 3284 (≡C-H) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) δ 1.16 (dd, J = 5.3, 8.5, 8.5 Hz, 1H), 1.60 (dd, J = 5.3, 6.0, 6.0 Hz, 1H), 1.76 (dd, J = 2.4, 6.0, 8.5, 8.5 Hz, 1H), 1.90 (d, J = 2.4 Hz, 1H), 1.98 (dd, J = 6.0, 8.5, 8.5 Hz, 1H), 3.42-3.92 (m, 8H); 13C NMR (100 MHz, CDCl\textsubscript{3}, 25 °C) δ 7.5 (cyclopropane-CH\textsubscript{2}), 12.6 (CH-C≡), 21.0 (CH-CO), 42.5 (NCH\textsubscript{2}), 45.9 (NCH\textsubscript{2}), 67.0 (OCH\textsubscript{2}), 67.1 (≡C-H), 82.0 (CH-C≡), 167.1 (C=O). HRMS (FAB): calcd for C\textsubscript{10}H\textsubscript{14}NO\textsubscript{2} (M+H+), 180.1025; found, 180.1020.

Typical Procedure for Chromium-catalyzed Isomerization Reaction of 1.

The complex Cr(CO)\textsubscript{6} (5.5 mg, 0.025 mmol) was placed in the flame dried Schlenk flask and dissolved in THF (dry and deoxygenated, 5.0 mL) at room temperature under N\textsubscript{2}. This solution was irradiated with high-pressure Hg lamp (450 W, 350 nm) for 2 h at room temperature. Then, N\textsubscript{2} gas was bubbled into the yellow solution for 10 min. To the yellow
solution were added the substrate (0.5 mmol), if necessary with THF (1 mL), and triethylamine (0.2 mL, 1.4 mmol). After the reaction was complete, the organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 10/1 or 8/1) as an eluent to afford 7.

2-(2-Phenylethyl)phenol (7a).

A white solid (97% yield); mp. 81.8-82.8 °C; IR (KBr) 506, 700, 745, 758, 1095, 1142, 1326, 1453, 1501, 1591, 3521 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 2.92 (m, 4H), 4.59 (br s, 1H), 6.74 (d, J = 9.0 Hz, 1H), 6.85 (dd, J = 9.0, 9.0 Hz, 1H), 7.05-7.11 (m, 2H), 7.17-7.31 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 32.3, 36.2, 115.4, 120.9, 126.0, 127.3, 127.8, 128.4, 128.5, 130.3, 142.0, 153.5. Anal. Calcd for C₁₄H₁₄O: C, 84.81; H, 7.12. Found: C, 84.90; H, 7.42.

2-(n-Butyl)phenol (7d).

A colorless liquid (95% yield); IR (neat) 751, 1115, 1455, 2928, 2957, 3389 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.94 (t, J = 7.2 Hz, 3H), 1.39 (sex, J = 7.2 Hz, 2H), 1.55-1.65 (m, 2H), 2.60 (t, J = 7.2 Hz, 2H), 4.69 (br s, 1H), 6.75 (d, J = 7.5 Hz, 1H), 6.86 (dd, J = 7.5, 7.5 Hz, 1H), 7.07 (dd, J = 7.5, 7.5 Hz, 1H), 7.11 (d, J = 7.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 14.0, 22.6, 29.6, 31.9, 115.2, 120.8, 127.0, 128.5, 130.2, 153.4. Anal. Calcd for C₁₀H₁₄O: C, 79.96; H, 9.39. Found: C, 80.17; H, 9.51.

2-(tert-Butyl)phenol (7e).

Phenol 7e is commercially available, and the ¹H NMR spectrum of 7e which is shown below was the same as the spectrum of an authentic sample. A colorless liquid (95% yield); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.41 (s, 9H), 4.88 (br s, 1H), 6.67 (d, J = 7.6 Hz, 1H), 6.87 (dd, J = 7.6, 7.6 Hz, 1H), 7.07 (dd, J = 7.6, 7.6 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H).
2-Cyclopentylphenol (7f).

A colorless liquid (94% yield); IR (neat) 751, 822, 1043, 1097, 1174, 1237, 1331, 1343, 1492, 1502, 1588, 2868, 2953, 3369 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.61-1.81 (m, 6H), 2.04-2.06 (m, 2H), 3.16-3.27 (m, 1H), 4.78 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 6.6, 7.8 Hz, 1H), 7.06 (dd, J = 6.6, 7.5 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 25.3, 32.8, 39.0, 115.2, 120.8, 126.7, 127.0, 131.9, 153.4. Anal. Calcd for C₁₁H₁₄O: C, 81.44; H, 8.70. Found: C, 81.51; H, 8.96.

2-(1-Cyclohexenyl)phenol (7g).

A yellow liquid (79% yield); IR (neat) 487, 576, 649, 752, 816, 851, 919, 1179, 1228, 1280, 1447, 1487, 2857, 2930, 3437 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.66-1.74 (m, 2H), 1.76-1.84 (m, 2H), 2.17-2.30 (m, 4H), 5.64 (s, 1H), 5.59-5.89 (m, 1H), 6.84-6.93 (m, 2H), 7.05-7.16 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.9, 23.0, 25.4, 29.8, 115.2, 120.1, 128.0, 128.0, 128.1, 129.8, 134.8, 152.0. HRMS (FAB): calcd for C₁₂H₁₄O (M⁺), 174.1045; found, 174.1040.

2-(4-Methylphenyl)phenol (7h).

A brown liquid (95% yield); IR (neat) 667, 752, 817, 1108, 1181, 1478, 1482, 1582, 2920, 3418 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 2.41 (s, 3H), 5.21 (br s, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.98 (dd, J = 7.2, 7.2 Hz, 1H), 7.21-7.37 (m, 6H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.2, 115.7, 120.8, 128.1, 128.9, 129.0, 130.0, 130.2, 134.0, 137.7, 152.5. Anal. Calcd for C₁₃H₁₂O: C, 84.75; H, 6.57. Found: C, 84.54; H, 6.55.

2-(4-Methoxyphenyl)phenol (7i).

A brown liquid (96% yield); IR (neat) 568, 587, 756, 795, 829, 1045, 1105, 1246, 1274, 1452, 1483, 1516, 1583, 1607, 2836, 3424, 3531 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 3.86 (s, 3H),
5.20 (br s, 1H), 6.95-6.99 (m, 2H), 6.99-7.03 (m, 2H), 7.20-7.26 (m, 2H), 7.37-7.40 (m, 2H);

13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 55.3, 114.7, 115.6, 120.8, 127.8, 128.8, 129.1, 130.2, 130.3, 152.5, 159.3. Anal. Calcd for C$_{13}$H$_{12}$O$_2$: C, 77.98; H, 6.04. Found: C, 77.75; H, 6.18.

2-(4-Trifluoromethylphenyl)phenol (7j).

Phenol 7j has already been known,21 and several spectra of 7j are shown below. A purple solid (72% yield); mp. 104.7-106.8 °C; IR (neat) 611, 760, 831, 1071, 1104, 1114, 1164, 1328, 1588, 1616, 3524 (O-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 5.16 (s, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.99-7.04 (m, 1H), 7.22-7.30 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 116.2, 122.3, 125.8 (q, J = 3.7 Hz, CF$_3$), 126.9, 128.6, 129.0, 129.5, 129.8, 130.4, 141.2, 141.2, 152.3.

2-(2-Naphthyl)phenol (7l).

A white solid (92% yield); mp. 89.8-91.8 °C; IR (KBr) 484, 756, 815, 830, 899, 1101, 1180, 1277, 1328, 1449, 1500, 3533 (O-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 5.30 (br s, 1H), 7.01-7.06 (m, 2H), 7.25-7.36 (m, 2H), 7.51-7.60 (m, 3H), 7.86-7.98 (m, 4H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 115.9, 120.9, 126.4, 126.6, 127.1, 127.8, 127.8, 128.0, 128.1, 129.1, 129.2, 130.4, 132.7, 133.6, 134.5, 152.6. Anal. Calcd for C$_{16}$H$_{12}$O: C, 87.25; H, 5.49. Found: C, 87.17; H, 5.54.

2-(2-Furyl)phenol (7m).

A yellow liquid (82% yield); IR (neat) 754, 820, 904, 1010, 1212, 1297, 1464, 1489, 1509, 1595, 3521 (O-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 6.53 (dd, J = 1.8, 3.6 Hz, 1H), 6.70 (d, J = 3.6 Hz, 1H), 6.91-6.97 (m, 2H), 7.00 (br s, 1H), 7.16-7.22 (m, 1H), 7.50-7.53 (m, 1H), 7.53-7.55 (m, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 106.6, 111.7, 116.4, 117.2, 120.6, 126.2, 129.2, 141.2, 152.4, 152.7. HRMS (FAB): calcld for C$_{10}$H$_8$O$_2$ (M$^+$), 160.0524; found, 160.0527.
2-(2-Thienyl)phenol (7n).

A brown liquid (92% yield); IR (neat) 669, 715, 748, 832, 856, 1099, 1201, 1286, 1449, 3099, 3289 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 5.52 (br s, 1H), 6.93-6.98 (m, 2H), 7.14 (dd, J = 3.0, 4.5 Hz, 1H), 7.20-7.25 (m, 1H), 7.29 (m, 1H), 7.36-7.44 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 116.1, 120.9, 120.9, 126.0, 126.2, 127.8, 129.3, 130.1, 138.7, 152.4. Anal. Calcd for C₁₀H₈O₃S: C, 68.15; H, 4.58. Found: C, 68.13; H, 4.58.

2-(2-Pyridyl)phenol (70).

A pale yellow liquid (42% yield); IR (neat) 629, 641, 726, 751, 854, 1244, 1270, 1304, 1401, 1478, 1504, 1562, 1594, 2620, 2854, 2932, 3057 (O-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 6.89-6.94 (m, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.25-7.33 (m, 2H), 7.36-7.40 (m, 1H), 7.76 (dd, J = 1.8, 7.8 Hz, 1H), 7.97-8.01 (m, 2H), 8.62 (d, J = 5.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 118.6, 118.7, 118.8, 119.3, 121.5, 126.2, 131.6, 138.0, 145.6, 157.6, 159.9. HRMS (FAB): calcd for C₁₁H₁₀NO (M+H⁺), 172.0762; found, 172.0760.

2-Butylbenzofuran (8p).

A yellow liquid (24% yield); IR (neat) 669, 740, 750, 795, 945, 1169, 1253, 1455, 1588, 1601, 2861, 2871, 2928, 2957 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.95 (t, J = 7.5 Hz, 3H), 1.42 (sex, J = 7.5 Hz, 2H), 1.75 (quint, J = 7.5 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 6.36 (br s, 1H), 7.13-7.22 (m, 2H), 7.39-7.42 (m, 1H), 7.45-7.48 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 13.8, 22.3, 28.1, 29.8, 101.7, 110.7, 120.1, 122.3, 123.0, 129.0, 154.6, 159.7. HRMS (FAB): calcd for C₁₂H₁₄O (M⁺), 174.1045; found, 174.1041.

Tungsten-catalyzed Isomerization Reaction of 1a. According to the activation method of Cr(CO)₆, a solution of W(CO)₆ (35 mg, 0.10 mmol) in THF (dry and deoxygenated, 5 mL) was irradiated at room temperature for 2 h under N₂. To the resulted yellow solution were
added a solution of 1a (99 mg, 0.5 mmol) in THF(1 mL) and triethylamine (0.2 mL, 1.4 mmol). After stirring for 24 h, the organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO2 with hexane/AcOEt (v/v = 10/1) as an eluent to afford 7a (99% yield).

Preparation of cis-1-Vinyl-2-ethynylcyclopropanes from 20a.

cis-1-Vinyl-2-ethynylcyclopropanes were unstable and easily polymerized at room temperature. Therefore, these substrates 1q and 1r were used without further purification as soon as possible after protodesilylation of 21q and 21r by 1 M solution of TBAF in THF.

cis-1-[2-(3-Phenyl-1-butenyl)]-2-(trimethylsilyl)ethynylcyclopropane (21q).

To a solution of 20a (0.40 g, 1.5 mmol) in THF (5 mL) was added a solution of 2-phenylethylmagnesium bromide (about 2 equiv) in THF (5 mL) at 0 °C under N2. The mixture was stirred at 0 °C for 0.5 h, poured into saturated NH4Cl solution (20 mL), and extracted with AcOEt (20 mL x 3). The organic layer was dried over MgSO4. The organic solvent was removed under reduced pressure to afford crude cis-2-(3-phenylpropanoyl)-1-(trimethylsilyl)ethynylcyclopropane as a brown oil.

Then, to a suspension of CH3PPh3I (2.5 g, 6.3 mmol) in THF (30 mL) was slowly added n-BuLi in hexane (1.6 M, 3.9 mL, 6.2 mmol) at -78 °C under N2. The resulting yellow solution was stirred for 1 h at 0 °C, and to it was added a solution of the crude cis-2-(3-phenylpropanoyl)-1-(trimethylsilyl)ethynylcyclopropane in THF (2 mL) at -78 °C. The color changed from yellow to orange. This orange suspension was stirred at 0 °C for 3.5 h, poured into water (100 mL), and extracted with Et2O (30 mL x 3). The organic layer was dried over MgSO4. The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO2 with hexane/AcOEt (v/v = 40/1) as an eluent to afford 21q (0.24 g, 0.94 mmol, 61% yield) as a colorless liquid; IR (neat) 542, 698, 759, 841, 863, 891, 1120, 1249, 1438, 1454, 1496, 1645, 2168 (C≡C), 2958, 3027 cm⁻¹; ¹H NMR (300
MHz, CDCl₃, 25 °C) δ 0.12 (s, 9H), 0.97-1.10 (m, 2H), 1.58 (ddd, J = 5.7, 8.4, 8.4 Hz, 1H), 1.68 (ddd, J = 7.5, 8.4, 8.4 Hz, 1H), 2.46 (dd, J = 8.1, 9.0 Hz, 2H), 2.84 (dd, J = 8.1, 9.0 Hz, 2H), 4.81 (br s, 1H), 4.96 (br s, 1H), 7.16-7.31 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 0.2, 8.7, 13.3, 24.8, 34.3, 38.5, 107.1, 110.7, 125.8, 128.3, 128.4, 132.0, 142.4, 145.2. HRMS (FAB): calcd for C₁₉H₂₄Si (M⁺), 268.1647; found, 268.1653.

cis-1-(1-p-Tolylethenyl)-2-(trimethylsilyl)ethynylcyclopropane (21r).

A yellow liquid (81% yield); IR (neat) 759, 825, 841, 871, 1248, 1514, 2166 (C=CC), 2958 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.08 (s, 9H), 1.07-1.22 (m, 2H), 1.78 (ddd, J = 5.7, 8.1, 8.1 Hz, 1H), 2.01 (ddd J = 7.2, 8.1, 8.1 Hz, 1H), 2.34 (s, 3H), 5.00 (br s, 1H), 5.45 (br s, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 7.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 0.0, 9.8, 13.6, 21.1, 24.3, 83.0, 106.7, 112.3, 126.2, 128.7, 137.0, 138.8, 144.0. HRMS (FAB): calcd for C₁₇H₂₃Si (M⁺H⁺), 255.1569; found, 255.1558.

Typical Procedure for Chromium-triggered Isomerization Reaction of 1q or 1r. Cycloheptatrienes 10q and 11q.

To a solution of 21q (81 mg, 0.30 mmol) in THF (2 mL) was added 1 M solution of tetrabutylammonium fluoride in THF (0.33 mL, 0.33 mmol) at 0 °C under N₂. After stirring for 15 min, the resulting brown solution was poured into saturated NH₄Cl solution (10 mL), and extracted with Et₂O (10 mL x 3). The organic layer was dried over MgSO₄. (The organic solvent was removed under reduced pressure to afford 1q quantitatively.)

To a yellow solution of Cr(CO)₅(THF) in THF (9 mL) were added a solution of 1q in THF(1 mL) and triethylamine (0.13 mL, 0.90 mmol). After stirring for 8 h, the organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 50:1) as an eluent to afford a mixture of
10q (34% yield) and 11q (10% yield). The yield of 10q and 11q was determined by ¹H NMR; IR (neat, a mixture of 10q and 11q) 698, 709, 746, 771, 1454, 1496, 1603, 1626, 2854, 2926, 3024, 3062 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) 10q: δ 2.35 (d, J = 6.9 Hz, 2H), 2.56 (dd, J = 6.9, 9.0 Hz, 2H), 2.79 (dd, J = 6.9, 9.0 Hz, 2H), 5.36 (dt, J = 6.9, 9.0 Hz, 1H), 5.96-5.99 (m, 1H), 6.15 (dt, J = 2.7, 9.0 Hz, 1H), 6.49 (t, J = 2.7 Hz, 2H), 7.17-7.27 (m, 5H); 11q: δ 2.18 (t, J = 6.9 Hz, 2H), 2.47 (dd, J = 7.2, 8.7 Hz, 2H), 2.70 (dd, J = 7.2, 8.7 Hz, 2H), 5.11 (t, J = 6.9 Hz, 1H), 5.47 (dt, J = 6.9, 9.3 Hz, 1H), 6.12 (dt, J = 2.7, 9.3 Hz, 1H), 6.56 (d, J = 2.7 Hz, 2H), 7.09-7.22 (m, 5H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) a mixture of 10q and 11q: δ 27.5, 32.7, 36.2, 36.7, 38.0, 40.3, 117.8, 120.6, 121.5, 122.6, 125.6, 125.8, 126.0, 126.4, 128.1, 128.2, 128.3, 128.4, 129.0, 130.5, 130.7, 133.1, 136.9, 138.1, 141.6, 141.9. HRMS (FAB): calcd for C₁₅H₁₆ (M⁺), 196.1252; found, 196.1258.

Cycloheptatrienes 10r and 11r.

A yellow liquid (10r: 24%, 11r: 7% yield); IR (neat, a mixture of 10r and 11r) 447, 651, 702, 716, 737, 779, 816, 1375, 1435, 1509, 2921, 3022 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) 10r: δ 2.35 (s, 3H), 2.76 (d, J = 5.4 Hz, 2H), 5.45 (dt, J = 5.4, 9.2 Hz, 1H), 6.25 (dd, J = 5.6, 9.2 Hz, 1H), 6.47 (d, J = 5.6 Hz, 1H), 6.58-6.72 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H); 11r: δ 2.31 (t, J = 7.2 Hz, 2H), 2.38 (s, 3H), 5.54 (dt, J = 7.2, 9.6 Hz, 1H), 5.60 (t, J = 7.2 Hz, 1H), 6.22 (dd, J = 5.6, 9.6 Hz, 1H), 6.75 (dd, J = 5.6, 11.2 Hz, 1H), 6.86 (d, J = 11.2 Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) a mixture of 10r and 11r: δ 21.1, 21.2, 27.9, 31.7, 117.2, 120.8, 122.0, 122.4, 126.4, 126.9, 127.3, 127.5, 128.8, 129.0, 129.7, 130.8, 131.7, 131.7, 132.4, 132.8, 136.5, 137.0, 138.1, 138.8. HRMS (FAB): calcd for C₁₄H₁₄ (M⁺), 182.1096; found, 182.1095.
Typical Procedure for Catalytic Isomerization Reaction of 1a Using Other Metal Complexes.

A metal complex (0.010 mmol) was placed in the flame dried Schlenk flask and dissolved in toluene (dry, 4.0 mL) at room temperature under N₂. To this solution was added a solution of 1a (38 mg, 0.20 mmol) in toluene (1 mL) and triethylamine (75 µL, 0.60 mmol) at room temperature. After stirring at 70 °C for 48 h, the organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 8/1) to afford a mixture of 7a and 17a.

1,2-Diphenylethane (17a).

The product 17a is commercially available, and the ¹H NMR spectrum of 19a which is shown below was the same as the spectrum of an authentic sample. ¹H NMR (270 MHz, CDCl₃, 25 °C) δ 2.92 (s, 4H), 7.17-7.31 (m, 10H).

References and Notes

(3) For reviews on [3,3]sigmatropic rearrangement of divinylcyclopropanes and their equivalents, see: (a) Hudlicky, T.; Fan, R. L.; Reed, J. W.; Gadamasetiti, K. G. Org.

(6) It has been reported that thermal [3,3]sigmatropic rearrangements of 1,2-diethynylcyclopropanes,\(^7\) 1-ethynyl-2-vinylcyclopropane\(^8\), and 1-ethynyl-2-iminyl- or 1-ethynyl-2-formylcyclopropane\(^9\) gave rise to seven-membered diallenic and allenic intermediates. For brevity, limited references are shown below.

(10) The solution of Cr(CO)\(_5\)(THF) (n equiv) used was prepared by irradiating a solution of a THF solution of Cr(CO)\(_6\) (n equiv) at room temperature for 4 h with a high-pressure Hg lamp. See Experimental Section.

(12) Isomerization of 1f to trans-1-ethynyl-2-(1-naphthoyl)cyclopropane (20%) was observed in this reaction.

(13) Structures of 15 and 16 were confirmed by comparing their NMR spectra in two regions of \(\delta 1.0-2.5\) ppm and \(\delta 5.0-7.0\) ppm with those of 1- and 2-methyl-1,3,5-

(14) The literature of ref. 9 also describes the reason why the substrate 1q and 1r are unstable.

(16) Triethylamine and/or M(CO)$_5$ are presumably responsible for isomerization of 11 to 7.

(20) Lithiation of furan and thiophene was carried out by the method of following reference. See: Benkeser, R. A.; Currie, R. B. \textit{J. Am. Chem. Soc.} \textbf{1948}, \textit{70}, 1780.

Part II

Generation of (2-Furyl)carbene Complexes from π-Alkyne Complexes and Their Application to Catalytic Carbene Transfer Reactions
Chapter 3

Synthesis of 2-(Furyl)carbene Complexes from Conjugated Ene-Yne-Ketones with Group 6 Transition Metal Complexes

Abstract

The reaction of conjugated ene-yne-ketones such as 1-phenylcarbonyl-2-ethynylcycloalkenes with Cr(CO)$_5$(THF) or W(CO)$_5$(THF) gave the corresponding 5-phenyl-furylcarbene-chromium or -tungsten complex, respectively. A nucleophilic attack at an internal alkyne carbon in π-alkyne or σ-vinyl cationic complexes generated from 1-phenyl-2-ethynylcycloalkenes and transition metal complexes is a key route to these nonheteroatom-stabilized carbene complexes. New (2-furyl)carbene complexes undergo oxidative cleavage reaction under oxygen atmosphere to give furfural derivatives.
Introduction

In Chapter 1, the author has described that the reactions of ene-yne-esters and -amides 1 (R = OR', NR'\textsubscript{2}) with group 6 transition metal complexes afforded 2-pyrylidene complexes 3 via the electrocyclization of vinylidene-ene-carbonyl intermediates A (Scheme 1, path a).1,2

In this chapter, the author describes the preparation of (2-furyl)carbene complexes 2 from ene-yne-ketones 1 (R = Ar) with group 6 transition metal complexes via a nucleophilic attack of a carbonyl oxygen at an internal carbon of alkyne in \(\pi\)-alkyne complex A (Scheme 1, path b).

Scheme 1

\[
\begin{align*}
\text{B} & \quad \text{[M]} \\
\text{[M]} & \quad \text{R} \quad \text{[M]} \\
\text{[M]} & \quad \text{R} \\
\text{[M]} & \quad \text{R} \\
\end{align*}
\]

\(\text{(2-Furyl)carbene complexes are stable enough to be purified with short column chromatography on SiO}_2\). In a THF solution of these carbene complexes under oxygen, the corresponding furfurals were obtained in good yields.
Results and Discussion

At first, the reactions of an ene-yne-ketone with chromium and tungsten carbonyl complexes were examined. When 2-ethynyl-1-cyclohexenyl phenyl ketone (1a) was treated with 3 equiv of Cr(CO)₅(THF)⁴ in the presence of triethylamine, the corresponding 2-pyranlidene-chromium complex 3a was obtained only in 8% yield together with many unidentified products (Scheme 2). The formation of 3a can be explained by assuming the electrocyclization of a vinylidene intermediate as described in Chapter 1.

On the other hand, in the absence of triethylamine the reaction of 1a with 3 equiv of Cr(CO)₅(THF) did not afford 3a, and instead (2-furyl)carbene-chromium complex 2a was isolated in 52% yield as a blue solid (eq 1). The complex 2a is marginally stable during
purification with silica gel column chromatography. 2-Thienyl ketone 1b also gave the corresponding (2-furyl)carbene-chromium complex 2b in 59% yield. When 1a was treated with 3 equiv of W(CO)₅(THF)₅, (2-furyl)carbene-tungsten complex 2c was isolated in 56% yield (eq 2).¹ However, in the reaction of an alkyl ketone such as ethyl 2-ethynyl-1-cyclohexenyl ketone (R = Et in 1) with Cr(CO)₅(THF) and W(CO)₅(THF), the color of the solution changed yellow to blue, which probably indicated the generation of (2-furyl)carbene complexes, isolation of the corresponding (2-furyl)carbene complex failed with decomposition by column chromatography. Isolated complexes 2a-2c could be stored for several days under N₂ atmosphere, but they gradually decomposed in CDCl₃ or under oxygen atmosphere. When the isolated carbene complex 2a was stirred in THF under oxygen atmosphere, furfural derivative 4a was obtained in 76% yield (eq 3). The displacement of metal carbonyl moiety with the oxygen atom in carbene complex by molecular oxygen is a well-known process.⁶ Most plausible pathway from 1 to 2 is shown in Scheme 3. As shown in Scheme 3, 5-exo-dig cyclization of ene-yne-ketone 1 via nucleophilic attack of a carbonyl

\[\text{Scheme 3} \]

\[\begin{align*}
\text{1} & \xrightarrow{[\text{M}]} \text{A} \\
\text{A} & \xrightarrow{[\text{M}]} \text{C} \\
\text{C} & \xrightarrow{[\text{M}]} \text{2}
\end{align*} \]

\[\begin{align*}
\text{2a (R = Ph, M = Cr)} & \quad 4a (76\%) \\
\text{2b (R = 2-thienyl, M = Cr)} & \quad 4b (76\%) \\
\text{2c (R = Ph, M = W)} & \quad 4a (84\%)
\end{align*} \]
oxygen to an internal carbon of an alkyne in π-alkyne complex A might be most plausible pathway for generation of (2-furyl)carbene complex 2 (M = Cr(CO)₅, W(CO)₅). A slipped, polarized η-complex C would be an alternatively possible intermediate. The latter reaction pathway will be described in Chapter 4 as well. In the pre-equilibrium between a π-alkyne complex A and a vinylidene complex B (Scheme 1), 5-exo-dig cyclization takes place as a favorable and fast process to give the furylcarbene complex. The presence of triethylamine, which may promote the isomerization of a π-alkyne complex to a vinylidene complex, in fact, precluded the formation of the (2-furyl)carbene complex (eqs 1 and 2 and Scheme 3). The mode of carbene complex formation would be also attributed to the difference in the reactivity of carbonyl functionality of ene-yne-esters, -amides, and -ketones.

In conclusion, the author has demonstrated that the reaction of ene-yne-ketones with M(CO)₅(THF) [M = Cr, W] gave (2-furyl)carbene complexes selectively via a nucleophilic attack of a carbonyl oxygen to a π-alkyne complex. The reactivity of newly prepared (2-furyl)carbene-chromium and tungsten complexes has been clarified in part in the oxidative conversion of them to the corresponding furfurals.
Experimental

General Procedure. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ or d₈-THF with Me₄Si as an internal standard (¹H and ¹³C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL LMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University.

Synthesis of Substrates

Substrates 1a and 1b were prepared by the following procedures (Scheme 4, and see Chapter 1 of this thesis).

Scheme 4

![Scheme 4](image)

N-Methyl N-methoxy 2-(trimethylsilylethynyl)-1-cyclohexenecarboxamide (6)⁷

Methyl 2-(trimethylsilyl)-1-cyclohexenecarboxylate (5) was prepared from cyclohexanone in several steps. See Experimental Section of Chapter 1.

A solution of methyl 2-(trimethylsilylethynyl)-1-cyclohexenecarboxylate (5) (3.6 g, 15 mmol) in benzene (5 mL) was added to benzene (40
mL) and hexane (45 mL) solution of Me₂AlNMe(OMe) prepared from a hexane solution of Me₃Al (45 mL, 45 mmol) and N,O-dimethylhydroxylamine hydrochloride (4.4 g, 45 mmol). The resulting solution was heated under reflux for 3 h. The reaction mixture was cooled to room temperature, and hydrolyzed by slow and cautious addition of 1.0 N hydrochloric acid (30 mL). The upper organic layer was separated, and the aqueous layer was extracted with AcOEt (30 mL x 3). The combined organic layer was washed with brine, and dried over MgSO₄. The solvent was removed under reduced pressure to give the residual liquid, which was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=4/1) as an eluent to afford N-methyl N-methoxy 2-(trimethylsilylethynyl)-1-cyclohexenecarboxamide (6) (3.6 g, 14 mmol, 92% yield) as a pale yellow liquid; IR (KBr) 845, 1659 (C=O), 2144 (C=C) cm⁻¹;

¹H NMR (CDCl₃, 300 MHz, 25 °C) δ 0.12 (s, 9H), 1.57-1.65 (m, 4H), 2.14-2.27 (m, 4H), 3.23 (s, 3H), 3.71 (s, 3H).

¹³C NMR (CD₂Cl₂, 100 MHz, -25 °C) δ -0.1 (SiCH₃), -0.1 (SiCH₃), 21.5 (CH₂), 21.5 (CH₂), 21.8 (CH₂), 21.9 (CH₂), 26.5 (CH₂), 26.7 (CH₂), 28.8 (CH₂), 29.5 (CH₂), 31.8 (NCH₃), 35.7 (NCH₃), 60.3 (OCH₃), 62.0 (OCH₃), 96.4 (C=), 97.2 (C=), 103.0 (C=), 104.5 (C=), 116.7 (C=), 119.4 (C=), 140.0 (C=), 143.1 (C=), 166.4 (C=O), 170.8 (C=O) as a mixture of rotamers. Anal. Calcd for C₁₄H₂₃N₀₂Si: C, 63.35; H, 8.73; N, 5.28. Found: C, 63.07; H, 8.47; N, 5.21.

2-Ethynylcyclohexenyl phenyl ketone (1a)

Spectral data of ketone 1a has been shown in Chapter 1 of this thesis.

2-Ethynyl-1-cyclohexenyl 2-thienyl ketone (1b)

To a solution of thiophene (0.46 mL, 6.0 mmol) in THF (5 mL) was added n-BuLi (4 mL, 1.6 M in hexane, 6.4 mmol) at 0 °C under N₂, and the mixture was stirred at room temperature for 2 h. The mixture was added to a solution of 6 (0.80 g, 3.0 mmol) in THF (5 mL) at 0 °C, and the mixture was stirred at room temperature for 10 min. The reaction mixture was poured into saturated
NH₄Cl solution (20 mL), and the aqueous layer was extracted with AcOEt (10 mL x 3). The combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and then K₂CO₃ (1.0 g, 7.5 mmol) was added to the residue in MeOH (30 mL) at room temperature. After stirring for 12 h, this solution was poured into saturated NH₄Cl solution (100 mL). The aqueous layer was extracted with AcOEt (30 mL x 3), and the combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=20/1) as an eluent to afford 1b (0.28 g, 1.3 mmol, 43% yield) as a colorless liquid; IR (neat) 643, 734, 774, 856, 1262, 1285, 1411, 1644 (C=O), 2094 (C=C), 2935, 3288 (≡C-H) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, 25 ºC) δ 1.71-1.77 (m, 4H), 2.28-2.40 (m, 4H), 2.92 (s, 1H), 7.13 (dd, J = 4.2, 4.2 Hz, 1H), 7.68 (d, J = 4.2 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz, 25 ºC) δ 21.4, 21.7, 27.3, 29.7, 82.0, 82.2, 119.4, 128.1, 134.6, 134.7, 143.0, 145.8, 191.2. HRMS (FAB): calcd for C₁₃H₁₂O₂S (M+H+), 217.0687; found, 217.0685.

Synthesis of Furylcarbene Complexes 2

Chromium complex 2a

A solution of Cr(CO)₆ (0.13 g, 0.60 mmol) in THF (20 mL) under Ar was irradiated by a Hg lamp (450 W, 350 nm) at room temperature for 4 h. To the yellow solution under Ar was added a solution of 4a (42 mg, 0.20 mmol) in THF (1 mL) by a syringe. The mixture was stirred at room temperature for 0.5 h. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=10/1) as an eluent to afford 2a (42 mg, 0.10 mmol, 52% yield) as a blue solid (air stable for a few days under N₂, but gradually decomposed in CDCl₃ or under O₂); IR (KBr) 651, 826, 1934, 1994, 2045 cm⁻¹; ¹H NMR (d₈-THF, 300 MHz, 25 ºC) δ 1.84-2.00 (m, 4H), 2.75-2.83 (m, 2H), 2.95-3.04 (m, 2H), 7.60-7.69 (m, 3H), 8.16-8.25 (m, 2H), 13.5 (s, 1H); ¹³C NMR (d₈-THF,
75 MHz, 25 °C) δ 23.0, 24.0, 24.1, 24.4, 127.7, 128.8, 129.9, 130.8, 132.9, 138.4, 168.2, 171.7, 219.6 (Cr-CO), 233.9 (Cr-CO), 284.4 (Cr=C). HRMS (FAB): calcd for C_{20}H_{14}CrO_{6} (M^+), 402.0219; found, 402.0195.

Chromium complex 2b

A blue solid (59% yield: air stable for a few days under N₂, but gradually decomposed in CDCl₃ or under O₂). IR (KBr) 1933, 1970, 2041 cm⁻¹. ¹H NMR (d₈-THF, 300 MHz, 25 °C) δ 1.73-1.90 (m, 4H), 2.66 (t, J = 3.9 Hz, 2H), 2.77 (t, J = 3.9 Hz, 2H), 7.27-7.31 (m, 1H), 7.88-7.94 (m, 2H), 13.0 (s, 1H). ¹³C NMR (d₈-THF, 75 MHz, 25 °C) δ 21.5, 21.6, 22.2, 22.7, 125.3, 129.2, 130.3, 131.5, 132.8, 137.2, 163.3, 169.9, 218.2 (Cr-CO), 232.3 (Cr-CO), 276.4 (Cr=C). HRMS (FAB): calcd for C_{19}H_{12}CrO_{6}S (M+H⁺), 407.9760; found, 407.9756.

Tungsten complex 2c

A solution of W(CO)₆ (0.21 g, 0.60 mmol) in THF (20 mL) under Ar was irradiated by a Hg lamp (450 W, 350 nm) at room temperature for 4 h. To the yellow solution under Ar was added a solution of 1a (42 mg, 0.2 mmol) in THF (1 mL) by a syringe. The mixture was stirred at room temperature for 0.5 h. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=10/1) as an eluent to afford 5c (60 mg, 0.11 mmol, 56% yield) as a blue solid (air stable for a few days under N₂, but gradually decomposed in CDCl₃ or under O₂); IR (KBr) 580, 677, 825, 1920, 1934, 2052 cm⁻¹; ¹H NMR (d₈-THF, 300 MHz, 25 °C) δ 1.94-2.10 (m, 4H), 2.54-2.60 (m, 2H), 3.07-3.13 (m, 2H), 7.64-7.78 (m, 3H), 8.26-8.32 (m, 2H), 13.3 (s, 1H); ¹³C NMR (d₈-THF, 75 MHz, 25 °C) δ 21.3, 22.5, 22.5, 23.5, 127.4, 127.9, 129.5, 129.8, 131.5, 141.7, 166.5, 171.3, 198.1 (W-CO), 210.2 (W-CO), 247.8 (W=C). HRMS (FAB): calcd for C_{20}H_{14}WO_{6} (M⁺), 534.0286; found, 534.0300.
Synthesis of Furfural Derivatives 4

Furfural 4a

A solution of 2a (22 mg, 0.054 mmol) in THF (5 mL) was stirred at room temperature under O₂ atmosphere for 12 h. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v=8:1) as an eluent to afford 4a (9.2 mg, 0.041 mmol, 76% yield) as a white solid; mp 91.3-94.8 °C; IR (KBr) 696, 773, 828, 1650, 1669 cm⁻¹; ¹H NMR (d₈-THF, 300 MHz, 25 °C) δ 1.73-1.86 (m, 4H), 2.81-2.87 (m, 2H), 2.87-2.93 (m, 2H), 7.31-7.38 (m, 1H), 7.41-7.49 (m, 2H), 7.76-7.81 (m, 2H), 9.73 (s, 1H); ¹³C NMR (d₈-THF, 75 MHz, 25 °C) δ 22.8, 23.4, 23.9, 24.4, 122.6, 124.7, 127.1, 129.9, 130.2, 132.1, 147.8, 152.9, 178.2 (CHO). HRMS (FAB): calcd for C₁₅H₁₄O₂ (M+H⁺), 227.1072; found, 227.1067.

Furfural 4b

A white solid (76% yield); mp 100.5-101.6 °C; IR (KBr) 698, 819, 853, 1445, 1635, 1663 cm⁻¹; ¹H NMR (d₈-THF, 300 MHz, 25 °C) δ 1.75-1.90 (m, 4H), 2.68-2.76 (m, 2H), 2.87-2.94 (m, 2H), 7.14 (dd, J = 3.6, 4.8 Hz, 1H), 7.42 (d, J = 4.8 Hz, 1H), 7.47 (d, J = 3.6 Hz, 1H), 9.69 (s, 1H); ¹³C NMR (d₈-THF, 75 MHz, 25 °C) δ 22.7, 23.1, 23.5, 24.1, 121.6, 126.6, 128.2, 129.3, 134.0, 136.7, 147.4, 149.6, 177.8 (CHO). Anal. Calc. for C₁₃H₁₂O₂S: C, 67.21; H, 5.21. Found: C, 66.97; H, 5.17.
References and Notes

(5) Chromium moieties of carbene complexes are readily displaced with the oxygen atom by molecular oxygen, see: (a) Silveman, R. B.; Olofson, R. A. Chem. Commun. 1968, 1313. (b) Fischer, E. O.; Riedmüller, S. Chem. Ber. 1974, 107, 915.

Chapter 4

Novel Approach for Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne with Transition Metal Compounds

Abstract

The reaction of alkenes with conjugated ene-yne-ketones such as 1-benzoyl-2-ethynylcycloalkenes with a catalytic amount of Cr(CO)\(_5\)(THF) gave 5-phenyl-2-furylcyclopropane derivatives in good yields. The key intermediate of this cyclopropanation is a (2-furyl)carbene complex generated by a nucleophilic attack of a carbonyl oxygen to an internal alkyne carbon in \(\pi\)-alkyne complex or \(\sigma\)-vinyl cationic complex. A wide range of late transition metal compounds such as [RuCl\(_2\)(CO)\(_3\)]\(_2\), [RhCl(cod)]\(_2\), PdCl\(_2\), and PtCl\(_2\) also catalyzes the cyclopropanation of alkenes with ene-yne-ketones effectively. When the reactions were carried out with dienes as a carbene acceptor, more substituted or more electron-rich alkene part was selectively cyclopropanated with the (2-furyl)carbenoid intermediate.
Introduction

The *in situ* generation of carbenoid species from diazoalkanes and transition metal complexes has been most widely used for catalytic cyclopropanation and a wide range of carbene transfer reactions.\(^1\) Diazo decomposition by transition metal complexes is often a useful but formidable task due to explosive hazard and a number of unfavorable side reaction such as diazo dimerization and azine formation. To circumvent such difficulties, safe alternatives to handling diazoalkanes or special techniques involving slow addition of them are required. Recently, much attention has been paid to activation of alkynes with transition metal compounds as a safe and facile alternative to diazo decomposition. Cyclopropylcarbenoid in skeletal reorganization of \(\alpha,\omega\)-enynes,\(^2,3\) dialkylidene ruthenium species from \(\omega\)-diynes,\(^4\) transition metal-containing carbonyl ylides from \(\alpha\)-ethynylphenylcarbonyl compounds,\(^5,6\) copper-(isoindazolyl)carbenoids from (2-ethynylphenyl)triazenes,\(^7\) and vinylcarbenoids from propargylic carboxylates\(^8\) have so far been recognized as new entries to metal carbenoids from alkynes. The author has already demonstrated electrocyclization of vinylidene intermediates generated from ene-yne-esters or

\[\begin{align*}
\text{Scheme 1} \\
1 (R = \text{OR}, \text{NR}_2) & \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \\
2 (M = \text{Cr, Mo, W}) & \quad \quad \\
3 (R = \text{alkyl, aryl}) & \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \\
(b) & \quad \quad \\
4 (R = \text{Ar}) & \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \xrightarrow{[M]} \left[\begin{array}{c}
\text{[M]} \\
\text{[M]} \\
\end{array} \right] \\
5 (M = \text{Cr, W}) & \quad \quad \\
\end{align*}\]
-amides 1 (R = OR' or R = NR") with group 6 transition metal complexes leading to 2-pyranlyldene complexes 2 (Scheme 1a, see also Chapter 1)\(^9\) and valence isomerization of 1-acyl-2-ethynylcyclopropanes 3 via [3,3]sigmatropy of acylcyclopropylvinylidene intermediates catalyzed by group 6 transition metal complexes (Scheme 1b, see also Chapter 2).\(^{10}\) He also demonstrated the formation of stable (2-furyl)carbene-chromium or -tungsten complexes 5 from ene-yne-ketones 4 (R = Ar) (Scheme 1c, see also Chapter 3).\(^{11}\) The key of the third reaction is 5-exo-dig cyclization via a nucleophilic attack of a carbonyl oxygen to an internal carbon of an alkyne part activated by transition metal complexes. Furylcarbene complexes 5 were somewhat more stable than the corresponding phenylcarbene complexes,\(^{12}\) which could be stoichiometrically generated and used in cyclopropanation reactions.\(^{13}\) His continuous work mainly focusing on the catalytic activity of 5 led him to find new catalytic cyclopropanation via (2-furyl)carbene complexes without using the corresponding diazoalkane as a precursor. Cyclopropanation using (2-furyl)diazomethane was scarcely investigated due to the instability of the (2-furyl)carbene intermediate.\(^{14}\)

In this chapter, the author describes the details and the scope of the cyclopropanation reaction involving (2-furyl)carbene complexes 5 directly generated from ene-yne-ketones 4 with a wide range of transition metal compounds (Scheme 2).
Chromium-Catalyzed Cyclopropanation of Alkenes.

At first, the reaction of 4a with 2 equiv of tert-butyl vinyl ether was carried out in the presence of 5 mol% of Cr(CO)$_5$(THF) at room temperature (eq 1). The color of the reaction mixture gradually changed from deep blue to yellow as the reaction proceeded. After 2 h, 1-tert-butoxy-2-[(5-phenyl)furyl-2-yl]cyclopropane (6a) was isolated in 63% yield as a mixture of cis and trans isomers (cis:trans = 76:24). As shown in eq 2, similar ene-yne-ketones 4b and 4c also afforded the corresponding cyclopropanated products 6b (62% yield, cis:trans = 62:38) and 6c (90% yield, cis:trans = 60:40), respectively. The reaction of ethyl ketone 4d with tert-butyl vinyl ether was quite complex and many unidentified products were formed, reducing the yield of cyclopropanated product 6d to 20-30%. To the best of his knowledge, examples of chromium-catalyzed cyclopropanation had been thus far limited to papers reported by Dötz et al. Since the chromium-catalyzed cyclopropanation using ene-yne-ketones as carbenoid precursors was effectively delineated, cyclopropanations of several alkenes with 4a and 4c were next examined. Typical results are given in Table 1. Reactions of 4a and 4c with ketene diethyl acetal proceeded quite smoothly to give furylcyclopropanes.
Table 1. Chromium-Catalyzed Cyclopropanation of Alkenes with 4

\[
\text{Ph} + \text{CH}_2=\text{CH}_2 \quad \xrightarrow{5 \text{ mol}\% \text{Cr(CO)}_3(\text{THF})} \quad \text{Ph} + \text{Et} \quad \xrightarrow{\text{THF, rt}} \quad \text{Ph} + \text{Et}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>alkene</th>
<th>time (h)</th>
<th>product</th>
<th>isolated yield</th>
<th>cis:trans^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1.5</td>
<td>7a</td>
<td>82%</td>
<td>N.A.^c</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>2</td>
<td>7c</td>
<td>99%</td>
<td>N.A.^c</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>4</td>
<td>8c</td>
<td>83%</td>
<td>66:34^d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>22</td>
<td>9c</td>
<td>90%</td>
<td>endo only</td>
</tr>
<tr>
<td>5^e</td>
<td>c</td>
<td>14</td>
<td>10c</td>
<td>85%</td>
<td>74:26</td>
</tr>
<tr>
<td>6^f</td>
<td>c</td>
<td>96</td>
<td>11c</td>
<td>52%</td>
<td>N.A.^c</td>
</tr>
</tbody>
</table>

^a Reactions were carried out at room temperature with 4 (0.5 mmol), alkene (1.0 mmol), and Cr(CO)_6(THF) prepared in situ by irradiating a solution of Cr(CO)_6 (0.025 mmol) in THF (2 mL) unless otherwise noted. ^b Determined by 1H NMR. ^c N.A. = not applicable. ^d Configuration is not yet clear. ^e Alkene (10 mmol). ^f 2-Ethylbut-1-ene (7.5 mmol).
7a (82%) and 7c (99%), respectively (entries 1 and 2). Ene-yne-ketone 4e also reacted with enol silyl ether to give 8c in 83% yield with 66:34 diastereomeric ratio (entry 3). Interestingly, the reaction of 4e with 3,4-dihydro-2H-pyran as a cyclic vinyl ether exclusively gave endo cyclopropanated product 9e in 90% yield (entry 4). Styrene reacted slowly with 4e to give 10c (85%, cis:trans = 74:26), although the reaction required 20 equiv of styrene (entry 5). In the cyclopropanation of 2-ethylbut-1-ene with 4e, both prolonged reaction time (96 h) and excess use of alkenes (12.5 equiv to 4e) were requisite, the product 11c being produced in 52% yield (entry 6). On the other hand, cyclopropanation of vinyl acetate and 1-octene with 4e was sluggish, the yields of the corresponding cyclopropanated products being 22% (6 days) and 19% (10 days), respectively. Here, the complete consumption of the starting ene-yne-ketone 4e was observed, indicating that other reactions catalyzed by chromium compete with the cyclopropanation reaction. In fact, treatment of 4e in THF without an alkene in the presence of a catalytic amount of Cr(CO)₅(THF) for 60 h yielded 1,2-difurylethene 12 in 87% yield with high trans stereoselectivity. The plausible mechanism giving 12 is considered to be similar to the one proposed by Herndon et al. (Scheme 3). Since the side reaction occurs more slowly compared with the desired cyclopropanation, the slow addition of 4 is not always required in the present cyclopropanation reaction.
Other Transition Metal-Catalyzed Cyclopropanation of Alkenes.

As shown in Scheme 4, 5-exo-dig cyclization of ene-yne-ketone 4 via a nucleophilic attack of a carbonyl oxygen to an internal carbon of an alkyne in π-alkyne complex A might be the most plausible pathway for generation of (2-furyl)carbene-chromium complex 5 (M = Cr(CO)_5). A slipped, polarized η¹-complex B would be an alternatively possible intermediate. It is well known that A is prone to isomerize to B, which has been widely accepted for an intermediate for cyclization and skeletal reorganization of 1,6-enynes using a diversity of metal complexes.²,³ Considering the possibility of the intervention of B, we examined cyclopropanation of styrene with 4c in the presence of other transition metal compounds as catalysts (Table 2). Other group 6 metal complexes such as Mo(CO)_5(THF) and W(CO)_5(THF) were found to catalyze the cyclopropanation to give 10c in 23% and 54% yields with 54:46 and 70:30 cis and trans ratios, respectively (entries 1 and 2). Mn(CO)_5Br of group 7 triad was marginally effective in the cyclopropanation reaction (entry 3). Of group 8 triad metals, ruthenium complexes such as [(p-cymene)RuCl_2]_2 and [RuCl_2(CO)_3]_2 were effective to give 10c in 85% (cis:trans = 33:67) and 42% (cis:trans = 12:88) yields, respectively (entries 4 and 5).¹⁹ Rhodium and iridium complexes of group 9 triad exhibited
Table 2. Catalytic Cyclopropanation of styrene using 4c

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>cis:trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mo(CO)₅(THF)</td>
<td>2</td>
<td>23</td>
<td>54:46</td>
</tr>
<tr>
<td>2</td>
<td>W(CO)₅(THF)</td>
<td>2</td>
<td>54</td>
<td>70:30</td>
</tr>
<tr>
<td>3</td>
<td>Mn(CO)₅Br</td>
<td>24</td>
<td>21</td>
<td>9:91</td>
</tr>
<tr>
<td>4</td>
<td>[(p-cymene)RuCl₂]</td>
<td>2</td>
<td>85</td>
<td>33:67</td>
</tr>
<tr>
<td>5</td>
<td>[RuCl₂(CO)]₂</td>
<td>24</td>
<td>42</td>
<td>12:88</td>
</tr>
<tr>
<td>6</td>
<td>[Rh(OAc)]₂</td>
<td>1</td>
<td>93</td>
<td>8:92</td>
</tr>
<tr>
<td>7</td>
<td>[RhCl(cod)]₂</td>
<td>2</td>
<td>69</td>
<td>56:44</td>
</tr>
<tr>
<td>8</td>
<td>[IrCl(cod)]₂</td>
<td>2</td>
<td>92</td>
<td>57:43</td>
</tr>
<tr>
<td>9</td>
<td>PdCl₂</td>
<td>2</td>
<td>79</td>
<td>21:79</td>
</tr>
<tr>
<td>10</td>
<td>PtCl₂</td>
<td>1</td>
<td>81</td>
<td>23:77</td>
</tr>
</tbody>
</table>

a Reactions were carried out at room temperature with 4c (0.20 mmol), styrene (4.0 mmol), and a catalyst (0.010 mmol) in THF (2 mL) unless otherwise noted.

b Determined by 1H NMR.

c Prepared in situ by irradiating a solution of M(CO)₆ in THF.

d 0.005 mmol.

e Styrene (0.40 mmol).

the high catalytic efficiency in the present reaction (entries 6-8). In particular, [Rh(OAc)]₂ catalyzed the cyclopropanation of 2 equiv of styrene using 4c to give 10c for 1 h with exquisite efficiency (93% yield) and selectivity (cis:trans = 8:92) (entry 6). PdCl₂ and PtCl₂ of group 10 triad effectively catalyzed the cyclopropanation of styrene to give 10c in 79% (21:79 ratio) and 81% yields (23:77 ratio), respectively (entries 9 and 10). Other metal compounds such as Cp₂Ti(isobutylene), Mn(acac)₂, NiCl₂, CuOTf(1/2C₆H₆), Cu(OTf)₂, and AuCl₃ were not effective as catalysts in the present cyclopropanation. Variable stereoselectivity obtained in these reactions indicates that cyclopropanation proceeds in a different manner depending on each catalyst. The stereochemistry of the present cyclopropanation reaction will be argued in the last section (vide infra). In order to compare
Table 3. Rh- or Pt-Catalyzed Cyclopropanation of Alkenes with 4

<table>
<thead>
<tr>
<th>entry</th>
<th>alkene</th>
<th>cat.</th>
<th>product</th>
<th>isolated yield</th>
<th>cis:trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>[Rh]</td>
<td></td>
<td>99%</td>
<td>85:15</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>[Pt]</td>
<td></td>
<td>89%</td>
<td>32:68</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>[Rh]</td>
<td></td>
<td>92%</td>
<td>85:15</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>[Rh]</td>
<td></td>
<td>99%</td>
<td>90:10</td>
</tr>
<tr>
<td>5</td>
<td>c</td>
<td>[Pt]</td>
<td></td>
<td>68%</td>
<td>27:73</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>[Rh]</td>
<td></td>
<td>96%</td>
<td>N.A.</td>
</tr>
<tr>
<td>7</td>
<td>c</td>
<td>[Pt]</td>
<td></td>
<td>56%</td>
<td>N.A.</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>[Rh]</td>
<td></td>
<td>75%</td>
<td>endo only</td>
</tr>
<tr>
<td>9</td>
<td>c</td>
<td>[Pt]</td>
<td></td>
<td>60%</td>
<td>endo only</td>
</tr>
<tr>
<td>10</td>
<td>c</td>
<td>[Rh]</td>
<td></td>
<td>81%</td>
<td>24:76</td>
</tr>
<tr>
<td>11f</td>
<td>c</td>
<td>[Pt]</td>
<td></td>
<td>82%</td>
<td>14:86</td>
</tr>
<tr>
<td>12</td>
<td>c</td>
<td>[Rh]</td>
<td></td>
<td>67%</td>
<td>N.A.</td>
</tr>
<tr>
<td>13f</td>
<td>c</td>
<td>[Pt]</td>
<td></td>
<td>18%</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

*Reactions were carried out at room temperature with 4 (0.2 mmol), alkene (0.4 mmol), and [Rh(OAc)\(_2\)]\(_2\) (0.005 mmol) or PtCl\(_2\) (0.01 mmol) in THF (2 mL) for 1 h unless otherwise noted. *\(b\) [Rh] = [Rh(OAc)\(_2\)]\(_2\), [Pt] = PtCl\(_2\). *\(c\) Determined by \(^1\)H NMR. *\(d\) N.A. = not applicable. *\(e\) Styrene (4.0 mmol). *\(f\) 3 h.
the chromium catalysis with other transition metal catalysis, we next examined
cyclopropanation of several alkenes with ene-yne-ketones 4a-c in the presence of
\([\text{Rh(OAc})_2]_2\) and \(\text{PtCl}_2\) as selected catalysts. These results are summarized in Table 3. The
reactions of 4a-c with tert-butyl vinyl ether, ketene diethyl acetal, cyclic vinyl ether, and
styrene proceeded quite smoothly to give the cyclopropanated products 6a-c, 7c, 9c, and 10c
in good yields, respectively (entries 1-11). In the presence of \([\text{Rh(OAc})_2]_2\) as a catalyst, the
cyclopropanation of 2-ethylbut-1-ene with 4c gave 11c in 67% yield (entry 12), while a
similar reaction with \(\text{PtCl}_2\) catalyst gave 11c in only 18% yield together with other
unidentified products (entry 13). \([\text{Rh(OAc})_2]_2\) can act as an effective catalyst in
cyclopropanation of tert-butyl vinyl ether using ethyl ketone 4d (eq 3), which led to lower
yield of cyclopropanated product in chromium catalysis (see eq 2).

\[
4d + \overset{\text{(2 equiv)}}{\text{O-t-Bu}} \xrightarrow{5 \text{ mol}\% \ \begin{array}{c}
[\text{Rh(OAc})_2]_2 \\
\text{CH}_2\text{Cl}_2, \text{rt, 2 h}
\end{array}} \text{Et} \quad 6d \ 80\% \ (\text{cis:trans} = 91:9)
\]

Regioselectivity and Chemoselectivity in Catalytic Cyclopropanation.

The pronounced preference for the cyclopropanation reaction to take place at electron-
rich C=C bonds was verified by chromium-, rhodium-, and platinum-catalyzed reaction of 4
with isoprene and 2-vinylxyethyl acrylate as shown in eqs 4-6. In each reaction of isoprene
with 4a and 4c, a more substituted double bond was selectively cyclopropanated to give 13a
and 13c in good yields with nondiastereoselective manner, respectively (eqs 4 and 5). As
shown in eq 6, a more electron-rich C=C double bond of 2-vinylxyethyl acrylate was
selectively cyclopropanated to give 14c (73% with [Cr], 92% with [Rh], and 46% with [Pt])
as a mixture of diastereoisomers (67:33 to 90:10), respectively. A higher reactivity of
electron-rich alkenes and preferential formation of cis-cyclopropanes in this reaction indicate
that the cyclopropanation proceeds through the formation of an electrophilic (2-furyl)carbenoid intermediate like phenylcarbene-tungsten and -iron complexes.12,13

![Chemical structure](image)

\[4a + 4c + \text{(2 equiv)} \xrightarrow{5 \text{ mol\% cat.}} \text{THF, rt, 1 h} \]

\[\text{[Rh(OAc)}_2\text{]}_2, 13a (78\%, \text{cis:trans} = 43:57)\]

\[\text{PtCl}_2, 13a (66\%, \text{cis:trans} = 45:55)\]

\[4c + \text{(10 equiv)} \xrightarrow{5 \text{ mol\%}} \text{THF, rt, 96 h} \]

\[\text{Cr(CO)}_5(\text{THF)}, 13c (88\%, \text{cis:trans} = 50:50)\]

\[4c + \text{(2 equiv)} \xrightarrow{5 \text{ mol\% cat.}} \text{THF, rt} \]

\[\text{Cr(CO)}_5(\text{THF)} [24 \text{ h}] 14c (73\%, \text{cis:trans} = 89:11)\]

\[\text{[Rh(OAc)}_2\text{]}_2 [0.5 \text{ h}] 14c (92\%, \text{cis:trans} = 90:10)\]

\[\text{PtCl}_2 [3 \text{ h}] 14c (46\%, \text{cis:trans} = 67:33)\]

Plausible Reaction Pathway.

In order to elucidate the reaction pathway, cyclopropanation of stereodefined \textit{cis}- and \textit{trans}-but-2-ene was examined. In the presence of \text{Cr(CO)}_5(\text{THF}) and \text{PtCl}_2 as selected catalysts, cyclopropanation reaction of \textit{cis}- and \textit{trans}-but-2-ene with an ene-yne-ketone 4\text{a} proceeded stereospecifically to give only the cyclopropanated products with retention of configuration of alkenes, 15\text{a} (14\%, \text{syn:anti} = 91:9 with [Cr]; 26\%, \text{syn:anti} = 75:25 with [Pt]) and 16\text{a} (7\% with [Cr]; 23\% with [Pt]), respectively (eqs 7 and 8). The outcomes of the stereochemistry show that the most plausible pathway for cyclopropanation of an alkene with an ene-yne-ketone 4 is that illustrated in Scheme 5. The ene-yne-ketone 4 reacts with a transition metal complex to give a (2-furyl)carbene complex 5 as shown in Scheme 4.
Subsequently, the complex 5 reacts with an alkene to give the cyclopropanated product through a metallacyclobutane C or a charge-developed intermediate D. The preference for the cis cyclopropane isomer is a characteristic feature of the electrophilic metal-carbenoid having the same or similar steric environment (Cr(CO)$_5$ or [Rh(OAc)$_2$]$_2$ in octahedral geometry) except for the styrene case using [Rh(OAc)$_2$]$_2$. In the case of the late
transition metals having the square planar geometry, the diastereoselectivity considerably depends on the structure of alkenes and the stability of metallacycles. The logical contention remains, but at least the intervention of a carbocationic intermediate E can be presumably excluded in the present reaction.

The author has demonstrated new catalytic cyclopropanation of alkenes on the basis of the generation of (2-furyl)carbene complexes from conjugated ene-yne-ketones. This catalytic system has wide applicability to a diversity of transition metal complexes as well as a variety of ene-yne-ketones, and indeed finds some applications in other catalytic 2-furfurylidene transfer reactions such as Doyle-Kirmse reaction (see Chapter 8). This reaction represents new protocol to generate carbenoid species via activation of alkynes with transition metal complexes.

Experimental

General Procedure. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ or in d₈-THF with Me₄Si as an internal standard (¹H and ¹³C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University.
Synthesis of Substrates.

Substrate 4c11 was prepared as shown in Chapter 3. Substrate 4a was prepared as shown in Scheme 6. Substrates 4b and 4d were prepared from ene-yne-carbonyl compound 1911 as shown in Scheme 7.

Scheme 6

\[
\begin{align*}
\text{Ph} & \quad \text{TMS}\text{A} \quad \text{Pd(0), Cu(I)} \\
\text{17} & \quad \text{OH} \quad \text{1) Swern oxid.} \\
& \quad \text{18} \quad \text{2) deprotection} \\
& \quad \text{Ph} \\
& \quad \text{TMS} \\
& \quad \text{4a}
\end{align*}
\]

Scheme 7

\[
\begin{align*}
\text{Me} & \quad \text{NOMe} \\
\text{19} & \quad \text{RMgBr} \\
& \quad \text{deprotection} \\
& \quad \text{R} \\
& \quad \text{4}
\end{align*}
\]

1-Phenyl-cis-pent-2-en-4-yn-1-one 4a.

To a solution of trimethylsilylacetylene (3.4 mL, 24 mmol) in benzene (200 mL) were added \textit{t}-BuNH\textsubscript{2} (10 mL) and then benzyl alcohol 1721 (5.2 g, 20 mmol) at 0 °C under N\textsubscript{2}. To the solution were added CuI (0.56 g, 3.0 mmol) and then Pd(PPh\textsubscript{3})\textsubscript{4} (1.16 g, 1.0 mmol) at 0 °C. The mixture was stirred at room temperature for 2 h. The solution was washed with saturated aqueous NH\textsubscript{4}Cl solution (50 mL), and the aqueous phase was extracted with AcOEt (50 mL x 2). The combined organic phase was dried over MgSO\textsubscript{4}. The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v=8:1) to afford the coupling product 18 (4.6 g, quant.) as a pale yellow liquid; IR (neat) 640, 698, 745, 760, 844, 977, 1024, 1036, 1251, 1452, 1493, 2148 (C=C), 2960, 3347 (OH) cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}, 25 °C) δ 0.23 (s, 9H), 2.17 (br s, 1H), 5.60 (d, J = 10.8 Hz, 1H), 5.81 (d, J = 8.8 Hz, 1H), 6.11 (dd, J = 8.8, 10.8 Hz, 1H), 7.28 (dd, J = 7.2, 7.2 Hz, 1H), 7.36 (dd, J = 7.2, 7.2 Hz, 1H),
2H), 7.44 (d, J = 7.2 Hz, 2H); ^13^C NMR (100 MHz, CDCl$_3$, 25 °C) δ -0.1, 72.0, 100.9, 101.0, 109.8, 125.7, 127.6, 128.5, 142.3, 145.4. Anal. Calcd for C$_{14}$H$_{18}$O$_2$: C, 72.99; H, 7.88. Found: C, 72.80; H, 7.83.

The compound 18 was oxidized by Swem oxidation method22 (a ketone was obtained in 66% yield). To a solution of a crude ketone in DMSO (0.1 M) was added KF (2 equiv) at 0 °C. After stirring at room temperature for 2 h, the suspension was diluted with Et$_2$O (0.1M) and the organic layer was washed with water. The organic phase was dried over MgSO$_4$. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt (v/v = 30:1) to afford a pale yellow liquid 4a (39% yield for two steps); IR (neat) 691, 751, 954, 1011, 1234, 1449, 1584, 1598, 1667 (CO), 2092 (C≡C), 3290 (≡C-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 3.51 (d, J = 2.7 Hz, 1H), 6.20 (dd, J = 2.7, 11.4 Hz, 1H), 7.20 (d, J = 11.4 Hz, 1H), 7.48 (dd, J = 7.5, 7.5 Hz, 1H), 7.58 (dd, J = 7.5, 7.5 Hz, 2H), 7.96 (d, J = 7.5 Hz, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 80.6, 88.1, 120.1, 128.5, 128.6, 133.2, 135.2, 137.1, 189.0. HRMS (FAB): calcd for C$_{11}$H$_9$O (M$^+$), 157.0653; found, 157.0652.

1-Ethynyl-2-benzoylcyclopent-1-ene 4b.

To a solution of 17 (1.2 g, 4.4 mmol) in THF (10 mL) was added EtMgBr (9 mL, 9.0 mmol, 1.0 M in THF) at 0 °C. The mixture was stirred at room temperature for 30 min. The mixture was washed with saturated NH$_4$Cl solution (10 mL) and the aqueous phase was extracted with AcOEt (10 mL x 3). The combined organic phase was dried over MgSO$_4$. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt (v/v = 10/1) as an eluent to afford the crude ene-yne-ketone (0.56 g, 2.4 mmol, 54%) as a pale yellow oil. To a solution of this crude ene-yne-ketone in MeOH (20 mL) was added K$_2$CO$_3$ (0.66 g, 4.8 mmol) at room temperature. After stirring for 30 min, the suspension was poured into a mixture of saturated aqueous NH$_4$Cl solution (30 mL) and Et$_2$O (30 mL), and the aqueous phase was extracted with Et$_2$O (10 mL x 3). The combined
organic phase was dried over MgSO₄. The solvent was removed under reduced pressure, and
the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v =
15/1) as an eluent to afford ene-yne-ketone 4b (0.35 g, 2.2 mmol, 64% yield for 2 steps) as a
pale yellow oil; IR (neat) 680, 695, 720, 800, 883, 1338, 1448, 1576, 1595, 1639 (C=O), 2087
(C≡C), 2950, 2968, 3242 (≡C-H) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 2.03 (quint, J =
7.6 Hz, 2H), 2.74 (tt, J = 2.0, 7.6 Hz, 2H), 2.87 (tt, J = 2.0, 7.6 Hz, 2H), 3.03 (s, 1H), 7.43
(dd, J = 7.6, 7.6 Hz, 2H), 7.54 (dd, J = 7.6, 7.6 Hz, 1H), 7.83 (d, J = 7.6 Hz, 2H); ¹³C NMR
(100 MHz, CDCl₃, 25 °C) δ 22.5, 35.4, 39.2, 79.0, 86.4, 128.1, 129.3, 129.5, 132.7, 137.3,
HRMS (FAB): calcd for C₁₄H₁₃O (M+H⁺), 197.0966; found, 197.0965.

1-Ethynyl-2-propionylcyclohex-1-ene 4d.

Substrate 4d was prepared by a similar procedure of 4b. A colorless
oil (47% yield for 2 steps); IR (neat) 637, 1215, 1363, 1433, 1450, 1662
(C=O), 2088 (C≡C), 2861, 2936, 3256 (≡C-H) cm⁻¹; ¹H NMR (400 MHz,
CDCl₃, 25 °C) δ 1.10 (t, J = 7.2 Hz, 3H), 1.58-1.72 (m, 4H), 2.26-2.40 (m, 4H), 2.87 (q, J =
7.2 Hz, 2H), 3.31 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 8.1, 21.6, 21.8, 26.1, 31.7,
34.9, 84.0, 100.5, 122.5, 145.7, 205.3. Anal. Calcd for C₁₁H₁₄O: C, 81.44; H, 8.70. Found:
C, 80.56; H, 8.84. HRMS (FAB): calcd for C₁₁H₁₅O (M+H⁺), 163.1123; found, 163.1120.

Typical Procedure for Chromium-Catalyzed Cyclopropanation Reactions. The complex
Cr(CO)₆ (5.5 mg, 0.025 mmol) was placed in the flame dried Schlenk flask and dissolved in
dry and deoxygenated THF (2.0 mL) at room temperature under N₂. This solution was
irradiated with high-pressure Hg lamp (450 W, 350 nm) for 2 h at room temperature. Then,
N₂ gas was bubbled into the yellow solution for 5 min. To this yellow solution were added a
solution of 4 (0.5 mmol) and an alkene in THF (2 mL). After the reaction was complete (the
color of the solution changed from blue to yellow), the organic solvent was removed under
reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt as an eluent to afford cyclopropanes.

Typical Procedure for Other Transition Metal-Catalyzed Cyclopropanation Reaction of Styrene with 4b. To a solution of 4 (0.20 mmol) and alkene (0.4-4.0 mmol) in THF (2 mL) was added a transition metal complex (0.010 mmol) at room temperature under N₂. After the reaction was complete, the reaction mixture was filtered through Florisil®. The organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt as an eluent to afford the corresponding cyclopropanes.

Cyclopropane 6a.

A pale yellow oil (63% yield, cis/trans = 76/24); IR (neat) 692, 758, 784, 885, 972, 1014, 1025, 1190, 1365, 1390, 1487, 1549, 1595, 2975 cm⁻¹;

¹H NMR (300 MHz, d₈-THF, 25 °C): cis isomer, δ 0.95 (ddd, J = 4.0, 6.4, 6.8 Hz, 1H), 1.09 (s, 9H), 1.13 (ddd, J = 6.4, 6.8, 9.6 Hz, 1H), 1.95 (ddd, J = 6.4, 6.4, 9.6 Hz, 1H), 3.51 (ddd, J = 4.0, 6.4, 6.4 Hz, 1H), 6.04 (d, J = 3.6 Hz, 1H), 6.62 (d, J = 3.6 Hz, 1H), 7.15 (dd, J = 7.6, 7.6 Hz, 1H), 7.30 (dd, J = 7.6, 7.6 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H); trans isomer, δ 1.07-1.13 (m, 2H), 1.25 (s, 9H), 1.94-1.99 (m, 1H), 3.36 (ddd, J = 2.8, 2.8, 8.0 Hz, 1H), 6.01 (d, J = 3.6 Hz, 1H), 6.60 (d, J = 3.6 Hz, 1H), 7.14 (dd, J = 7.6, 7.6 Hz, 1H), 7.30 (dd, J = 7.6, 7.6 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H);

¹³C NMR (100 MHz, d₈-THF, 25 °C): cis isomer, δ 12.9, 17.3, 28.2, 52.4, 75.0, 106.6, 107.7, 123.7, 127.0, 129.2, 132.3, 152.5, 154.6; trans isomer, δ 14.1, 19.1, 28.6, 54.2, 75.4, 106.5, 106.6, 123.8, 127.3, 129.2, 132.1, 152.8, 155.9. HRMS (FAB): calcd for C₁₇H₂₀O₂ (a mixture of cis and trans isomers) (M⁺), 256.1463; found, 256.1463. Anal. Calcd for C₁₇H₂₀O₂ (a mixture of cis and trans isomers): C, 79.65; H, 7.86. Found: C, 79.75; H, 8.01.
Cyclopropane 6b.

A colorless oil (92%, cis/trans = 85/15); IR (neat) 692, 761, 894, 922, 1010, 1024, 1190, 1363, 1389, 1494, 1604, 2973 cm⁻¹; ¹H NMR (400 MHz, d₈-THF, 25 °C) cis isomer: δ 0.96-1.10 (m, 2H), 1.08 (s, 9H), 1.89 (ddd, J = 6.4, 6.4, 10.0 Hz, 1H), 2.30-2.40 (m, 2H), 2.51-2.67 (m, 2H), 2.75-2.79 (m, 2H), 3.48 (ddd, J = 4.4, 6.4, 6.4 Hz, 1H), 7.07 (dd, J = 7.6, 7.6 Hz, 1H), 7.28 (dd, J = 7.6, 7.6 Hz, 2H), 7.50 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, d₈-THF, 25 °C) cis isomer: δ 10.6, 16.5, 24.1, 25.0, 27.4, 32.1, 51.6, 74.0, 122.8, 125.0, 128.2, 129.3, 130.2, 132.2, 141.2, 142.4. Anal. Calcd for C₂₀H₂₄O₂: C, 81.04; H, 8.16. Found: C, 80.95; H, 8.27. HRMS (FAB): calcd for C₂₀H₂₄O₂ (a mixture of cis and trans isomers) (M⁺), 296.1776; found, 296.1782.

Cyclopropane 6c.

A pale yellow oil (90% yield, cis/trans = 60/40); IR (neat) 693, 762, 1048, 1153, 1191, 1364, 1440, 1493, 1600, 2931, 2974 cm⁻¹; ¹H NMR (300 MHz, d₈-THF, 25 °C): cis isomer, δ 1.01-1.09 (m, 1H), 1.08 (s, 9H), 1.26-1.31 (m, 1H), 1.66-1.73 (m, 4H), 1.84 (ddd, J = 6.3, 6.3, 9.9 Hz, 1H), 2.44-2.64 (m, 2H), 2.73-2.78 (m, 2H), 3.49 (ddd, J = 4.2, 6.3, 6.3 Hz, 1H), 7.08 (dd, J = 7.8, 7.8 Hz, 1H), 7.29 (dd, J = 7.8, 7.8 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H); trans isomer, δ 1.04-1.11 (m, 1H), 1.19 (ddd, J = 6.3, 6.3, 6.3 Hz, 1H), 1.26 (s, 9H), 1.68-1.76 (m, 4H), 1.90 (ddd, J = 3.0, 6.3, 9.6 Hz, 1H), 2.52-2.67 (m, 2H), 2.70-2.76 (m, 2H), 3.48 (ddd, J = 3.0, 6.3, 6.3 Hz, 1H), 7.10 (dd, J = 7.8, 7.8 Hz, 1H), 7.30 (dd, J = 7.8, 7.8 Hz, 2H), 7.49 (d, J = 7.8 Hz, 2H); ¹³C NMR (75 MHz, d₈-THF, 25 °C): cis isomer, δ 11.0, 16.7, 22.0, 24.0, 24.1, 24.5, 28.2, 52.3, 74.8, 119.8, 120.1, 124.4, 125.9, 129.1, 133.6, 144.9, 146.6; trans isomer, δ 13.9, 18.0, 21.4, 23.9, 23.9, 24.4, 28.5, 53.4, 75.2, 118.7, 120.1, 124.4, 126.2, 129.1, 133.3, 144.8, 147.9. HRMS (FAB): calcd for C₂₁H₂₆O₂ (a mixture of cis and trans isomers) (M⁺), 310.1933; found, 310.1935. Anal. Calcd for C₂₁H₂₆O₂ (a mixture of cis and trans isomers): C, 81.25; H, 8.44. Found: C, 80.97; H, 8.52.
Cyclopropane 6d.

A pale yellow oil (80% yield, cis/trans = 91/9); IR (neat) 893, 1000, 1039, 1062, 1150, 1192, 1238, 1259, 1364, 1388, 1444, 1593, 2855, 2932, 2973 cm⁻¹; ¹H NMR (400 MHz, d₈-THF, 25 °C) cis isomer: δ 1.03 (ddd, J = 5.6, 6.8, 10.0 Hz, 1H), 1.01 (s, 9H), 1.06 (t, J = 7.6 Hz, 3H), 1.07 (ddd, J = 4.0, 5.6, 7.2 Hz, 1H), 1.52-1.61 (m, 4H), 1.66 (ddd, J = 6.0, 7.2, 10.0 Hz, 1H), 2.30-2.51 (m, 4H), 2.41 (q, J = 7.6 Hz, 2H), 3.33 (ddd, J = 4.0, 6.0, 6.8 Hz, 1H); ¹³C NMR (75 MHz, d₈-THF, 25 °C) cis isomer: δ 9.4, 12.6, 15.9, 19.6, 20.6, 21.2, 23.8, 23.8, 27.4, 51.0, 73.7, 115.2, 116.5, 143.1, 147.1. HRMS (FAB): calcd for C₁₇H₂₇O₂ (a mixture of cis and trans isomers) (M+H⁺), 263.2011; found, 263.2006.

Cyclopropane 7a.

A pale yellow oil (82% yield); IR (neat) 691, 759, 1023, 1056, 1117, 1212, 1285, 1443, 1487, 1548, 1595, 2884, 2929, 2975 cm⁻¹; ¹H NMR (400 MHz, d₈-THF, 25 °C) δ 0.99 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H), 1.31 (dd, J = 6.0, 6.8 Hz, 1H), 1.41 (dd, J = 6.0, 10.4 Hz, 1H), 2.37 (dd, J = 6.8, 10.4 Hz, 1H), 3.38-3.51 (m, 1H), 3.58-3.75 (m, 3H), 6.09 (d, J = 3.6 Hz, 1H), 6.62 (d, J = 3.6 Hz, 1H), 7.15 (dd, J = 7.6, 7.6 Hz, 1H), 7.30 (dd, J = 7.6, 7.6 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, d₈-THF, 25 °C) δ 15.6, 15.8, 19.2, 24.5, 62.3, 62.8, 92.3, 106.7, 108.1, 123.9, 127.3, 129.2, 132.1, 153.0, 153.4. Anal. Calcd for C₁₇H₂₀O₃: C, 74.97; H, 7.40. Found: C, 74.90; H, 7.37. HRMS (FAB): calcd for C₁₇H₂₀O₃ (M⁺), 272.1412; found, 272.1407.

Cyclopropane 7c.

A pale yellow oil (99% yield); IR (neat) 693, 762, 983, 1054, 1070, 1118, 1201, 1269, 1441, 1493, 1561, 1601, 2929, 2974 cm⁻¹; ¹H NMR (400 MHz, d₈-THF, 25 °C) δ 0.99 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 1.35 (dd, J = 5.2, 10.4 Hz, 1H), 1.57 (dd, J = 5.2, 6.8 Hz, 1H), 1.65-1.78 (m, 4H), 2.26 (dd, J = 6.8, 10.4 Hz, 1H), 2.50-2.58 (m, 2H), 2.71-2.78 (m, 2H), 3.42-3.50 (m, 1H), 3.57-3.73 (m, 3H), 7.09 (dd, J = 7.6, 7.6 Hz, 1H), 7.29 (dd, J = 7.6, 7.6 Hz, 2H), 7.54 (d,
$J = 7.6$ Hz, 2H); 13C NMR (100 MHz, d_8-THF, 25 °C) δ 15.8, 15.8, 17.8, 21.8, 23.7, 24.0, 24.0, 24.5, 62.2, 62.8, 92.3, 120.0, 120.2, 124.4, 126.1, 129.0, 133.3, 144.9, 145.1. HRMS (FAB): calcd for C$_{21}$H$_{26}$O$_3$ (M$^+$), 326.1882; found, 326.1884.

Cyclopropane 8c.

A colorless oil (83% yield, as a mixture of cis and trans isomers); IR (neat) 695, 760, 843, 1203, 1447, 1494, 1601, 2933 cm$^{-1}$; 1H NMR (400 MHz, d_8-THF, 25 °C) δ -0.18 (s, 9H), -0.01 (s, 9H), 1.54-1.66 (m, 4H), 1.62 (dd, $J = 6.0$, 10.0 Hz, 1H), 1.66-1.80 (m, 4H), 1.74 (dd, $J = 6.4$, 10.0 Hz, 1H), 1.96 (dd, $J = 6.4$, 7.2 Hz, 1H), 2.00 (dd, $J = 6.0$, 7.2 Hz, 1H), 2.16 (dd, $J = 7.2$, 10.0 Hz, 1H), 2.38-2.42 (m, 2H), 2.47-2.66 (m, 4H), 2.49 (dd, $J = 7.2$, 10.0 Hz, 1H), 2.71-2.75 (m, 2H), 7.02-7.36 (m, 16H), 7.40 (d, $J = 7.6$ Hz, 2H), 7.60 (d, $J = 7.6$ Hz, 2H); 13C NMR (100 MHz, d_8-THF, 25 °C) δ -0.4, -0.4, 17.5, 18.1, 20.0, 20.3, 22.1, 22.3, 22.4, 22.8, 23.0, 24.3, 24.6, 61.7, 62.8, 118.0, 118.6, 119.2, 119.9, 122.9, 122.9, 124.4, 124.5, 124.8, 125.7, 126.1, 126.6, 127.2, 127.3, 127.4, 131.5, 131.8, 139.4, 143.4, 143.4, 143.7, 143.8. HRMS (FAB): calcd for C$_{26}$H$_{30}$O$_2$Si (a mixture of cis and trans isomers) (M$^+$), 402.2015; found, 402.2018.

Cyclopropane 9c.

A pale yellow solid (90% yield); mp. 87.0-88.8 °C; IR (KBr) 698, 766, 1041, 1105, 1142, 1236, 1245, 1438, 1447, 1599, 2854, 2929, 2939, 2953 cm$^{-1}$; 1H NMR (400 MHz, d_8-THF, 25 °C) δ 0.64-0.76 (m, 1H), 1.07-1.20 (m, 1H), 1.33 (ddd, $J = 6.8$, 6.8, 6.8 Hz, 1H), 1.64-1.77 (m, 5H), 1.93 (ddd, $J = 6.8$, 6.8, 12.0, 14.0 Hz, 1H), 2.25 (dd, $J = 4.2$, 14.0 Hz, 1H), 2.43-2.51 (m, 1H), 2.69-2.78 (m, 3H), 3.16-3.23 (m, 1H), 3.35-3.40 (m, 1H), 3.78 (dd, $J = 6.8$, 6.8 Hz, 1H), 7.12 (dd, $J = 7.2$, 7.2 Hz, 1H), 7.32 (dd, $J = 7.2$, 7.2 Hz, 2H), 7.57 (d, $J = 7.2$ Hz, 2H); 13C NMR (100 MHz, d_8-THF, 25 °C) δ 14.9, 17.1, 19.0, 21.8, 23.4, 24.0, 24.0, 24.6, 54.9, 64.8, 119.9, 122.3, 124.5, 126.1, 129.1, 133.5, 145.8, 145.8. Anal. Calcd for
C_{20}H_{22}O_2: C, 81.60; H, 7.53. Found: C, 80.84; H, 7.53. HRMS (FAB): calcd for C_{20}H_{22}O_2 (M^+), 294.1620; found, 294.1619.

X-ray Crystallographic Studies of 9c. Yellow crystals of 9c suitable for X-ray analysis were obtained by recrystallization from hexane. The single crystal was sealed in a Pyrex glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of crystal and data collection parameters are summarized in Table 4. The positions of non-hydrogen atoms were determined by direct methods (SIR92)²³ and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 9c is shown in Figure 1.

![Figure 1. Crystal structure of 9c](image)
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4. Summary of Crystallographic Data of 9c</td>
<td></td>
</tr>
<tr>
<td>empirical formula</td>
<td>C_{20}H_{22}O_{2}</td>
</tr>
<tr>
<td>fw</td>
<td>294.39</td>
</tr>
<tr>
<td>crystal syst</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>Pca2_1 (No. 29)</td>
</tr>
<tr>
<td>crystall color</td>
<td>colorless, needle</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>15.972(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.803(9)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>11.400(4)</td>
</tr>
<tr>
<td>V (Å^3)</td>
<td>1603.0(9)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>D_{calc} (g cm^{-3})</td>
<td>1.220</td>
</tr>
<tr>
<td>(\mu) (Mo K\alpha) (cm^{-1})</td>
<td>0.77</td>
</tr>
<tr>
<td>F(000)</td>
<td>632</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoK\alpha (\lambda = 0.71069 Å)</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>(\omega-2\theta)</td>
</tr>
<tr>
<td>Max. 2(\theta) (°)</td>
<td>54.9</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 1922</td>
</tr>
<tr>
<td>no. of observns ((I > 3.00\sigma(I)))</td>
<td>1356</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least-squares on F</td>
</tr>
<tr>
<td>no. of variables</td>
<td>199</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>6.81</td>
</tr>
<tr>
<td>residuals: (R; R_w)</td>
<td>0.070; 0.081</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>0.95</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.00</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å^{-3})</td>
<td>0.22</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å^{-3})</td>
<td>-0.36</td>
</tr>
</tbody>
</table>
Cyclopropane 10c.

A colorless oil (85% yield, cis/trans = 74/26); IR (neat) 693, 762, 906, 1029, 1072, 1439, 1494, 1560, 1601, 2855, 2929 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): cis isomer, \(\delta\) 1.45 (dd, \(J = 5.2, 8.8, 8.8\) Hz, 1H), 1.53-1.70 (m, 4H), 1.61 (ddd, \(J = 5.2, 6.4, 6.4\) Hz, 1H), 2.19-2.45 (m, 2H), 2.30 (ddd, \(J = 6.4, 8.8, 8.8\) Hz, 1H), 2.42 (ddd, \(J = 6.4, 8.8, 8.8\) Hz, 1H), 2.58-2.68 (m, 2H), 7.02-7.16 (m, 6H), 7.24-7.37 (m, 4H); trans isomer, \(\delta\) 1.39 (ddd, \(J = 4.8, 6.0, 8.8\) Hz, 1H), 1.65 (ddd, \(J = 4.8, 6.0, 8.8\) Hz, 1H), 1.66-1.76 (m, 4H), 2.09 (ddd, \(J = 4.8, 6.0, 8.8\) Hz, 1H), 2.44 (ddd, \(J = 4.8, 6.0, 8.8\) Hz, 1H), 2.54 (t, \(J = 6.0\) Hz, 2H), 2.76 (t, \(J = 6.0\) Hz, 2H), 7.12-7.21 (m, 4H), 7.29 (dd, \(J = 7.8, 7.8\) Hz, 2H), 7.35 (dd, \(J = 7.8, 7.8\) Hz, 2H), 7.56 (d, \(J = 7.8\) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): cis isomer, \(\delta\) 10.7, 16.7, 20.7, 22.8, 22.9, 23.4, 23.6, 119.2, 121.1, 125.4, 125.8, 127.6, 128.1, 128.4, 132.3, 138.9, 144.3, 145.2; trans isomer, \(\delta\) 15.8, 20.3, 20.7, 23.0, 23.1, 23.5, 24.8, 118.5, 119.6, 123.8, 125.6, 125.7, 125.8, 128.3, 128.4, 132.1, 142.0, 143.9, 147.3. Anal. Calcd for C\(_{23}\)H\(_{22}\)O (a mixture of cis and trans isomers): C, 87.86; H, 7.05. Found: C, 87.99; H, 7.20. HRMS (FAB): calcd for C\(_{23}\)H\(_{22}\)O (a mixture of cis and trans isomers) (M\(^+\)), 314.1671; found, 314.1671.

Cyclopropane 11c.

A colorless oil (52% yield); IR (neat) 691, 760, 1034, 1441, 1458, 1493, 1560, 1601, 2932, 2961 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 0.80 (dd, \(J = 4.4, 8.8\) Hz, 1H), 0.84 (t, \(J = 7.2\) Hz, 3H), 0.98 (t, \(J = 7.2\) Hz, 3H), 1.02 (dd, \(J = 4.4, 5.2\) Hz, 1H), 1.13 (qd, \(J = 7.2, 14.4\) Hz, 1H), 1.27 (qd, \(J = 7.2, 14.4\) Hz, 1H), 1.35 (qd, \(J = 7.2, 14.4\) Hz, 1H), 1.50 (qd, \(J = 7.2, 14.4\) Hz, 1H), 1.64 (dd, \(J = 5.2, 8.8\) Hz, 1H), 1.67-1.79 (m, 4H), 2.45-2.53 (m, 2H), 2.72-2.79 (m, 2H), 7.14 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.34 (dd, \(J = 7.6, 7.6\) Hz, 2H), 7.55 (d, \(J = 7.6\) Hz, 2H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 10.7, 10.8, 17.4, 20.8, 21.2, 23.1, 23.2, 23.3, 23.6, 28.8, 29.6, 119.5, 119.8, 123.7, 125.3, 128.3, 132.4, 143.7, 147.3. Anal. Calcd for

Cyclopropane 13a.

A colorless oil (78% yield, cis/trans = 43/57); IR (neat) 691, 786, 898, 1019, 1487, 1548, 1595, 1636, 2929, 2956, 3002 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.10 (s, 3H), 1.15-1.22 (m, 4H), 1.32 (s, 3H), 2.08 (dd, \(J = 6.4, 8.8\) Hz, 1H), 2.12 (dd, \(J = 6.4, 8.8\) Hz, 1H), 4.94 (dd, \(J = 1.2, 10.4\) Hz, 1H), 4.98 (dd, \(J = 0.8, 10.8\) Hz, 1H), 5.04 (dd, \(J = 0.8, 17.2\) Hz, 1H), 5.05 (dd, \(J = 10.4, 17.6\) Hz, 1H), 6.07 (d, \(J = 3.2\) Hz, 1H), 6.09 (d, \(J = 3.2\) Hz, 1H), 6.54 (d, \(J = 3.2\) Hz, 1H), 6.56 (d, \(J = 3.2\) Hz, 1H), 7.20 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.20 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.34 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.34 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.61 (d, \(J = 7.6\) Hz, 2H), 7.62 (d, \(J = 7.6\) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 15.8, 19.6, 20.2, 21.8, 24.1, 25.1, 26.1, 26.2, 105.7, 105.7, 108.3, 108.7, 110.6, 112.4, 123.3, 123.3, 126.7, 126.7, 128.5, 128.5, 131.0, 131.0, 140.9, 145.1, 152.2, 152.4, 153.6, 153.9. Anal. Calcd for C\(_{16}\)H\(_{16}\)O (a mixture of cis and trans isomers): C, 85.68; H, 7.19. Found: C, 85.66; H, 7.36. HRMS (FAB): calcd for C\(_{16}\)H\(_{16}\)O (a mixture of cis and trans isomers) (M^+), 224.1201; found, 224.1202.

Cyclopropane 13c.

A colorless oil (88% yield, cis/trans = 50/50); IR (neat) 692, 760, 896, 995, 1030, 1071, 1441, 1493, 1558, 1601, 1633, 2857, 2930 cm\(^{-1}\); \(^1\)H NMR (400 MHz, \(d_8\)-THF, 25 °C) \(\delta\) 1.09 (s, 3H), 1.15 (dd, \(J = 4.4, 8.8\) Hz, 1H), 1.18 (dd, \(J = 4.8, 9.2\) Hz, 1H), 1.31 (s, 3H), 1.34 (dd, \(J = 4.8, 6.4\) Hz, 1H), 1.44 (dd, \(J = 4.8, 6.4\) Hz, 1H), 1.64-1.80 (m, 8H), 1.98 (dd, \(J = 6.4, 9.2\) Hz, 1H), 2.03 (dd, \(J = 6.4, 8.8\) Hz, 1H), 2.45-2.55 (m, 4H), 2.70-2.80 (m, 4H), 4.86 (dd, \(J = 1.2, 10.8\) Hz, 1H), 4.91 (dd, \(J = 1.2, 10.8\) Hz, 1H), 5.00 (dd, \(J = 1.2, 17.6\) Hz, 1H), 5.01 (dd, \(J = 1.2, 17.6\) Hz, 1H), 5.53 (dd, \(J = 10.8, 17.6\) Hz, 1H), 5.60 (dd, \(J = 10.8, 17.6\) Hz, 1H), 7.11 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.12 (dd, \(J = 7.6, 7.6\) Hz, 1H), 7.31 (dd, \(J = 7.6, 7.6\) Hz, 2H), 7.31 (dd, \(J = 7.6, 7.6\) Hz,
2H), 7.53 (d, $J = 7.6$ Hz, 2H), 7.54 (d, $J = 7.6$ Hz, 2H); 13C NMR (75 MHz, d_8-THF, 25 °C) δ
110.1, 111.8, 119.5, 120.6, 120.7, 123.8, 123.8, 124.2, 125.5, 125.5, 128.4, 128.4, 132.2,
132.2, 141.7, 144.2, 144.3, 145.5, 145.7, 146.1. HRMS (FAB): calcd for C$_{20}$H$_{22}$O (a
mixture of cis and trans isomers) (M$^+$), 278.1671; found, 278.1668.

Cyclopropane 14c.

A pale yellow oil (92% yield, cis/trans = 90/10); IR (neat) 694, 764, 810, 986, 1071, 1098, 1192, 1271,
1296, 1406, 1440, 1493, 1600, 1725 (C=O), 2858, 2931 cm$^{-1}$; 1H NMR (400 MHz, d_8-THF, 25 °C) cis isomer: δ 1.03 (ddd, $J = 6.4, 6.4, 9.6$ Hz, 1H),
1.33-1.37 (m, 1H), 1.62-1.73 (m, 4H), 1.85 (ddd, $J = 6.4, 6.4, 9.6$ Hz, 1H), 2.48-2.51 (m, 2H),
2.67-2.70 (m, 2H), 3.47-3.53 (m, 2H), 3.57-3.62 (m, 1H), 3.99-4.03 (m, 2H), 5.59 (d, $J = 10.0$
Hz, 1H), 5.88 (dd, $J = 10.0, 16.4$ Hz, 1H), 6.16 (d, $J = 16.4$ Hz, 1H), 7.05 (dd, $J = 7.6, 7.6$
Hz, 1H), 7.25 (dd, $J = 7.6, 7.6$ Hz, 2H), 7.50 (d, $J = 7.6$ Hz, 2H); 13C NMR (100 MHz, d_8-THF,
25 °C) cis isomer: δ 14.9, 21.0, 23.1, 24.1, 24.3, 24.7, 57.7, 63.1, 68.4, 119.1, 119.8, 123.6,
125.2, 128.1, 128.4, 129.4, 132.4, 144.3, 144.3, 164.9. HRMS (FAB): calcd for C$_{22}$H$_{24}$O$_4$ (a
mixture of cis and trans isomers) (M$^+$), 352.1675; found, 352.1674.

Cyclopropane 15a.

A colorless oil (26% yield, syn/anti = 75/25); IR (neat) 691, 758, 786, 1020, 1070, 1385, 1449, 1487,
1548, 1594, 2875, 2953, 3008 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) syn isomer: δ 1.07 (s, 3H), 1.09
(s, 3H), 1.24-1.31 (m, 2H), 1.94 (t, $J = 8.7$ Hz, 1H),
6.11 (d, $J = 3.3$ Hz, 1H), 6.56 (d, $J = 3.3$ Hz, 1H), 7.20 (dd, $J = 7.5, 7.5$ Hz, 1H), 7.35 (dd, $J =
7.5, 7.5$ Hz, 2H), 7.62 (d, $J = 7.5$ Hz, 2H); anti isomer: 1.15 (s, 3H), 1.17 (s, 3H), 1.24-1.31
(m, 2H), 1.91-1.97 (m, 1H), 5.95 (d, $J = 3.3$ Hz, 1H), 6.51 (d, $J = 3.3$ Hz, 1H), 7.15-7.20 (m ,1H), 7.30-7.36 (m, 2H), 7.58 (d, $J = 8.1$ Hz, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) syn
isomer: δ 8.9, 12.2, 15.3, 16.9, 20.0, 105.6, 109.5, 123.3, 126.6, 128.6, 131.2, 152.2, 153.5; anti isomer: δ 8.9, 12.2, 15.2, 19.9, 24.9, 104.6, 105.9, 123.1, 126.5, 128.5, 131.2, 151.3, 157.5. HRMS (FAB): calcd for C_{15}H_{16}O (a mixture of cis and trans isomers) (M⁺), 212.1201; found, 212.1209.

Cyclopropane 16a.

![Structure of Cyclopropane 16a](image)

A colorless oil (23% yield); IR (neat) 691, 758, 783, 1020, 1062, 1383, 1449, 1487, 1548, 1595, 2867, 2953, 3004 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 0.90-0.96 (m, 1H), 1.00 (d, J = 5.6 Hz, 3H), 1.00-1.07 (m, 1H), 1.19 (d, J = 5.6 Hz, 3H), 1.70 (dd, J = 4.8, 8.4 Hz, 1H), 6.03 (d, J = 3.6 Hz, 1H), 6.55 (d, J = 3.6 Hz, 1H), 7.19 (dd, J = 7.6, 7.6 Hz, 1H), 7.34 (dd, J = 7.6, 7.6 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 13.3, 18.5, 20.6, 22.3, 22.7, 105.7, 108.0, 123.2, 126.5, 128.5, 131.2, 151.8, 154.9. HRMS (FAB): calcd for C_{15}H_{16}O (a mixture of cis and trans isomers) (M⁺), 212.1201; found, 212.1207.

Chromium-Catalyzed Synthesis of Bisfurfurylidene 12.

![Structure of Bisfurfurylidene 12](image)

Bisfurfurylidene 12 was obtained by chromium-catalyzed cyclopropanation without alkenes.

A yellow solid (87% yield); mp. 213.5-216.4 °C; IR (KBr) 692, 761, 944, 1033, 1246, 1352, 1437, 1491, 1596, 2858, 2938 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.72-1.80 (m, 8H), 2.59-2.65 (m, 4H), 2.72-2.78 (m, 4H), 6.75 (s, 2H, vinyl), 7.13 (dd, J = 7.6, 7.6 Hz, 2H), 7.32 (dd, J = 7.6, 7.6 Hz, 4H), 7.63 (d, J = 7.6 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.0, 22.7, 22.9, 23.4, 111.2, 120.7, 122.8, 124.1, 126.1, 128.3, 131.7, 146.0, 146.8. HRMS (FAB): calcd for C_{30}H_{28}O_{2} (trans isomer) (M⁺), 420.2089; found, 420.2080.

X-ray Crystallographic Studies of 12. Yellow crystals of 12 suitable for X-ray analysis were obtained by recrystallization from hexane. The single crystal was sealed in a Pyrex
glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of crystal and data collection parameters are summarized in Table 5. The positions of non-hydrogen atoms were determined by direct methods (SIR92)²³ and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 12 is shown in Figure 2.

Figure 2. Crystal structure of 12
Table 5. Summary of Crystallographic Data of 12

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C\textsubscript{30}H\textsubscript{28}O\textsubscript{2}</td>
</tr>
<tr>
<td>fw</td>
<td>420.55</td>
</tr>
<tr>
<td>crystal syst</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>\textit{P}2\textsubscript{1}/c (No. 14)</td>
</tr>
<tr>
<td>cryst color</td>
<td>yellow, block</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>8.8511(7)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>14.341(1)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>9.5857(8)</td>
</tr>
<tr>
<td>(\beta) (Å)</td>
<td>107.198(3)</td>
</tr>
<tr>
<td>(V) (Å3)</td>
<td>1162.4(2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>2</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g cm-3)</td>
<td>1.201</td>
</tr>
<tr>
<td>(\mu) (Mo K\textalpha) (cm-1)</td>
<td>0.73</td>
</tr>
<tr>
<td>(F(000))</td>
<td>448</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoK\textalpha ((\lambda = 0.71069) Å)</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>(\omega-2\theta)</td>
</tr>
<tr>
<td>Max. 2(\theta) (°)</td>
<td>54.9</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 9452</td>
</tr>
<tr>
<td>no. of observns ((I > 3.00\sigma(I)))</td>
<td>2631</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least-squares on F</td>
</tr>
<tr>
<td>no. of variables</td>
<td>203</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>5.97</td>
</tr>
<tr>
<td>residuals: (R; R_w)</td>
<td>0.044; 0.040</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>1.47</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.26</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å-3)</td>
<td>0.14</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å-3)</td>
<td>-0.15</td>
</tr>
</tbody>
</table>
References and Notes

(15) The blue color indicates the generation of a (2-furyl)carbene chromium complex. Thus, consumption of the starting material 4 could be visibly monitored.

(17) The structure was unambiguously determined by X-ray diffraction analysis of 9c. See Experimental Section.

(18) Furan ring construction from enyne-aldehyde derivatives with a stoichiometric amount of Fischer carbene complexes has been demonstrated. See: (a) Herndon, J. W.; Wang,
(19) In the case of [(p-cymene)RuCl]2, a remarkable solvent effect was observed. Thus, the use of ClCH₂CH₂Cl in place of THF as solvent led to the rapid formation of the cyclopropanated product 10c in 96% yield from styrene with 4c at room temperature for 1 h with a high trans selectivity (cis:trans = 11:89).

(20) Cis preference was observed in the cyclopropanation of styrene using PhCHN₂ as a carbenoid precursor, the ratio of cis:trans being 77:23. See: Doyle, M. P.; Griffin, J. H.; Bagheri, V.; Dorow, R. L. Organometallics 1984, 3, 53.

Chapter 5

Rhodium-Catalyzed Cyclopropanation Using Ene-Yne-Imino Ethers as Precursors of (2-Pyrrolyl)carbenoids

Abstract

The reaction of alkenes with the conjugated ene-yne-imino ethers and an ene-yne-aldimine in the presence of a catalytic amount of [Rh(OAc)$_2$] gives 2-pyrrolylcyclopropanes in good yields. The key intermediate of this cyclopropanation is (2-pyrrolyl)carbenoids generated by a nucleophilic attack of an imine nitrogen atom to an internal alkyne carbon activated by the rhodium complex. The obtained 2-pyrrolylcyclopropanes are easily converted to pyrrolin-2-ones upon treatment with 1 N HCl solution. The reaction of alkenes with ene-yne-imino ethers having acceptors for carbenoid intermediates is revealed to afford polycyclic compounds as the result of intramolecular cyclopropanation or C-H insertion reaction.
Introduction

The author has previously reported the formation of (2-furyl)carbene complexes 2 from ene-yne-ketones 1a promoted by group 6 transition metal complexes,¹ and their application to catalytic cyclopropanation of alkenes using 1a as (2-furyl)carbenoid precursors² (Scheme 1a, and also see Chapters 3 and 4). However, similar cyclopropanation reactions with ene-yne-esters and -amides 1b were unsuccessful due to the fact that group 6 transition metals undergo pericyclic or pseudopericyclic reactions of vinylidene intermediates generated from 1b to produce stable 2-pyranylidene-complexes 3 (Scheme 1b, and also see Chapter 1).³ For searching the new reactivity of these \(\pi \)-conjugated system with transition metal complexes, the author next attempted to elucidate the reactivity of nitrogen analogues 4, such as ene-yne-imino ethers \((R^1 = OR)\) and an ene-yne-imine \((R^1 = H)\) toward transition metal complexes (Scheme 2). These scenarios led us to find novel rhodium-catalyzed cyclopropanation via the formation of (2-pyrrolyl)carbenoid 5 as a nitrogen analogue of (2-furyl)carbenoid 2. Since pyrroles are found in naturally occurring and biologically important molecules,⁴,⁵ and a major class of heterocycles broadly used in organic synthesis and material science, this approach also provides an additional leverage to introduce a diverse array of pyrrole structure into organic molecules. Here, the author wishes to describe the new entry to pyrrole ring
construction from ene-yne-imino compounds 4 via transition metal-induced 5-\textit{exo-dig} cyclization, followed by catalytic cyclopropanation of alkenes leading to 2-pyrrolylcyclopropanes.6-9

![Scheme 2](image)

\[\text{Scheme 2} \]

\[
\begin{align*}
R^1 & \quad \text{cat. [M]} \\
4 \; (R^1 = H, \text{OMe}) & \quad \rightarrow \\
\text{catalytic carbene-transfer} & \\
5 & \\
\end{align*}
\]
Results and Discussion

At first, when the reaction of ene-yne-imino ether 4a with styrene was carried out in the presence of $[\text{Rh(OAc)}_2]_2$ (2.5 mol%) in CH$_2$Cl$_2$ at room temperature for 2 h, 1-phenyl-2-pyrrolylcyclopropane 6a was obtained quantitatively as a mixture of cis and trans isomers ($\text{cis:trans} = 74:26$) (Scheme 3).

The product is somewhat labile in silica gel column chromatography which causes its decomposition, while it is isolable by short Florisil® column chromatography with some isomerization of cis to trans isomer [from 100% yield ($\text{cis:trans} = 74:26$) to 82% yield ($\text{cis:trans} = 4:96$)]. Next, the author examined cyclopropanation of

![Scheme 3](image)

Table 1. Rh-Catalyzed Cyclopropanation of Alkenes with 4aa

<table>
<thead>
<tr>
<th>entry</th>
<th>alkene</th>
<th>product</th>
<th>yield (%)b</th>
<th>d.r.b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>7a</td>
<td>98 (88)</td>
<td>59:41 (12:88)</td>
</tr>
<tr>
<td>2</td>
<td>Ot-Bu</td>
<td>8a</td>
<td>90 (47)</td>
<td>10:90 (25:75)</td>
</tr>
<tr>
<td>3</td>
<td>OEt</td>
<td>9a</td>
<td>100</td>
<td>N. A.d</td>
</tr>
<tr>
<td>4</td>
<td>OTMS</td>
<td>10a</td>
<td>88</td>
<td>76:24</td>
</tr>
</tbody>
</table>

a Reactions of 4a (0.20 mmol) with alkene (0.40 mmol) in CH$_2$Cl$_2$ (2.0 mL) were carried out in the presence of $[\text{Rh(OAc)}_2]_2$ (0.005 mmol) at room temperature under N$_2$. b Without purification. Values in parentheses after purification with Florisil®. c Configuration is not yet clear. d N. A. = not applicable.
several alkenes with ene-yne-imino ether 4a in the presence of [Rh(OAc)2]2 as a catalyst. These results are summarized in Table 1. The reaction of 4a with α-methylstyrene also gave the cyclopropanated product 7a in 98% yield with a 59:41 diastereomeric ratio (entry 1). Reactions of 4a with tert-butyl vinyl ether and ketene diethyl acetal proceeded quite smoothly to give cyclopropanes 8a (90%, cis:trans = 10:90) and 9a (100%), respectively (entries 2 and 3). Enol silyl ether was also reacted with 4a to give the corresponding product 10a in 88% yield with a 76:24 diastereomeric ratio (entry 4). After purification with Florisil® column, a

Table 2. Rh-Catalyzed Cyclopropanation of Styrene with 4a

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>product</th>
<th>yield (%)b</th>
<th>cis:transb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6b</td>
<td>99 (88)</td>
<td>64:36 (3:97)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6c</td>
<td>99 (81)c</td>
<td>55:45d (27:73)c,d</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6d</td>
<td>93 (47)</td>
<td>93:7 (45:55)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6e</td>
<td>18c</td>
<td>_d</td>
</tr>
</tbody>
</table>

a Reactions of 4 (0.20 mmol) with alkene (0.40 mmol) in CH2Cl2 (2.0 mL) were carried out in the presence of [Rh(OAc)2]2 (0.005 mmol) at room temperature under N2. b Without purification. Values in parentheses after purification with Florisil®. c After purification with column chromatography. d Configuration is not yet clear.
The major component of 7a or 8a was a trans isomer (Refer to values in parentheses in Table 1).

The author then examined cyclopropanation of styrene with other ene-yne-imino ethers 4 in the presence of rhodium catalyst (Table 2). An ene-yne-imino ether 4b bearing an allyl group on nitrogen reacted with styrene to give the cyclopropanated product 6b in 99% yield (cis:trans = 64:36) (entry 1). The reaction of 4c having a phenyl group proceeded quite smoothly to give the corresponding product 6c in 99% yield (d.r. = 55:45) (entry 2). A cyclopentenyl imino ether 4d reacted with styrene to give cyclopropane 6d (93%, cis:trans = 93:7) (entry 3). A trans isomer of cyclopropanes was a major product after purification with Florisil® in each case. Cyclopropanation between an aldimine 4e and styrene also gave the cyclopropanated product 6e, although its yield was lower (18%) (entry 4). These results show that both ene-yne-imino ethers 4 (R1 = OMe) and an aldimine 4e (R1 = H) are amenable to (2-pyrrolyl)carbenoid formation like ene-yne-ketones 1a leading to (2-furyl)carbenoids.

Pyrrolin-2-ones as well as pyrroles are pharmacologically active materials, and more importantly pyrrolinones are synthons for γ-amino acid,12 various alkaloids,13 and natural products.14 Then, the author attempted the conversion of 2-methoxypyrroles obtained by the present method to pyrrolin-2-ones. Thus, when crude products obtained by cyclopropanation reactions of styrene with 4a, 4b, and 4c were directly treated with 1 N HCl solution in EtOH/H2O at 60 °C for 3 h,15 the corresponding pyrrolin-2-ones 11a, 11b, and 11c were produced in 81%, 87%, and 96% yields, respectively (Scheme 4). All pyrrolinones obtained could be purified by column chromatography on silica gel without decomposition.
In these cases, the configurations at constructed cyclopropyl rings are only \textit{trans}, and therefore the diastereomeric ratios of \textbf{11a} and \textbf{11b} would be attributed to the relative configuration between C-1' of cyclopropane ring and C-5 of pyrrolin-2-one.

Finally, the author decided to investigate intramolecular reactions of ene-yne-imino ether having acceptors for a carbenoid intermediate. Treatment of an ene-yne-imino ether \textbf{4f} having a homoallyl group on nitrogen in the presence of $\left[\text{Rh(OAc)}_2\right]_2$ (2.5 mol\%) for 1 h afforded the tetracyclic product \textbf{12} in 40\% yield, although higher reaction temperature (60 °C) and diluted conditions (0.01 M) in ClCH$_2$CH$_2$Cl were required (Scheme 5). Formation of \textbf{12}

\begin{equation}
\text{Scheme 5}
\end{equation}

\begin{equation}
\text{Scheme 6}
\end{equation}

can be explained by assuming the intramolecular cyclopropanation of a (2-pyrrolyl)carbene-rhodium intermediate. Interestingly, the reaction of \textbf{4g} having a methallyl group on nitrogen under the identical conditions gave the tricyclic compound \textbf{13} rather than a cyclopropanated product (Scheme 6). The formation of this tricyclic structure can be attributed to an intramolecular C-H insertion reaction in a (2-pyrrolyl)carbene-rhodium complex.
In conclusion, the author has developed a new rhodium-catalyzed inter- and intra-molecular carbene transfer reactions on the basis of the generation of (2-pyrrolyl)carbenoids from the conjugated ene-yne-imino compounds. Both ene-yne-imino ethers ($R^1 = \text{OMe}$) and an aldimine ($R^1 = \text{H}$) are applicable to the present reaction. These studies have demonstrated the cyclization mode of ene-yne-imino compounds in 5-exo-dig manner like the corresponding ketone leading to (2-furyl)carbenoid, providing the new synthetic method for pyrrole and pyrrolinone structures.

Experimental

General Procedures. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates or silica gel FL 100DX Fuji Silysia Chemical NH plates. Column chromatographies were performed with Merck silica gel 60, Fuji Silysia Chemical silica gel FL 100DX, or Floridin Co. Florisil® (150-250 μm, 60-100 mesh). The NMR spectra were measured for solutions in CDCl$_3$ with Me$_4$Si as an internal standard or CD$_2$Cl$_2$ (1H and 13C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University. Solvents were dried by the usual methods and distilled before use.

Typical Procedure for Synthesis of Ene-yne-imino Ether 4.

\[
\begin{align*}
\text{NHR}^1 & \quad \text{MeOTf} \quad \text{TMS} \quad 13 \\
\text{OMe} & \quad \text{deprotection} \quad \text{TMS} \quad 4
\end{align*}
\]
To a solution of an amide 13 (5.0 mmol), which was prepared by our reported procedure,3a,16 in dichloromethane (50 mL) was added MeOTf (0.58 mL, 5.0 mmol) under N\textsubscript{2}, and the solution was stirred at room temperature for 96–144 h.17 The reaction mixture was washed with 1 N NaOH solution (25 mL) and then the organic phase was dried over MgSO\textsubscript{4}. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v = 20/1) to afford the corresponding imino ether as a pale yellow oil. To a solution of the imino ether (1.0 mmol) in MeOH (10 mL) was added K\textsubscript{2}CO\textsubscript{3} (0.21 g, 1.5 mmol), and the solution was stirred at room temperature for 30 min. The reaction mixture was poured into water, and the aqueous phase was extracted with Et\textsubscript{2}O (20 mL x 3). The combined organic phase was dried over MgSO\textsubscript{4}. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO\textsubscript{2} with hexane/AcOEt (v/v = 20/1) as an eluent to afford the compound 4 as a pale yellow oil.

Ene-yn-carbonyl compound 13a.

A white solid (85% yield); mp. 73.8–75.5 °C; IR (KBr) 699, 761, 855, 888, 1043, 1249, 1551, 1605, 1641 (C=O), 2142 (C≡C), 2927, 3322 (N-H) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) \(\delta 0.18 \) (s, 9H), 1.55–1.64 (m, 4H), 2.21–2.28 (m, 2H), 2.37–2.44 (m, 2H), 2.85 (d, \(J = 3.0 \) Hz, 3H), 7.00 (br s, 1H); 13C NMR (75 MHz, CDCl\textsubscript{3}, 25 °C) \(\delta -0.2, 21.6, 21.7, 25.8, 26.2, 31.2, 101.2, 104.5, 120.6, 140.8, 168.5 \). Anal. Calcd for C\textsubscript{13}H\textsubscript{21}NOSi: C, 66.33; H, 8.99; N, 5.95. Found: C, 66.24; H, 8.82; N, 5.96.

Ene-yn-carbonyl compound 13b.

A pale yellow oil (92% yield); IR (neat) 698, 760, 845, 886, 1250, 1285, 1527, 1650 (C=O), 2140 (C≡C), 2936, 3307 (N-H) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, 25 °C) \(\delta 0.18 \) (s, 9H), 1.59–1.63 (m, 4H), 2.26–2.30 (m, 2H), 2.40–2.44 (m, 2H), 3.97 (dd, \(J = 5.2, 5.7 \) Hz, 2H), 5.13 (dd, \(J = 1.5, 10.5 \) Hz, 1H), 5.25 (dd, \(J = 1.5, 16.5 \) Hz, 1H), 5.88 (ddd, \(J = 5.7, 10.5, 16.5 \) Hz, 1H), 7.23 (br s,
13C NMR (75 MHz, CDCl$_3$, 25 °C) δ -0.2, 21.7, 21.8, 26.3, 31.6, 42.1, 102.1, 104.4, 116.5, 121.1, 134.2, 140.1, 167.4. Anal. Calcd for C$_{15}$H$_{23}$NOSi: C, 68.91; H, 8.87; N, 5.36. Found: C, 68.51; H, 8.82; N, 5.27.

Ene-yne-carbonyl compound 13c.

A pale yellow solid (91% yield); mp. 100.8–102.5 °C; IR (KBr) ν 696, 758, 845, 876, 910, 1248, 1321, 1442, 1548, 1599, 1649 (C=O), 2144 (C≡C), 2941, 3288 (N-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 0.15 (s, 9H), 1.63–1.68 (m, 4H), 2.33–2.38 (m, 2H), 2.47–2.53 (m, 2H), 7.10 (dd, J = 7.5, 7.5 Hz, 1H), 7.33 (dd, J = 7.5, 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 8.79 (s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ -0.2, 21.6, 21.8, 26.2, 31.7, 103.4, 103.8, 119.7, 121.9, 124.1, 128.9, 137.9, 140.7, 165.7. Anal. Calcd for C$_{18}$H$_{23}$NOSi: C, 72.68; H, 7.79; N, 4.71. Found: C, 72.59; H, 7.64; N, 4.61.

Ene-yne-carbonyl compound 13d.

A pale yellow solid (82% yield); mp. 54.1–55.2 °C; IR (KBr) ν 618, 760, 846, 1249, 1401, 1597, 1641 (C=O), 2141 (C≡C), 2961, 3368 (N-H) cm$^{-1}$; 1H NMR (270 MHz, CDCl$_3$, 25 °C) δ 0.24 (s, 9H), 1.86 (quint, J = 7.6 Hz, 2H), 2.65 (tt, J = 7.6, 2.2 Hz, 2H), 2.76 (tt, J = 7.6, 2.2 Hz, 2H), 2.88 (d, J = 5.1 Hz, 3H), 7.29 (br s, 1H); 13C NMR (67.8 MHz, CDCl$_3$, 25 °C) δ -0.2, 21.8, 25.9, 33.9, 38.9, 101.2, 105.7, 125.1, 145.0, 164.6. Anal. Calcd for C$_{12}$H$_{19}$NOSi: C, 65.11; H, 8.65; N, 6.33. Found: C, 64.85; H, 8.64; N, 6.20.

Ene-yne-carbonyl compound 13f.

A white solid (77% yield); mp. 46.2–47.8 °C; IR (KBr) 693, 757, 840, 890, 1129, 1248, 1290, 1520, 1638 (C=O), 2140 (C≡C), 2940, 3383 (N-H) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 0.18 (s, 9H), 1.57–1.61 (m, 4H), 2.23–2.28 (m, 2H), 2.29 (dt, J = 6.9, 6.9 Hz, 2H), 2.36–2.40 (m, 2H), 3.39 (dt, J = 6.0, 6.9 Hz, 2H), 5.05 (dd, J = 1.2, 10.2 Hz, 1H), 5.09 (dd, J = 1.2, 17.1 Hz, 1H), 5.79 (ddt, J = 10.2, 17.1, 6.9 Hz, 1H), 7.03 (br s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ -0.2,

Ene-yne-imino ether 4a.

A pale yellow oil (72% yield for two steps); IR (neat) 694, 823, 1028, 1080, 1254, 1281, 1435, 1629, 1678 (C=N), 2094 (C≡C), 2360, 2940, 3286 (≡C-H) cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 25 °C) δ 1.65–1.70 (m, 4H), 2.14–2.20 (m, 2H), 2.22–2.28 (m, 2H), 2.96 (s, 1H), 3.03 (s, 3H), 3.69 (s, 3H); ¹³C NMR (67.8 MHz, CDCl₃, 25 °C) δ 21.4, 21.8, 27.2, 29.2, 36.0, 52.8, 79.2, 82.6, 119.5, 138.6, 163.0. HRMS (FAB): calcd for C₁₁H₁₆NO (M+H⁺), 178.1232; found, 178.1234.

Ene-yne-imino ether 4b.

A pale yellow oil (76% yield for two steps); IR (neat) 639, 915, 1032, 1075, 1197, 1254, 1280, 1358, 1434, 1627, 1674 (C=N), 2091 (C≡C), 2940, 3289 (≡C-H) cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 25 °C) δ 1.62–1.68 (m, 4H), 2.12–2.18 (m, 2H), 2.20–2.28 (m, 2H), 2.96 (s, 1H), 3.74 (s, 3H), 3.90 (d, J = 5.4 Hz, 2H), 5.05 (dd, J = 1.6, 10.5 Hz, 1H), 5.20 (dd, J = 1.6, 17.0 Hz, 1H), 5.97 (ddd, J = 5.4, 10.5, 17.0 Hz, 1H); ¹³C NMR (67.8 MHz, CDCl₃, 25 °C) δ 21.1, 21.8, 27.5, 29.1, 51.6, 53.0, 79.6, 82.5, 114.2, 119.4, 137.2, 138.8, 162.5. HRMS (FAB): calcd for C₁₃H₁₈NO (M+H⁺), 204.1388; found, 204.1391.

Ene-yne-imino ether 4c.

A pale yellow oil (46% yield for two steps); IR (neat) 640, 697, 763, 891, 1047, 1072, 1180, 1258, 1289, 1359, 1434, 1600, 1624, 1661 (C=N), 2096 (C≡C), 2371, 2941, 3286 (≡C-H) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.36–1.46 (m, 4H), 1.88–1.96 (m, 2H), 2.08–2.15 (m, 2H), 3.10 (s, 1H), 3.88 (s, 3H), 6.88 (d, J = 7.2 Hz, 2H), 7.01 (dd, J = 7.2, 7.2 Hz, 1H), 7.23 (dd, J = 7.2, 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.1, 21.4, 27.4, 29.1, 53.8, 80.2, 83.1,
121.4, 123.0, 128.4, 128.8, 139.6, 147.6, 162.2. HRMS (FAB): calcd for C_{16}H_{18}NO (M+H^+), 240.1388; found, 240.1378.

Ene-yne-imino ether 4d.

A pale yellow oil (40% yield for two steps); IR (neat) 668, 922, 1012, 1097, 1216, 1263, 1435, 1621, 1674 (C=Н), 2096 (C≡C), 2359, 2945, 3289 (≡С-H) cm⁻¹; ¹H NMR (270 MHz, CD₂Cl₂, 25 °C) δ 1.96 (quint, J = 7.6 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 3.04 (s, 3H), 3.23 (s, 1H), 3.63 (s, 3H); ¹³C NMR (67.8 MHz, CD₂Cl₂, 25 °C) δ 23.1, 35.7, 36.7, 37.5, 52.7, 79.7, 83.2, 124.6, 142.0, 159.5. HRMS (FAB): calcd for C₁₀H₁₄NO (M+H^+), 164.1075; found, 164.1073.

Ene-yne-imino ether 4f.

A pale yellow oil (50% yield for two steps); IR (neat) 642, 668, 913, 1038, 1083, 1197, 1252, 1280, 1434, 1640, 1674 (C=Н), 2095 (C≡C), 2360, 2940, 3291 (≡С-H) cm⁻¹; ¹H NMR (270 MHz, CD₂Cl₂, 25 °C) δ 1.62–1.66 (m, 4H), 2.12–2.16 (m, 2H), 2.20–2.24 (m, 2H), 2.28 (dddt, J = 1.4, 1.4, 7.0, 7.3 Hz, 2H), 2.99 (s, 1H), 3.26 (t, J = 7.3 Hz, 2H), 3.63 (s, 3H), 4.97 (ddt, J = 0.5, 10.0, 1.4 Hz, 1H), 5.05 (ddt, J = 0.5, 17.3, 1.4 Hz, 1H), 5.86 (ddt, J = 10.0, 17.3, 7.0 Hz, 1H); ¹³C NMR (67.8 MHz, CD₂Cl₂, 25 °C) δ 21.7, 22.2, 28.0, 29.6, 36.6, 49.2, 52.9, 79.3, 83.2, 115.3, 119.3, 137.6, 139.5, 161.6. HRMS (FAB): calcd for C₁₄H₂₀NO (M+H^+), 218.1545; found, 218.1543.

Synthesis of ene-yne-imino compound 4e.

To a solution of the compound 14la (0.21 g, 1.0 mmol) in dichloromethane (10 mL) were added Na₂SO₄ (1.14 g, 8.0 mmol) and tert-BuNH₂ (0.32 mL, 3.0 mmol) under N₂, and
the solution was stirred at room temperature for 40 h. The reaction mixture was filtered, and the organic solvent was removed under reduced pressure to afford the corresponding imine as a yellow oil. To a solution of the obtained imine in MeOH (10 mL) was added K₂CO₃ (0.21 g, 1.5 mmol), and the solution was stirred at room temperature for 30 min. The reaction mixture was poured into water, and the aqueous phase was extracted with Et₂O (20 mL x 3). The combined organic phase was dried over MgSO₄. The organic solvent was removed under reduced pressure to afford the compound 4e (0.15 g, 0.78 mmol, 78% yield) as a pale yellow oil; IR (neat) 696, 735, 1077, 1210, 1365, 1435, 1629, 1677 (C=N), 2094 (C=C), 2360, 2925, 3286 (≡C-H) cm⁻¹; ¹H NMR (400 MHz, CD₂Cl₂, 25 °C) δ 1.19 (s, 9H), 1.62–1.68 (m, 4H), 2.30–2.34 (m, 4H), 3.35 (s, 1H), 8.54 (s, 1H); ¹³C NMR (100 MHz, CD₂Cl₂, 25 °C) δ 22.1, 22.7, 24.7, 29.9, 31.7, 57.5, 82.7, 83.4, 125.9, 144.4, 156.1. HRMS (FAB): calcd for C₁₃H₂₀N (M+H⁺), 190.1596; found, 190.1595.

Typical Procedure for Rhodium-Catalyzed Cyclopropanations of Alkenes.

[Rh(OAc)₂]₂ (2.2 mg, 0.005 mmol) was placed in the flame dried Schlenk flask and dissolved in dry and deoxygenated CH₂Cl₂ (1.0 mL). To the solution were added an alkene (0.40 mmol) and a solution of 4 (0.20 mmol) in CH₂Cl₂ (1.0 mL) at room temperature under N₂. After the reaction was complete, the organic solvent and an excess alkene were removed under reduced pressure, and the residue was filtered with short Florisil® column or subjected to column chromatography on Fuji Silysia Chemical silica gel FL 100DX with hexane /AcOEt (v/v = 50/1) as an eluent to afford the cyclopropanes.

Cyclopropane 6a.

A yellow oil (82% yield, cis/trans = 4/96); IR (neat) 698, 750, 944, 1040, 1218, 1385, 1446, 1544, 1602, 1705, 2359, 2852, 2928, 3400 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C): cis isomer, δ 1.26 (ddd, J = 5.6, 6.4, 6.4 Hz, 1H), 1.49 (ddd, J = 5.6, 8.8, 8.8 Hz, 1H), 1.56–1.62 (m, 4H), 1.80 (ddd, J = 6.4, 8.8, 8.8 Hz, 1H), 2.17 (ddd, J = 6.4, 8.8, 8.8 Hz, 1H), 2.52–2.58 (m, 4H), 2.88
(s, 3H), 3.60 (s, 3H), 6.76, (d, \(J = 7.6 \) Hz, 2H), 7.03–7.31 (m, 3H); \textit{trans} isomer, \(\delta \) 1.29 (ddd, \(J = 5.2, 6.0, 8.8 \) Hz, 1H), 1.36 (ddd, \(J = 5.2, 6.0, 8.8 \) Hz, 1H), 1.65–1.73 (m, 4H), 1.84 (ddd, \(J = 5.2, 5.2, 8.8 \) Hz, 1H), 2.07 (ddd, \(J = 5.2, 5.2, 8.8 \) Hz, 1H), 2.54–2.60 (m, 4H), 3.36 (s, 3H), 3.82 (s, 3H), 7.14–7.38 (m, 5H); \textit{trans} isomer, \(\delta \) 13.7, 16.7, 20.9, 22.2, 23.0, 24.1, 24.3, 28.0, 61.0, 99.4, 116.4, 125.1, 125.6, 126.3, 127.5, 128.3, 140.1; \textit{trans} isomer, \(\delta \) 15.8, 18.7, 21.0, 22.5, 23.8, 23.9, 24.1, 28.6, 60.9, 99.2, 114.3, 118.1, 125.5, 125.6, 128.3, 140.6, 142.5. HRMS (FAB): calcd for \(\text{C}_{19}\text{H}_{23}\text{NO} \) (a mixture of \textit{cis} and \textit{trans} isomers) (M+), 281.1780; found, 281.1778.

\textbf{Cyclopropane 7a.}

A yellow oil (88% yield, d.r. = 88/12, as a mixture of \textit{cis} and \textit{trans} isomers); IR (neat) 700, 763, 1029, 1070, 1244, 1264, 1382, 1397, 1445, 1600, 1705, 2360, 2932, 3392 cm\(^{-1}\); \(^1\)H NMR (400 MHz, \(\text{CD}_2\text{Cl}_2 \), 25 \(^\circ\)C) \(\delta \) 1.19 (s, 3H), 1.22–1.27 (m, 1H), 1.24–1.26 (m, 1H), 1.47–1.53 (m, 1H), 1.47–1.53 (m, 1H), 1.60 (s, 3H), 1.65–1.70 (m, 4H), 1.70–1.78 (m, 4H), 1.91–1.96 (m, 1H), 1.91–1.96 (m, 1H), 2.36–2.42 (m, 4H), 2.50–2.62 (m, 4H), 2.95 (s, 3H), 3.28 (s, 3H), 3.57 (s, 3H), 3.78 (s, 3H), 6.98–7.13 (m, 6H), 7.27–7.34 (m, 4H); \(^{13}\)C NMR (100 MHz, \(\text{CD}_2\text{Cl}_2 \), 25 \(^\circ\)C) \(\delta \) 20.2, 20.7, 20.9, 21.2, 21.4, 23.3, 23.4, 24.4, 24.7, 24.8, 24.8, 24.9, 25.0, 25.0, 25.5, 25.7, 28.4, 28.8, 61.1, 61.2, 99.4, 99.6, 115.3, 115.5, 115.5, 116.4, 125.2, 125.6, 126.0, 126.6, 127.5, 128.6, 140.8, 143.0, 147.3, 151.5. HRMS (FAB): calcd for \(\text{C}_{20}\text{H}_{25}\text{NO} \) (a mixture of \textit{cis} and \textit{trans} isomers) (M+), 295.1936; found, 295.1943.

\textbf{Cyclopropane 8a.}

A yellow oil (90% yield, \textit{cis/trans} = 10/90); IR (neat) 1032, 1192, 1241, 1363, 1434, 1599, 1682, 1712, 2390, 2858, 2932, 3400 cm\(^{-1}\); \(^1\)H NMR (400 MHz, \(\text{CD}_2\text{Cl}_2 \), 25 \(^\circ\)C): \textit{cis} isomer, \(\delta \) 0.76–0.80 (m, 1H), 0.98 (ddd, \(J = 4.0, 5.2, 8.4 \) Hz, 1H), 1.28 (s, 9H), 1.48–1.54 (m, 1H), 1.60–1.72 (m, 4H), 2.48–2.55 (m, 4H), 3.36 (s, 3H), 3.37–3.41 (m, 1H), 3.76 (s, 3H); \textit{trans} isomer, \(\delta \) 0.79 (ddd, \(J = 4.0, 5.6, 7.2 \) Hz, 1H), 1.03 (ddd, \(J = 5.6, 6.0, 9.6 \) Hz, 1H), 1.24 (s, 9H), 1.51 (ddd, \(J = 5.2, 6.0, 8.8 \) Hz, 1H), 1.65–1.73 (m, 4H), 1.84 (ddd, \(J = 5.2, 5.2, 8.8 \) Hz, 1H), 2.07 (ddd, \(J = 5.2, 5.2, 8.8 \) Hz, 1H), 2.54–2.60 (m, 4H), 3.36 (s, 3H), 3.82 (s, 3H), 7.14–7.38 (m, 5H); \textit{trans} isomer, \(\delta \) 13.7, 16.7, 20.9, 22.2, 23.0, 24.1, 24.3, 28.0, 61.0, 99.4, 116.4, 125.1, 125.6, 126.3, 127.5, 128.3, 140.1; \textit{trans} isomer, \(\delta \) 15.8, 18.7, 21.0, 22.5, 23.8, 23.9, 24.1, 28.6, 60.9, 99.2, 114.3, 118.1, 125.5, 125.6, 128.3, 140.6, 142.5. HRMS (FAB): calcd for \(\text{C}_{19}\text{H}_{23}\text{NO} \) (a mixture of \textit{cis} and \textit{trans} isomers) (M+), 281.1780; found, 281.1778.
= 4.0, 4.0, 9.6 Hz, 1H), 1.60–1.72 (m, 4H), 2.48–2.55 (m, 4H), 3.37 (s, 3H), 3.38 (ddd, J =
4.0, 6.0, 7.2 Hz, 1H), 3.77 (s, 3H); 13C NMR (100 MHz, CD2Cl2, 25 °C): cis isomer, δ 14.0,
15.8, 21.3, 22.9, 24.3, 24.6, 28.4, 28.5, 52.2, 61.2, 74.9, 99.5, 114.0, 117.0, 140.7; trans
isomer, δ 11.2, 13.4, 21.4, 22.9, 24.5, 24.7, 28.2, 28.6, 50.0, 61.3, 74.9, 99.7, 115.3, 115.8,
140.6. HRMS (FAB): calcd for C17H27N02 (a mixture of cis and trans isomers) (M+),
277.2042; found, 277.2040.

Cyclopropane 9a.

A yellow oil (100% yield); IR (neat) 694, 754, 955, 989, 1052,
1379, 1435, 1542, 1598, 1705, 2360, 2859, 2929, 3445 cm⁻¹; 1H NMR
(270 MHz, CD2Cl2, 25 °C) δ 1.14 (t, J = 7.3 Hz, 3H), 1.19 (dd, J =
5.1, 7.0 Hz, 1H), 1.21 (t, J = 7.3 Hz, 3H), 1.31 (dd, J = 5.1, 10.3 Hz, 1H), 1.56–1.67 (m, 4H),
1.98 (dd, J = 7.0, 10.3 Hz, 1H), 2.48–2.53 (m, 4H), 3.37 (s, 3H), 3.46–3.58 (m, 2H),
3.63–3.73 (m, 2H), 3.76 (s, 3H); 13C NMR (67.8 MHz, CD2Cl2, 25 °C) δ 15.6, 15.6, 18.7,
21.3, 21.6, 23.0, 24.3, 24.6, 28.7, 61.3, 61.5, 62.4, 91.4, 99.9, 114.3, 115.7, 140.7. HRMS

Cyclopropane 10a.

A yellow oil (88% yield, d.r. = 76/24, as a mixture of cis and
thran isomers); IR (neat) 754, 845, 1035, 1050, 1253, 1379, 1435,
1597, 1707, 2360, 2859, 2935, 3400 cm⁻¹; 1H NMR (400 MHz,
CD2Cl2, 25 °C) δ –0.04 (s, 9H), 0.15 (s, 9H), 0.86 (dd, J = 5.2, 6.8 Hz, 1H), 0.93 (dd, J = 5.2,
9.6 Hz, 1H), 1.12 (dd, J = 5.2, 6.4 Hz, 1H), 1.23 (dd, J = 5.2, 9.6 Hz, 1H), 1.37–1.41 (m, 1H),
1.37–1.41 (m, 1H), 1.47 (s, 3H), 1.53 (s, 3H), 1.54–1.58 (m, 4H), 1.65–1.70 (m, 4H),
2.42–2.53 (m, 4H), 2.42–2.53 (m, 4H), 3.32 (s, 3H), 3.35 (s, 3H), 3.73 (s, 3H), 3.76 (s, 3H);
13C NMR (100 MHz, CD2Cl2, 25 °C) δ 1.1, 1.5, 19.4, 19.7, 20.4, 21.3, 21.4, 21.8, 22.1, 23.0,
23.2, 24.4, 24.6, 24.7, 24.8, 26.7, 28.6, 28.8, 56.8, 58.0, 61.1, 61.3, 99.5, 99.6, 115.3, 116.0,
121.7, 122.5, 140.5, 146.6. HRMS (FAB): calcd for C17H29N02Si (a mixture of cis and
Cyclopropane 6b.

A yellow oil (88% yield, cis/trans = 3/97); IR (neat) 639, 915, 1032, 1075, 1197, 1254, 1280, 1434, 1627, 1673, 2860, 2940, 3289 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\), 25 °C): cis isomer, \(\delta\) 1.30 (ddd, \(J = 4.8, 6.4, 6.4\) Hz, 1H), 1.47 (ddd, \(J = 4.8, 8.8, 8.8\) Hz, 1H), 1.74–1.85 (m, 4H), 2.10 (ddd, \(J = 6.4, 8.8, 8.8\) Hz, 1H), 2.18 (ddd, \(J = 6.4, 8.8, 8.8\) Hz, 1H), 2.45–2.57 (m, 4H), 3.59 (s, 3H), 3.83–3.99 (m, 2H), 4.85 (dd, \(J = 1.6, 17.2\) Hz, 1H), 5.00 (dd, \(J = 1.6, 10.4\) Hz, 1H), 5.68 (ddt, \(J = 10.4, 17.2, 5.6\) Hz, 1H), 6.81 (d, \(J = 6.8\) Hz, 2H), 7.06–7.13 (m, 3H); trans isomer, \(\delta\) 1.27 (ddd, \(J = 4.8, 5.6, 8.4\) Hz, 1H), 1.36 (ddd, \(J = 4.8, 5.6, 8.4\) Hz, 1H), 1.63–1.75 (m, 4H), 1.82 (ddd, \(J = 4.8, 4.8, 8.4\) Hz, 1H), 2.05 (ddd, \(J = 4.8, 4.8, 8.4\) Hz, 1H), 2.52–2.65 (m, 4H), 3.79 (s, 3H), 4.37–4.39 (m, 2H), 4.77 (ddd, \(J = 1.6, 3.6, 16.8\) Hz, 1H), 5.05 (ddd, \(J = 1.6, 3.6, 10.4\) Hz, 1H), 5.87 (ddt, \(J = 10.4, 16.8, 5.2\) Hz, 1H), 7.14–7.21 (m, 3H), 7.28–7.32 (m, 2H); \(^1\)C NMR (100 MHz, CDCl\(_3\), 25 °C): cis isomer, \(\delta\) 13.7, 17.2, 21.3, 22.5, 23.5, 24.4, 24.7, 44.1, 61.4, 99.8, 113.8, 115.0, 117.0, 125.4, 126.9, 127.7, 136.0, 140.5, 140.6; trans isomer, \(\delta\) 16.1, 19.3, 21.4, 23.1, 24.0, 24.3, 24.6, 44.5, 61.4, 99.7, 114.9, 115.4, 117.8, 125.8, 128.6, 128.8, 136.0, 140.7, 143.1. HRMS (FAB): calcd for C\(_{21}\)H\(_{25}\)NO (a mixture of cis and trans isomers) (M\(^+\)), 307.1936; found, 307.1931.

Cyclopropane 6c.

A white solid (81% yield, cis/trans = 27/73); mp. 102.8–104.2 °C; IR (KBr) 698, 754, 988, 1029, 1071, 1244, 1379, 1454, 1501, 1547, 1599, 1705, 2855, 2931, 3391 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\), 25 °C): cis isomer, \(\delta\) 1.21–1.24 (m, 1H), 1.33 (ddd, \(J = 5.2, 8.8, 8.8\) Hz, 1H), 1.68–1.77 (m, 4H), 1.73–1.82 (m, 1H), 2.17–2.23 (m, 1H), 2.52–2.67 (m, 4H), 3.46 (s, 3H), 6.42–6.44 (m, 2H), 6.69–6.73 (m, 2H), 6.96–7.02 (m, 3H), 7.18–7.23 (m, 3H); trans isomer, \(\delta\) 1.05–1.09 (m, 2H), 1.68–1.77 (m, 4H), 1.73–1.82 (m, 2H), 2.52–2.67 (m, 4H), 3.59 (s, 3H), 6.74–6.76 (m, 2H), 7.05–7.15 (m, 3H), 7.20–7.33 (m, 5H); \(^1\)C NMR (100 MHz, CD\(_2\)Cl\(_2\), 25 °C): cis isomer, \(\delta\) 14.4, 18.0, 21.2, 22.9, 23.4, 24.3, 24.6, 61.2, 101.0, 115.4, 118.6, 125.1, 128.6, 128.8, 136.0, 140.7, 143.1.
126.1, 126.7, 127.5, 127.7, 128.2, 137.6, 140.4, 142.7; trans isomer, δ 16.3, 20.0, 21.3, 23.0, 24.3, 24.6, 25.0, 61.3, 101.0, 116.2, 119.5, 125.5, 125.8, 126.7, 127.9, 128.1, 128.8, 137.9, 140.9, 142.6. HRMS (FAB): calcd for C_{24}H_{25}NO (a mixture of cis and trans isomers) (M^+), 343.1936; found, 343.1932.

Cyclopropane 6d.

A yellow oil (93% yield, cis/trans = 45/55); IR (neat) 698, 799, 1042, 1074, 1261, 1354, 1403, 1461, 1573, 1619, 1715, 2850, 2946, 3400 cm^{-1}; \(^1\)H NMR (270 MHz, CD,

_2Cl,

_2, 25 °C): cis isomer, δ 1.27 (ddd, J = 5.1, 5.9, 5.9 Hz, 1H), 1.39 (ddd, J = 5.1, 8.6, 8.6 Hz, 1H), 2.09–2.28 (m, 4H), 2.49–2.56 (m, 2H), 2.63 (t, J = 7.3 Hz, 2H), 2.69 (s, 3H), 3.70 (s, 3H), 6.87 (dd, J = 1.6, 7.6 Hz, 2H), 7.04–7.12 (m, 3H); trans isomer, δ 1.22–1.36 (m, 2H), 1.84 (ddd, J = 5.4, 8.9, 8.9 Hz, 1H), 1.99 (dd, J = 5.4, 8.9, 8.9 Hz, 1H), 2.09–2.28 (m, 2H), 2.44–2.56 (m, 2H), 2.63 (t, J = 7.3 Hz, 2H), 3.29 (s, 3H), 3.84 (s, 3H), 7.06–7.19 (m, 3H), 7.25–7.31 (m, 2H); \(^1\)C NMR (67.8 MHz, CDCl,

3, 25 °C): cis isomer, δ 11.7, 17.9, 23.4, 25.6, 25.8, 28.7, 32.1, 58.6, 103.7, 111.3, 125.4, 127.2, 127.3, 127.7, 138.3, 140.0; trans isomer, δ 15.6, 20.1, 24.8, 25.4, 25.5, 29.1, 32.0, 58.7, 104.0, 115.6, 124.4, 125.7, 125.8, 128.5, 138.5, 143.0. HRMS (FAB): calcd for C{18}H_{21}NO (a mixture of cis and trans isomers) (M^+), 267.1623; found, 267.1620.

Cyclopropane 6e.

A yellow oil (18% yield, as a mixture of cis and trans isomers); IR (neat) 696, 735, 772, 1077, 1187, 1224, 1300, 1365, 1459, 1497, 1677, 2851, 2926, 2977, 3245, 3299 cm^{-1}; \(^1\)H NMR (270 MHz, CD,

_2Cl,

_2, 25 °C) δ 1.32 (s, 9H), 1.55 (s, 9H), 1.52–1.62 (m, 8H), 1.62–1.70 (m, 4H), 1.77–1.96 (m, 2H), 2.13 (ddd, J = 5.9, 8.6, 8.6 Hz, 1H), 2.23 (ddd, J = 5.9, 5.9, 8.6 Hz, 1H), 2.40–2.61 (m, 8H), 6.44 (s, 1H), 6.51 (s, 1H), 6.82–6.85 (m, 3H), 7.00–7.19 (m, 5H), 7.26–7.31 (m, 2H); \(^1\)C NMR (67.8 MHz, CDCl,

125.3, 125.3, 125.7, 125.8, 127.1, 127.8, 128.6, 129.8, 141.3, 143.1. HRMS (FAB): calcd for C_{21}H_{27}N (a mixture of cis and trans isomers) (M+), 293.2144; found, 293.2144.

Synthesis of Pyrrolin-2-one Derivatives 11.

[Rh(OAc)\textsubscript{2}]\textsubscript{2} (2.2 mg, 0.005 mmol) was placed in the flame dried Schlenk flask and dissolved in dry and deoxygenated CH\textsubscript{2}Cl\textsubscript{2} (1.0 mL). To this solution were added an alkene (0.40 mmol) and a solution of 4 (0.20 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (1.0 mL) at room temperature under N\textsubscript{2}. After the reaction was complete, the organic solvent and excess alkene were removed under reduced pressure to afford the compound 6 as a yellow oil. To a solution of the crude compound 6 in EtOH/H\textsubscript{2}O was added 1 N HCl solution (3 drops), and the solution was stirred at 60 °C for 3 h. The reaction mixture was poured into water and the aqueous phase was extracted with EtOAc (20 mL x 3). The combined organic phase was dried over MgSO\textsubscript{4}. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO\textsubscript{2} with CH\textsubscript{2}Cl\textsubscript{2}/AcOEt (v/v = 10/1) as an eluent to afford the compound 11 as a pale yellow oil.

Pyrrolin-2-one derivative 11a.

A pale yellow oil (81% yield, as a mixture of two diastereoisomers); IR (neat) 698, 751, 1036, 1256, 1399, 1428, 1680 (C=O), 2930, 3364 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}, 25 °C) δ 0.81–0.89 (m, 2H), 1.02 (ddd, J = 5.2, 5.2, 8.8 Hz, 1H), 1.06–1.13 (m, 2H), 1.18 (ddd, J = 5.2, 5.2, 8.8 Hz, 1H), 1.59–1.77 (m, 8H), 1.87 (ddd, J = 5.2, 5.2, 8.8 Hz, 1H), 1.95 (ddd, J = 5.2, 5.2, 8.8 Hz, 1H), 2.15–2.34 (m, 8H), 3.01 (s, 3H), 3.04–3.07 (m, 2H), 3.07 (s, 3H), 7.04–7.06 (m, 4H), 7.15–7.20 (m, 2H), 7.24–7.30 (m, 4H); 13C NMR (100 MHz, CDCl\textsubscript{3}, 25 °C) δ 11.5, 14.5, 18.8, 20.2, 20.3, 21.7, 21.8, 21.9, 22.2, 22.3, 23.5, 23.6, 23.7, 23.9, 27.4, 27.4, 68.9, 68.9, 125.5, 125.5, 125.8, 125.9, 128.4, 128.4, 131.3, 131.4, 141.1, 141.2, 152.8, 152.9, 171.0, 171.0. HRMS (FAB): calcd for C\textsubscript{18}H\textsubscript{22}NO (a mixture of cis and trans isomers) (M+H+), 268.1701; found, 268.1696.
Pyrrolin-2-one derivative 11b.

A pale yellow oil (87% yield, as a mixture of two diastereoisomers); IR (neat) 698, 752, 1409, 1434, 1682 (C=O), 2928, 3417 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 0.81–0.90 (m, 2H), 0.98–1.07 (m, 2H), 1.07–1.16 (m, 2H), 1.58–1.80 (m, 8H), 1.86 (ddd, J = 5.2, 5.2, 8.8 Hz, 1H), 1.92 (ddd, J = 5.2, 5.2, 8.8 Hz, 1H), 2.15–2.30 (m, 8H), 3.20 (d, J = 9.2 Hz, 1H), 3.22 (d, J = 9.2 Hz, 1H), 3.65 (dd, J = 8.0, 16.0 Hz, 1H), 3.88 (dd, J = 8.0, 16.0 Hz, 1H), 4.49–4.62 (m, 2H), 5.12–5.18 (m, 4H), 5.68–5.83 (m, 2H), 7.02–7.05 (m, 4H), 7.14–7.20 (m, 2H), 7.25–7.29 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 12.1, 14.7, 19.3, 20.3, 20.3, 21.5, 21.8, 22.0, 22.3, 22.3, 23.7, 23.8, 23.8, 42.3, 42.6, 66.2, 66.4, 116.5, 116.6, 125.4, 125.5, 125.9, 125.9, 128.4, 128.4, 131.0, 131.2, 134.4, 141.3, 141.3, 153.6, 157.0, 170.7, 170.7. HRMS (FAB): calcd for C₂₀H₂₄NO (a mixture of cis and trans isomers) (M+H⁺), 294.1858; found, 294.1854.

Pyrrolin-2-one derivative 11c.

A pale yellow oil (96% yield, as a mixture of two diastereoisomers); IR (neat) 698, 753, 1090, 1409, 1434, 1682 (C=O), 2929, 3399 cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 25 °C) δ 0.72–0.92 (m, 3H), 0.95–1.18 (m, 3H), 1.53–1.89 (m, 9H), 1.92–2.04 (m, 1H), 2.13–2.37 (m, 8H), 3.88–3.96 (m, 2H), 6.65–6.73 (m, 4H), 7.06–7.20 (m, 8H), 7.22–7.47 (m, 8H); ¹³C NMR (67.8 MHz, CDCl₃, 25 °C) δ 6.8, 8.4, 19.0, 20.0, 20.4, 20.5, 21.8, 21.9, 22.3, 22.5, 22.8, 23.2, 23.8, 24.4, 61.6, 63.2, 125.6, 125.7, 125.9, 126.0, 126.2, 127.7, 127.9, 128.0, 128.2, 128.6, 128.8, 130.6, 131.4, 137.0, 137.1, 137.9, 137.9, 154.7, 154.7, 170.2, 170.2. HRMS (FAB): calcd for C₂₃H₂₄NO (a mixture of cis and trans isomers) (M+H⁺), 330.1858; found, 330.1855.
Typical Procedure of Rhodium-Catalyzed Intramolecular Carbene Transfer Reactions.

[Rh(OAc)2]2 (2.2 mg, 0.005 mmol) was placed in the flame dried Schlenk flask and dissolved in dry and deoxygenated CH2Cl2 (15 mL) at room temperature under N2. To this solution was added a solution of 4f or 4g (0.20 mmol) in CH2Cl2 (5.0 mL) at 60 °C for 1 h. After the reaction was complete, the organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on Fuji Silysia Chemical silica gel FL 100DX with hexane/AcOEt (v/v = 50/1) as an eluent to afford the compound 12 or 13 as a yellow oil, respectively;

Tetracyclic Compound 12.

A yellow oil (40% yield); IR (neat) 740, 829, 917, 995, 1057, 1227, 1335, 1386, 1445, 1585, 1710, 2853, 2927, 3400 cm⁻¹; ¹H NMR (400 MHz, CD2Cl2, 25 °C) δ 0.61 (ddd, J = 4.8, 4.8, 5.2 Hz, 1H), 0.80 (ddd, J = 5.2, 8.4, 8.4 Hz, 1H), 1.38–1.45 (m, 1H), 1.60–1.70 (m, 4H), 1.59 (ddd, J = 4.8, 8.4, 8.4 Hz, 1H), 1.92–2.07 (m, 2H), 2.45–2.55 (m, 4H), 3.17 (ddd, J = 4.8, 12.4, 12.4 Hz, 1H), 3.72 (s, 3H), 3.80–3.85 (m, 1H); ¹³C NMR (100 MHz, CD2Cl2, 25 °C) δ 8.3, 8.5, 11.1, 21.2, 21.6, 22.6, 24.6, 24.6, 35.8, 61.5, 99.7, 111.5, 115.9, 139.1. HRMS (FAB): calcd for C14H20NO (M+H⁺), 218.1545; found, 218.1543.

Tricyclic Compound 13.

A yellow oil (27% yield); IR (neat) 715, 894, 1039, 1067, 1240, 1341, 1378, 1406, 1444, 1542, 1601, 2851, 2924, 3410 cm⁻¹; ¹H NMR (300 MHz, CD2Cl2, 25 °C) δ 1.60–1.70 (m, 8H), 2.15–2.25 (m, 2H), 2.45–2.55 (m, 2H), 3.70 (s, 3H), 4.00 (s, 2H), 4.17 (br s, 1H), 4.70 (br s, 1H); ¹³C NMR (75.5 MHz, CD2Cl2, 25 °C) δ 20.2, 20.8, 21.3, 21.9, 24.5, 24.7, 46.9, 61.6, 99.6, 109.0, 114.1, 115.2, 141.3, 143.8. HRMS (FAB): calcd for C14H20NO (M+H⁺), 218.1545; found, 218.1545.
References and Notes

(4) For a review, see: Gossauer, A. Pyrrole. In Houben-Weyl; Thieme: Stuttgart, 1994; E6a/1, p 556.

(10) Purity of **6a** (>90%) was confirmed by 1H and 13C NMR spectra.

(11) Florisil® (150-250 μm, 60-100 mesh) was purchased from Wako Chemicals USA, Inc. This isomerism is presumably attributed to the basic nature of Florisil®.

Chapter 6

Chromium- and Rhodium-Catalyzed Insertion Reactions Using Ene-Yne-Carbonyl Compounds as Precursors of (2-Furyl)carbenoids

Abstract

The reaction of methanol with conjugate ene-yne-ketones in the presence of a catalytic amount of Cr(CO)$_5$(THF) gives bicyclic acetals in good yields. The key intermediates of this insertion reaction are (2-furyl)carbene complexes generated by a nucleophilic attack of a carbonyl oxygen to an internal alkyne carbon of ene-yne-ketones. In contrast, [Rh(OAc)$_2$]-catalyzed insertion reaction of methanol with ene-yne-ketones selectively affords furfuryl ethers in good yields. These selectivities may be caused by the difference of carbenoid characters between chromium and rhodium intermediates.
Introduction

The reactions of transient electrophilic carbenoids with either activated or unactivated \(\sigma \)-bond-containing reagents were found to serve as one of the most powerful \(\sigma \)-bond construction reactions.\(^1\) Electrophilic carbenoids generated \textit{in situ} from \(\alpha \)-diazocarbonyl compounds and transition metal complexes have been known as effective intermediates in various inter- or intramolecular \(\sigma \)-bond insertion reactions.\(^2\) On the other hand, much attention has been paid to activation of alkynes with transition metal complexes as a new entry to generate carbenoid species.\(^3\)\(^-\)\(^8\) The author has already demonstrated the \textit{in situ} generation of furylcarbenoids from ene-yne-ketones and their application to catalytic cyclopropanation reaction (Scheme 1, see also Chapters 3 and 4). Further investigation based on the generation of (2-furyl)carbenoid species led him to find the chromium- and rhodium-catalyzed insertion reaction with methanol and triethylsilane as carbenoid acceptors (Scheme 2).

Scheme 1

\[\begin{align*}
\text{Ph} & \quad \text{cat. [M]} \\
\begin{array}{c}
\text{1a} \\
(M = \text{Mn, Cr, Mo, W, Ru, Rh, Ir, Pd, Pt})
\end{array} & \quad \text{Ph} \\
\end{align*} \]

Scheme 2

\[\begin{align*}
\text{cat. [M]} & \quad \sigma\text{-bond insertion} \\
\text{X-H} & \\
\end{align*} \]
Results and Discussion

At first, the reaction of 1a with MeOH (2 equiv) in THF was carried out in the presence of 5 mol% of Cr(CO)$_5$(THF) at room temperature (Scheme 3a). The color of the reaction mixture gradually changed from yellowish brown to deep blue indicating the generation of (2-furyl)carbene-chromium complex.9 After 24 h, however, no desired products were obtained. On the other hand, the reaction of MeOH with ene-yne-carbonyl compound 1b having an electron-withdrawing benzoyl group, which could be expected to enhance the electrophilicity of intermediary carbenoid species to an O-H bond, afforded the insertion product 2b in 38% yield (Scheme 3b).10 When other solvents to be used for the chromium-mediated insertion reaction were examined, benzene was revealed to be the solvent of choice. Thus, reactions of ene-yne-carbonyl compounds 1b and 1c having an acyl group at an yne-terminus in benzene were next examined, and these results are shown in Table 1. When the reaction of 1b with MeOH in benzene was carried out in the presence of Cr(CO)$_5$(THF) (120 mol%) at room temperature for 0.5 h, the insertion product 2b was obtained in 72% yield (entry 1). The same product was also obtained in nearly the same yield even with 30 mol% of
Table 1. Cr-Mediated O-H bond insertion reactiona,b

<table>
<thead>
<tr>
<th>entry</th>
<th>[Cr] (mol%)</th>
<th>R in 1</th>
<th>time (h)</th>
<th>2 (%)</th>
<th>3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>Bz (1b)</td>
<td>0.5</td>
<td>72 (2b)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>Bz (1b)</td>
<td>1.5</td>
<td>69 (2b)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>Ac (1c)</td>
<td>2</td>
<td>8 (2c)</td>
<td>55 (3c)</td>
</tr>
</tbody>
</table>

a Reactions were carried out with 1 (0.25 mmol) under Ar.

b The solution of Cr(CO)$_5$(L) was prepared by irradiating a benzene (10 mL) solution of Cr(CO)$_5$ (66 mg, 0.30 mmol) and THF (24 µL, 0.30 mmol) for 4 h with a high-pressure Hg lamp (450 W).

Cr(CO)$_5$(THF) (entry 2). When ene-yne-carbonyl compound 1c having an acetyl group at the terminal position of alkyne was treated with 120 mol% of Cr(CO)$_5$(THF), the corresponding product 2c was obtained only in 8% yield, and instead 3c as a MeOH insertion product at a carbene carbon was obtained in 55% yield. Different selectivity between reactions of 1b and 1c may be probably due to the sterical factor. Next, the reaction of 1b with MeOH in the presence of [Rh(OAc)$_2$]$_2$ catalyst, which efficiently catalyzes the cyclopropanation of ene-yne-keto and -imino compounds, was examined. Results are shown in Scheme 4. Ene-yne-carbonyl compounds 1b and 1c afforded the insertion products 3b (65% yield) and 3c (74% yield), respectively. The reaction of ene-yne-carbonyl compound 1d having a methoxycarbonyl group with MeOH was quite complex and many
unidentified products were formed reducing the yield of product 3d to 20%. The fact that the rhodium-catalyzed insertion reaction of MeOH with ene-yne-carbonyl compounds 1 proceeded at the carbene carbon may point out that the rhodium carbenoids would be more electrophilic than the chromium analogues.

Next, the author examined the Si-H insertion reaction of a (2-furyl)carbenoid intermediate. When the reaction of 1a with triethylsilane was carried out in the presence of a catalytic amount of Cr(CO)5(THF), the insertion product 4a was obtained in 99% yield (Scheme 5a). On the other hand, the reaction of 1b with 1.2 equiv of chromium complex was quite complex because of the decomposition of the corresponding Si-H insertion product 4b.11 Thus, when we treated the resulting reaction mixture with tetra-n-butylammonium fluoride (TBAF) after the reaction was complete, 5b as a protodesilylated product was obtained in 46% yield (Scheme 5b).
Experimental

General Procedure. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon. Benzene was distilled from calcium hydride under nitrogen. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ or d₈-THF with Me₄Si as an internal standard (¹H and ¹³C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points are uncorrected. Elemental analyses were performed at Microanalytical Center of Kyoto University.

Synthesis of Substrates.

The substrates were prepared by following procedures (Scheme 7). 2-Bromo-1-cyclohexenecarboxaldehyde (6)³ᵇ,¹²,¹³ and the substrate 1a³ᵇ were prepared by the reported methods.

![Scheme 7](image)

Ene-yne-carbonyl compound 8.

To a solution of trimethylsilylacetylene (2.4 mL, 18 mmol), 6 (2.8 g, 15 mmol), and triethylamine (10 mL, 75 mmol) in benzene (15 mL)
were added CuI (0.21 g, 7.5 mol%) and Pd(PPh₃)₄ (0.43 g, 2.5 mol%) at 0 °C under N₂.

After stirring at room temperature for 10 min, the resulting black solution was washed with saturated aqueous NH₄Cl solution (30 mL) and the aqueous phase was extracted with AcOEt (10 mL x 3). The organic phase was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 20/1) as an eluent to afford ene-yne-carbonyl compound 8 (3.0 g, 15 mmol, 98% yield) as a pale yellow oil; IR (neat) 675, 760, 844, 878, 894, 1146, 1226, 1250, 1363, 1599, 1677 (C=O), 2140 (C≡C), 2834, 2862, 2939 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.19 (s, 9H), 1.60–1.63 (m, 4H), 2.22–2.24 (m, 2H), 2.35–2.38 (m, 2H), 10.1 (s, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 0.4, 21.6, 22.4, 22.6, 32.8, 102.1, 105.3, 140.4, 144.2, 193.7. HRMS (FAB): calcd for C₁₂H₁₉OSi (M+H⁺), 207.1205; found, 207.1207.

Ene-yne compound 9.

To a solution of 8 (3.0 g, 15 mmol) and ethylene glycol (2.5 mL, 45 mmol) in benzene (10 mL) was added p-toluenesulfonic acid monohydrate (43 mg, 5 mol%) at room temperature. After stirring for 2 h at reflux temperature using Dean-Stark apparatus, the solution was washed with saturated aqueous NaHCO₃ solution and the aqueous phase was extracted with Et₂O (10 mL x 3). The combined organic phase was dried over MgSO₄. The organic solvent was removed under reduced pressure. To a solution of the residue in DMSO (20 mL) was added KF (1.28 g, 22 mmol) at room temperature. After stirring for 1 h, the resulting brown solution was poured into water/Et₂O mixture (50 mL, v/v = 1/1). The aqueous phase was extracted with Et₂O (10 mL x 3) and the combined organic phase was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 15/1) to afford ene-yne compound 9 (1.8 g, 10 mmol, 67% yield for 2 steps) as a white solid (gradually decomposed at room temperature); mp. 32.0–32.3 °C; IR (KBr) 659, 949, 987, 1070, 1075, 1101, 1142, 1227, 1387, 2080 (C≡C),
2892, 2935, 3258 (≡C-H) cm⁻¹; ¹H NMR (400 MHz, CD₂Cl₂, 25 °C) δ 1.58–1.65 (m, 4H), 2.08–2.09 (m, 2H), 2.17–2.19 (m, 2H), 3.15 (s, 1H), 3.84–4.00 (m, 4H), 5.79 (s, 1H); ¹³C NMR (100 MHz, CD₂Cl₂, 25 °C) δ 21.9, 22.1, 22.5, 30.8, 65.9, 81.2, 82.2, 102.9, 120.9, 143.1. HRMS (FAB): calcd for C₁₁H₁₁O₂ (M+H⁺), 179.1072; found, 179.1074.

Ene-yne-carbonyl compound 1b (path a).

To a solution of 1-phenyl-2-propyn-1-ol (2.5 mL, 10 mmol), 6 (2.5 g, 13 mmol), and triethylamine (7.0 mL, 50 mmol) in benzene (10 mL) were added CuI (0.15 g, 7.5 mol%) and Pd(PPh₃)₄ (0.29 g, 2.5 mol%) at 0 °C under N₂. After stirring at room temperature for 1 h, the resulting black solution was washed with saturated aqueous NH₄Cl solution (20 mL) and the aqueous phase was extracted with AcOEt (20 mL x 3). The organic phase was dried over MgSO₄. The organic solvent was removed under reduced pressure, and the residue was subjected to short column chromatography on SiO₂ with hexane/AcOEt (v/v = 40/1) as an eluent to afford crude propargylic alcohol as a pale brown oil. This crude alcohol was oxidized by Swem method to give ene-yne-carbonyl compound 1b (0.8 g, 3.4 mmol, 34% yield for 2 steps) as a colorless solid; mp. 82.8–84.6 °C; IR (KBr) 638, 707, 993, 1003, 1159, 1219, 1265, 1283, 1311, 1448, 1578, 1595, 1639 (C=O), 1675 (C≡C), 2859, 2913, 2936, 2958 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.70–1.79 (m, 4H), 2.33–2.39 (m, 2H), 2.54–2.60 (m, 2H), 7.52 (dd, J = 7.2, 7.2 Hz, 2H), 7.65 (dd, J = 7.2, 7.2 Hz, 1H), 8.12 (d, J = 7.2 Hz, 2H), 10.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 20.7, 21.7, 22.4, 31.6, 88.2, 94.1, 128.7, 129.3, 134.4, 136.3, 136.4, 147.3, 177.1, 191.2. Anal. Calcd for C₁₆H₁₄O₂: C, 80.65; H, 5.92. Found: C, 80.36; H, 5.92.

Ene-yne-carbonyl compound 1c (path a).

Ene-yne-carbonyl compound 1c was obtained by the same procedure for the synthesis of 1b; A yellow oil (34% yield for 2 steps); IR (neat) 608, 706, 1214, 1246, 1364, 1428, 1680 (C=O), 2183 (C≡C), 2860, 2934 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.65–1.71 (m, 4H), 2.28–2.35 (m, 2H), 2.42
(s, 3H), 2.45–2.50 (m, 2H), 10.15 (s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 20.7, 21.6, 22.4, 31.4, 32.8, 85.6, 95.2, 136.0, 147.1, 183.5, 191.2. HRMS (FAB): calcd for C$_{11}$H$_{13}$O$_2$ (M+H$^+$), 177.0916; found, 177.0916.

Ene-yne-carbonyl compound 1d (path b).

![structure of 1d]

To a solution of i-Pr$_2$NH (0.64 mL, 4.5 mmol) in THF (50 mL) was slowly added n-BuLi (2.8 mL, 4.5 mmol, 1.6 M in hexane) at -78 °C under N$_2$. After stirring at -78 °C for 10 min, a THF (5 mL) solution of 9 (0.53 g, 3.0 mmol) was added drop wise to this pale yellow solution at -78 °C. After stirring for 30 min at -78 °C, to this solution was added dropwise chloroformate (0.70 mL, 9.0 mmol) at -78 °C, and then the resulting solution was gradually warmed up to room temperature. After an additional stirring for 30 min, the solution was washed with saturated aqueous NH$_4$Cl solution (50 mL), and the aqueous phase was extracted with AcOEt (20 mL x 3). The combined organic phase was dried over MgSO$_4$. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt ($v/v = 10/1$) as an eluent to afford ene-yne-carbonyl compound 1d (0.41 g, 2.1 mmol, 71% yield) as a colorless oil; IR (neat) 733, 747, 1147, 1221, 1261, 1281, 1433, 1681 (C=O), 1716 (C=O), 2210 (C≡C), 2863, 2943 cm$^{-1}$; 1H NMR (270 MHz, CDCl$_3$, 25 °C) δ 1.63–1.75 (m, 4H), 2.29–2.33 (m, 2H), 2.42–2.45 (m, 2H), 3.82 (s, 3H), 10.13 (s, 1H); 13C NMR (67.5 MHz, CDCl$_3$, 25 °C) δ 20.7, 21.6, 22.3, 31.2, 53.0, 82.2, 87.9, 135.5, 147.7, 153.5, 191.2. HRMS (FAB): calcd for C$_{11}$H$_{13}$O$_3$ (M+H$^+$), 193.0865; found, 193.0865.

Typical Procedure for Insertion Reaction of (2-Furyl)carbene Complexes. A solution of Cr(CO)$_6$ (66 mg, 0.30 mmol) and THF (24 μL, 0.30 mmol) in benzene (10 mL) in flame-dried Schlenk tube under N$_2$ was irradiated by Hg lamp (450 W, 350 nm) at room temperature for 2 h. To this yellow solution was added substrate (0.25 mmol) and reagents at room temperature. The color of the reaction mixture gradually changed from deep blue to yellowish brown as the reaction proceeded. The solvent was removed under reduced
pressure and the residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt as an eluent.

Cyclic acetal 2b.

A white solid (72% yield); mp. 68.3-69.8 °C; IR (KBr) 706, 937, 965, 1069, 1081, 1207, 1391, 1573, 1591, 1651 (C=O), 2933 cm$^{-1}$; 1H NMR (400 MHz, C$_4$D$_8$O, 25 °C) δ 1.60-1.75 (m, 4H), 2.20-2.28 (m, 2H), 2.47-2.60 (m, 1H), 2.62-2.75 (m, 1H), 3.39 (s, 3H), 5.75 (s, 1H), 6.47 (s, 1H), 7.41 (dd, J = 7.2, 7.2 Hz, 2H), 7.47 (dd, J = 7.2, 7.2 Hz, 2H), 7.94 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, C$_4$D$_8$O, 25 °C) δ 21.3, 22.5, 22.6, 24.0, 53.8, 96.6, 107.9, 127.8, 128.0, 131.5, 133.8, 139.7, 149.3, 170.4, 187.3. HRMS (FAB) calcd for C$_{17}$H$_{19}$O$_3$ (M+H$^+$): 271.1334; found, 271.1327.

Cyclic acetal 2b'.

A white solid; mp. 82.7-83.4 °C; IR (KBr) 629, 705, 715, 772, 854, 935, 1004, 1218, 1317, 1569, 1600, 1650 (C=O), 2860, 2930 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.63-1.78 (m, 4H), 2.20-2.25 (m, 4H), 3.55 (s, 3H), 5.91 (s, 1H), 5.94 (s, 1H), 7.41-7.52 (m, 3H), 7.92 (d, J = 7.0 Hz, 2H); 13C NMR (100 MHz, C$_4$D$_8$O, 25 °C) δ 20.2, 21.5, 21.6, 22.0, 55.9, 92.0, 111.1, 127.8, 128.2, 131.6, 134.7, 139.9, 146.9, 168.5, 189.1.

Furfuryl methyl ether 3b.

A colorless oil (65% yield); IR (neat) 596, 620, 690, 753, 852, 938, 1027, 1094, 1384, 1446, 1592, 1650, 1694 (C=O), 2852, 2928, 3411 cm$^{-1}$; 1H NMR (300 MHz, C$_4$D$_8$O, 25 °C) δ 1.48-1.54 (m, 4H), 2.24-2.39 (m, 4H), 3.21 (s, 3H), 5.47 (s, 1H), 6.47 (s, 1H), 7.02 (s, 1H), 7.27 (dd, J = 7.2, 7.2 Hz, 2H), 7.38 (dd, J = 7.2, 7.2 Hz, 2H), 7.85 (d, J = 7.2 Hz, 1H); 13C NMR (75 MHz, C$_4$D$_8$O, 25 °C) δ 20.4, 20.7, 23.5, 23.6, 56.4, 79.6, 122.0, 122.9, 128.6, 129.0, 133.1, 136.2, 138.0, 143.4, 193.2.
Cyclic acetal 2c.

A colorless oil (8% yield); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ

\[
\begin{array}{c}
2c \\
\text{Ac} \\
\end{array}
\]
1.69-1.74 (m, 4H), 2.10-2.18 (m, 2H), 2.24-2.32 (m, 2H), 2.43 (s, 3H), 3.51 (s, 3H), 5.11 (s, 1H), 5.88 (s, 1H).

Furfuryl methyl ether 3c.

A pale yellow oil (74% yield); IR (neat) 563, 617, 776, 849, 918, 954, 1093, 1168, 1187, 1354, 1442, 1644, 1731 (C=O), 2856, 2933, 3431 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.68-1.70 (m, 4H), 2.19 (s, 3H), 2.47-2.53 (m, 4H), 3.22 (s, 3H), 4.69 (s, 1H), 7.14 (s, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 19.9, 20.1, 22.9, 26.3, 56.6, 81.2, 122.4, 122.4, 137.8, 141.7, 204.0.

Furfuryl methyl ether 3d.

A colorless oil (20% yield); IR (neat) 602, 763, 850, 920, 947, 1009, 1109, 1194, 1270, 1335, 1439, 1581, 1758 (C=O), 2850, 2932, 3437 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 1.68-1.70 (m, 4H), 2.52-2.55 (m, 4H), 3.79 (s, 3H), 3.79 (s, 3H), 4.84 (s, 1H), 7.12 (s, 1H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 20.1, 20.1, 23.0, 23.0, 52.5, 57.0, 74.5, 121.8, 122.3, 137.6, 141.8, 169.1.

Anal. Calcd for C$_{12}$H$_{16}$O$_4$: C, 64.27; H, 7.19. Found: C, 63.99; H, 7.23.

Silane 4a.

A solution of Cr(CO)$_6$ (2.8 mg, 0.013 mmol) in THF (1.0 mL) was irradiated by Hg lamp (450 W, 350 nm) at room temperature for 2 h. To this yellow solution were added substrate 1a (53 mg, 0.25 mmol) and triethylsilane (0.40 mL, 2.5 mmol) at room temperature. The color of the reaction mixture gradually changed from deep blue to yellowish brown as the reaction proceeded. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt (v/v = 30/1) as an eluent to afford a colorless liquid 4a (99% yield). IR (neat) 691, 730, 748, 759, 1018, 1068, 1240, 1493, 1600, 2913,
2935, 2951 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 0.63 (q, J = 7.6 Hz, 6H), 0.99 (t, J = 7.6 Hz, 9H), 1.68-1.81 (m, 4H), 2.05 (s, 2H), 2.42 (t, J = 5.6 Hz, 2H), 2.78 (t, J = 6.0 Hz, 2H), 7.15 (dd, J = 7.2, 7.2 Hz, 2H), 7.37 (dd, J = 7.2, 7.2 Hz, 2H), 7.57 (d, J = 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 4.4, 7.6, 11.8, 21.9, 23.9, 24.1, 24.5, 117.0, 119.8, 123.9, 125.7, 128.9, 133.4, 144.7, 148.0. HRMS (FAB) calcd for C$_{21}$H$_{30}$OSi (M$^+$): 326.2066; found, 326.2067.

Tetrahydroisobenzofuran derivative 5b.

![Structure of 5b](image)

A colorless liquid (46% yield); IR (neat) 690, 752, 1179, 1209, 1252, 1276, 1448, 1580, 1597, 1687 (C=O), 2855, 2930 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 1.60-1.74 (m, 4H), 2.41-2.55 (m, 4H), 4.18 (s, 2H), 7.08 (s, 1H), 7.45 (dd, J = 7.2, 7.2 Hz, 2H), 7.55 (dd, J = 7.2, 7.2 Hz, 2H), 8.01 (d, J = 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 20.2, 20.3, 23.1, 23.2, 37.5, 119.0, 122.4, 128.5, 128.5, 133.1, 136.2, 136.3, 141.5, 194.9. HRMS (FAB) calcd for C$_{16}$H$_{17}$O$_2$ (M+H$^+$): 241.1229; found, 241.1225.

X-ray Crystallographic Studies of 2b and 2b'. Colorless crystals of 2b and 2b' suitable for X-ray analysis were obtained by recrystallization from AcOEt-hexane. Both of the single crystals were sealed in a Pyrex glass capillary under N$_2$ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Ka radiation. Details of crystal and data collection parameters are summarized in Tables 1 and 2. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 2b and 2b' is shown in Figures 1 and 2, respectively.
Figure 1. Crystal structure of 2b
<table>
<thead>
<tr>
<th>Table 1. Summary of Crystallographic Data of 2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
</tr>
<tr>
<td>fw</td>
</tr>
<tr>
<td>crystal syst</td>
</tr>
<tr>
<td>space group</td>
</tr>
<tr>
<td>crystal color</td>
</tr>
<tr>
<td>lattice params</td>
</tr>
<tr>
<td>(a) (Å)</td>
</tr>
<tr>
<td>(b) (Å)</td>
</tr>
<tr>
<td>(c) (Å)</td>
</tr>
<tr>
<td>(\beta) (Å)</td>
</tr>
<tr>
<td>(V) (Å³)</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g cm(^{-3}))</td>
</tr>
<tr>
<td>(\mu) (Mo Kα) (cm(^{-1}))</td>
</tr>
<tr>
<td>(F(000))</td>
</tr>
<tr>
<td>diffractometer</td>
</tr>
<tr>
<td>radiation</td>
</tr>
<tr>
<td>graphite monochromated</td>
</tr>
<tr>
<td>temp (°C)</td>
</tr>
<tr>
<td>scan type</td>
</tr>
<tr>
<td>Max. 2θ (°)</td>
</tr>
<tr>
<td>no. of rflns measd</td>
</tr>
<tr>
<td>no. of observns (I > 3.00σ(I))</td>
</tr>
<tr>
<td>structure soln</td>
</tr>
<tr>
<td>refinement</td>
</tr>
<tr>
<td>no. of variables</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
</tr>
<tr>
<td>residuals: (R; R_w)</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å(^{-3}))</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å(^{-3}))</td>
</tr>
</tbody>
</table>
Figure 2. Crystal structure of 2b'
Table 2. Summary of Crystallographic Data of 2b

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C_{17}H_{18}O_{3}</td>
</tr>
<tr>
<td>fw</td>
<td>270.33</td>
</tr>
<tr>
<td>crystal syst</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1 (No. 2)</td>
</tr>
<tr>
<td>cryst color</td>
<td>colorless, block</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>8.033(7)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>11.412(1)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>15.858(1)</td>
</tr>
<tr>
<td>(\alpha) (Å)</td>
<td>89.969(3)</td>
</tr>
<tr>
<td>(\beta) (Å)</td>
<td>95.727(4)</td>
</tr>
<tr>
<td>(\gamma) (Å)</td>
<td>90.112(4)</td>
</tr>
<tr>
<td>(V) (Å³)</td>
<td>1446.6(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g cm(^{-3}))</td>
<td>1.241</td>
</tr>
<tr>
<td>(\mu(\text{Mo K})) (cm(^{-1}))</td>
<td>0.84</td>
</tr>
<tr>
<td>(F(000))</td>
<td>576</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoK(\alpha) ((\lambda = 0.71069) Å) graphite monochromated</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>(\omega-2\theta)</td>
</tr>
<tr>
<td>Max. 2(\theta) (°)</td>
<td>55</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 10124</td>
</tr>
<tr>
<td>no. of observns ((I > 3.00\sigma(I)))</td>
<td>2162</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least-squares on F</td>
</tr>
<tr>
<td>no. of variables</td>
<td>392</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>5.52</td>
</tr>
<tr>
<td>residuals: (R; R_w)</td>
<td>0.103; 0.104</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>0.29</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.01</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å(^{-3}))</td>
<td>0.36</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å(^{-3}))</td>
<td>-0.40</td>
</tr>
</tbody>
</table>
References and Notes

(10) Product 2b was gradually transformed into thermodynamically stable 2b' at room temperature (vide infra). Both structures of 2b and 2b' were determined by X-ray diffraction analyses (see Experimental Section).
The Si-H insertion product 4b as an α-silylcarbonyl compound is labile due to the equilibrium with silyl enolate isomer yielding a mixture of the silylated and protodesilylated products.

Chapter 7

Doyle-Kirmse Reaction of Allylic Sulfides with Diazoalkane-Free (2-Furyl)carbenoid Transfer

Abstract

In the presence of rhodium catalyst, conjugated ene-yne-carbonyl compounds 1 react with allylic sulfides to produce furan containing sulfides in good yields. The key intermediate of this reaction is a (2-furyl)carbenoid generated \textit{in situ} by a nucleophilic attack of a carbonyl oxygen atom to an internal alkyne carbon of 1 activated by rhodium complex. The [2,3]sigmatropic rearrangement of the resulting sulfur ylides generated by the (2-furyl)carbenoid transfer to allylic sulifides leads to the products. When diallyl sulfide is employed, heteroatom (O and S) containing polycyclic compounds are obtained by sequential intramolecular Diels-Alder cyclization reaction with a constructed furan ring as an enophile.
Introduction

The Doyle-Kirmse reaction of allylic sulfides and diazo compounds ([2,3]sigmatropic rearrangement of sulfur ylides) is a powerful synthetic method for creating new C-C bonds, presumably involving carbenoid complexes as intermediates.1,2 The author describes herein the rhodium(II)-catalyzed Doyle-Kirmse type reaction using (2-furyl)carbenoid precursors \textbf{1} without involving the corresponding diazoalkanes as shown in Scheme 1. The author has already reported the cyclopropanation of alkenes via (2-furyl)carbenoid complexes \textbf{2a} generated from \textbf{1a}, which can be catalyzed by a wide range of transition metal complexes (Scheme 2, and also see Chapter 4).3,4 A further investigation on the reactivity of such carbenoids demonstrated that [Rh(OAc)\textsubscript{2}]\textsubscript{2} worked efficiently as a catalyst for the Doyle-Kirmse reaction between allylic sulifides and ene-yne-carbonyl compounds \textbf{1} having electron-withdrawing groups at an alkyne terminus.
Results and Discussion

First, the reactions of 1 with allyl phenyl sulfide 3 as a carbenoid acceptor were examined. Results are shown in Table 1. The reaction of 1a with 3 in the presence of 2.5 mol% of [Rh(OAc)₂]₂ at room temperature or at reflux temperature gave a complex mixture, but none of the desired product was obtained (entry 1). On the other hand, the reaction of 3 with ene-yne-carbonyl compounds 1b-d having an electron-withdrawing group R¹, which could be expected to enhance the electrophilicity of intermediary carbenoid species to sulfur atom afforded the expected compound 4. Thus, the reaction of benzoyl group-containing ene-yne-carbonyl compound 1b with 3 gave 4b quantitatively (entry 2). Ene-yne-carbonyl compounds, 1c and 1d, having acetyl or methoxycarbonyl moiety also reacted with 3 to give 4c and 4d in good yields (entries 3 and 4). Since slow addition of diazoalkane is necessary in most cases of Doyle-Kirmse reaction using diazoalkanes, it is noted that slow addition of 1 is not required in the present diazoalkane-free reaction. Diazoalkane-free carbenoid transfer reaction using 1 was also effective for more nucleophilic allyl methyl sulfide 6. These results are summarized in Table 2. The reaction of 1a with 6, which gave

Table 1. Rh-catalyzed Carbene Transfer Reaction with Sulfide 3

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>R¹</th>
<th>R²</th>
<th>time (h)</th>
<th>isolated yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>H</td>
<td>Ph</td>
<td>4</td>
<td>complex mixture</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>Bz</td>
<td>H</td>
<td>10</td>
<td>98%</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>Ac</td>
<td>H</td>
<td>7</td>
<td>94%</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>CO₂Me</td>
<td>H</td>
<td>12</td>
<td>83%</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1 (0.2 mmol), sulfide (2.0 mmol), [Rh(OAc)₂]₂ (0.005 mmol) in CH₂Cl₂ (1 mL).
unsatisfactory result with 3, afforded the corresponding expected product 7a in 60% yield (entry 1). Reactions of 1b-d with sulfide 6 also gave products 7b-d in fair to good yields, respectively, although prolonged reaction time (48-120 h) was required for each reaction (entries 2-4).

Next, we carried out the rhodium-catalyzed reaction of 1 with diallyl sulfide 8. Results are shown in Table 3. The reaction of 1a with 8 in CH₂Cl₂ at reflux temperature gave the product 9a, in which the reaction occurred at one end of two allylic moieties (entry 1). On the other hand, the reaction using 1b for prolonged reaction time produced 9b in 32% yield together with tetracyclic product 10b in 43% yield as a mixture of two isomers (ratio = 79/21)⁶ (entry 2). The latter product 10b was considered to be formed by the subsequent intramolecular Diels-Alder product from an initially produced 9b. The reaction time did not affect the product ratio of 9b/10b, but higher reaction temperature at 80 °C in 1,2-dichloroethane (DCE) considerably afforded only the Diels-Alder adduct 10b (entry 3). The absence of Diels-Alder adduct 10a in the reaction using 1a might be attributed to the lack of the sterically demanding R¹ group. In reactions of 1c and 1d with 8, only Diels-Alder adducts 10c and 10d were also obtained, respectively (entries 4 and 5). Notably, in the reaction using 1d, reflux temperature in CH₂Cl₂ was sufficient for the Doyle-Kirmse type
reaction and subsequent intramolecular Diels-Alder reaction. This clearly shows that introduction of an electron-withdrawing methoxycarbonyl moiety into 1 prominently facilitates ylide formation by carbenoid transfer as well as intramolecular Diels-Alder reaction.

Finally, the reaction with cinnamyl phenyl sulfide 11 using 1 as a carbenoid source was examined in order to elucidate the reaction pathway. In the presence of 2.5 mol% [Rh(OAc)$_2$)$_2$, the reactions of 1b and 1d with 11 gave 12b and 12d as a single diastereomer, in 99% and 93% yields, respectively (Scheme 3). These results clearly indicate that the rearrangement of sulfur ylides generated by (2-furyl)carbenoid transfer proceeds via [2,3]sigmatropy as accepted for Doyle-Kirmse reaction.
In summary, the author has demonstrated catalytic carbene transfer reactions with allylic sulfides leading to ylide formation on the basis of the in situ generation of (2-furyl)carbenoids from conjugated ene-yne-ketones. The resulting sulfur ylides efficiently undergo [2,3]sigmatropic rearrangement to give furan-containing sulfides. Reaction cascade of [2,3]sigmatropy followed by intramolecular Diels-Alder reaction employing diallyl sulfide allows the one-pot synthesis of polycyclic heterocycles.

Experimental

General Procedures. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. NMR spectra were measured for solutions in CDCl$_3$ with Me$_4$Si as an internal standard or CD$_2$Cl$_2$ (1H and 13C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University.
Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon, and other solvents were dried by the usual methods and distilled before use.

Typical Procedure for Catalytic Carbene Transfer Reaction with 1.

To a solution of 1 (0.25 mmol) and sulfide (10 equiv) placed in the flame dried Schlenk flask and dissolved in dry and deoxygenated CH$_2$Cl$_2$ or ClCH$_2$CH$_2$Cl (1.0 mL) was added [Rh(OAc)$_2$]$_2$ (2.7 mg, 0.006 mmol) at room temperature. After the reaction was complete, the organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt (v/v = 20/1) as an eluent to afford the corresponding products 4, 7, 9, 10, and 12.

Sulfide 4b.

![Image of sulfide 4b]

A colorless oil (98% yield); IR (neat) 693, 749, 919, 1123, 1182, 1213, 1229, 1255, 1439, 1446, 1473, 1579, 1595, 1679 (C=O), 2855, 2931, 3073 cm$^{-1}$; 1H NMR (400 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.49–1.60 (m, 4H), 1.80–1.89 (m, 1H), 2.34–2.43 (m, 1H), 2.45–2.53 (m, 2H), 2.90 (d, J = 6.8 Hz, 2H), 4.78 (d, J = 17.2 Hz, 1H), 5.03 (d, J = 10.0 Hz, 1H), 5.94 (ddd, J = 6.8, 10.0, 17.2 Hz, 1H), 7.09 (s, 1H), 7.13 (d, J = 7.2 Hz, 2H), 7.22 (dd, J = 7.2, 7.2 Hz, 2H), 7.28–7.36 (m, 3H), 7.45 (dd, J = 7.2, 7.2 Hz, 1H), 7.58 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CD$_2$Cl$_2$, 25 °C) δ 19.5, 20.5, 22.3, 22.4, 37.9, 67.0, 116.8, 119.3, 122.5, 127.2, 127.5, 128.2, 130.5, 131.4, 132.0, 135.0, 135.4, 136.7, 143.3, 192.4. HRMS (FAB): calcd for C$_{25}$H$_{25}$O$_2$S (M+H$^+$), 389.1575; found, 389.1570.

Sulfide 4c.

![Image of sulfide 4c]

A colorless oil (94% yield); IR (neat) 693, 748, 917, 1180, 1350, 1440, 1715 (C=O), 2935 cm$^{-1}$; 1H NMR (300 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.58–1.65 (m, 4H), 2.04–2.08 (m, 1H), 2.16 (s, 3H), 2.43–2.50 (m, 3H), 2.74 (d, J = 6.9 Hz, 2H), 5.09 (d, J = 17.1 Hz, 1H), 5.13 (d, J = 9.6 Hz, 1H), 5.93 (ddd, J = 6.9, 9.6, 17.1 Hz, 1H), 7.08 (s, 1H), 7.15 (d, J = 7.8 Hz, 2H), 7.23 (dd, J = 7.8, 7.8 Hz, 2H),
7.33 (dd, J = 7.8, 7.8 Hz, 1H); 13C NMR (75 MHz, CD$_2$Cl$_2$, 25 °C) δ 20.3, 21.3, 22.7, 23.1, 26.3, 37.0, 68.1, 118.4, 120.7, 122.9, 128.5, 129.2, 130.5, 132.7, 136.5, 137.1, 143.4, 202.3.

HRMS (FAB): calcd for C$_{20}$H$_{22}$O$_2$S (M+H$^+$), 327.1419; found, 327.1418.

Sulfide 4d.

A colorless oil (83% yield); IR (neat) 692, 730, 953, 990, 1053, 1216, 1315, 1437, 1612, 1705 (C=O), 2941, 3431 cm$^{-1}$; 1H NMR (300 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.27–1.63 (m, 4H), 1.78 (td, J = 6.6, 16.2 Hz, 1H), 2.20 (td, J = 6.6, 16.2 Hz, 1H), 2.45–2.47 (m, 2H), 2.87 (m, 2H), 3.72 (s, 3H), 5.15 (d, J = 16.8 Hz, 1H), 5.16 (d, J = 10.2 Hz, 1H), 5.98 (tdd, J = 6.6, 10.2, 16.8 Hz, 1H), 7.04 (s, 1H), 7.12 (d, J = 7.2 Hz, 2H), 7.22 (dd, J = 7.2, 7.2 Hz, 2H), 7.34 (dd, J = 7.2, 7.2 Hz, 1H); 13C NMR (75 MHz, CD$_2$Cl$_2$, 25 °C) δ 20.6, 21.3, 23.0, 23.4, 39.7, 53.0, 62.9, 119.0, 120.7, 123.1, 128.6, 129.6, 131.1, 133.2, 136.1, 137.9, 144.4, 170.5. HRMS (FAB): calcd for C$_{20}$H$_{22}$O$_2$S (M$^+$), 342.1290; found, 342.1288.

Sulfide 5d.

A colorless oil (85% yield); IR (neat) 690, 739, 1024, 1255, 1438, 1478, 1741 (C=O), 2934 cm$^{-1}$; 1H NMR (270 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.52–1.68 (m, 4H), 2.30–2.47 (m, 4H), 2.49–2.73 (m, 2H), 3.57, 3.67 (t, J = 6.8 Hz, 1H), 4.90 (d, J = 10.0 Hz, 1H), 4.96 (d, J = 17.0 Hz, 1H), 5.62 (tdd, J = 6.8, 10.0, 17.0 Hz, 1H), 6.95 (d, J = 7.3 Hz, 2H), 7.04 (dd, J = 7.3, 7.3 Hz, 1H), 7.14 (dd, J = 7.3, 7.3 Hz, 2H); 13C NMR (67.5 MHz, CD$_2$Cl$_2$, 25 °C) δ 20.7, 21.6, 23.1, 23.3, 34.4, 44.4, 52.4, 117.1, 121.0, 125.9, 126.6, 126.7, 129.1, 132.2, 135.1, 137.5, 148.8, 171.3. HRMS (FAB): calcd for C$_{20}$H$_{22}$O$_3$S (M$^+$), 342.1290; found, 342.1292.

Sulfide 7a.

A yellow oil [purified by column chromatography on SiO$_2$ with hexane/AcOEt (v/v = 300/1), 60% yield]; IR (neat) 691, 763, 912, 1067, 1440, 1495, 1596, 2935, 3403 cm$^{-1}$; 1H NMR (270 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.66–1.73 (m, 4H), 1.99 (s, 3H), 2.48–2.50 (m, 2H), 2.60–2.85 (m, 4H),
3.87 (dd, $J = 6.8, 8.6$ Hz, 1H), 4.98 (d, $J = 10.3$ Hz, 1H), 5.07 (d, $J = 17.0$ Hz, 1H), 5.78 (tdd, $J = 6.8, 10.3, 17.0$ Hz, 1H), 7.16 (dd, $J = 7.6, 7.6$ Hz, 1H), 7.34 (dd, $J = 7.6, 7.6$ Hz, 2H), 7.56 (d, $J = 7.6$ Hz, 2H); 13C NMR (67.5 MHz, CD$_2$Cl$_2$, 25 °C) δ 14.2, 21.1, 23.2, 23.3, 23.8, 37.7, 42.5, 116.7, 119.4, 120.8, 124.2, 126.2, 128.7, 132.2, 135.8, 145.5, 146.6. HRMS (FAB): calcd for C$_{19}$H$_{22}$O$_2$S (M$^+$), 298.1391; found, 298.1389.

Sulfide 7b.

A colorless oil (77% yield); IR (neat) 695, 915, 1231, 1446, 1595, 1681 (C=O), 1769, 2937, 3071, 3470 cm$^{-1}$; 1H NMR (270 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.45–1.52 (m, 4H), 1.74 (s, 3H), 2.22–2.31 (m, 2H), 2.32–2.43 (m, 2H), 2.89 (d, $J = 6.6$ Hz, 2H), 4.84 (d, $J = 17.3$ Hz, 1H), 4.90 (d, $J = 10.0$ Hz, 1H), 5.64 (tdd, $J = 6.6, 10.0, 17.3$ Hz, 1H), 7.03 (s, 1H), 7.18 (dd, $J = 7.3, 7.3$ Hz, 2H), 7.33 (dd, $J = 7.3, 7.3$ Hz, 1H), 7.52 (d, $J = 7.3$ Hz, 2H); 13C NMR (67.5 MHz, CD$_2$Cl$_2$, 25 °C) δ 11.4, 20.6, 21.7, 23.3, 23.5, 37.9, 61.1, 118.0, 119.7, 123.7, 128.1, 129.3, 132.3, 133.0, 135.8, 136.3, 144.3, 194.1. HRMS (FAB): calcd for C$_{20}$H$_{23}$O$_2$S (M$^+$H$^+$), 327.1419; found, 327.1418.

Sulfide 7c.

A colorless oil (72% yield); IR (neat) 914, 1129, 1352, 1437, 1597, 1702 (C=O), 1769, 2937, 3380 cm$^{-1}$; 1H NMR (270 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.63–1.69 (m, 4H), 1.80 (s, 3H), 2.06 (s, 3H), 2.45–2.52 (m, 4H), 2.78 (d, $J = 7.0$ Hz, 2H), 5.04 (d, $J = 17.0$ Hz, 1H), 5.06 (d, $J = 10.0$ Hz, 1H), 5.68 (tdd, $J = 7.0, 10.0, 17.0$ Hz, 1H), 7.10 (s, 1H); 13C NMR (67.5 MHz, CD$_2$Cl$_2$, 25 °C) δ 11.4, 20.7, 22.1, 23.3, 23.7, 25.7, 36.2, 62.6, 117.7, 120.1, 123.3, 133.5, 136.6, 143.9, 201.1. HRMS (FAB): calcd for C$_{15}$H$_{21}$O$_2$S (M$^+$H$^+$), 265.1262; found, 265.1263.

Sulfide 7d.

A colorless oil (91% yield); IR (neat) 609, 755, 917, 1128, 1211, 1435, 1737 (C=O), 2930, 3450 cm$^{-1}$; 1H NMR (400 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.49–1.58 (m, 4H), 1.81 (s, 3H), 2.27–2.31 (m, 1H), 2.40–2.43
(m, 3H), 2.86 (d, \(J = 7.2 \) Hz, 2H), 3.65 (s, 3H), 4.97 (d, \(J = 10.0 \) Hz, 1H), 5.01 (d, \(J = 16.8 \) Hz, 1H), 5.69 (tdd, \(J = 7.2, 10.0, 16.8 \) Hz, 1H), 7.00 (s, 1H); \(^{13}\)C NMR (100 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 12.9, 20.6, 21.7, 23.2, 23.6, 39.9, 52.9, 57.4, 118.5, 119.4, 123.1, 133.2, 136.1, 144.6, 170.8 \). HRMS (FAB): calcd for C\(_{15}\)H\(_{20}\)O\(_3\)S (M\(^+\)), 280.1133; found, 280.1136.

Sulfide 9a.

A yellow oil [purified by column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 300/1), 43% yield]; IR (neat) 692, 762, 916, 989, 1070, 1438, 1492, 1600, 2360, 2925, 3077 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 1.66–1.75 \) (m, 4H), 2.47 (dd, \(J = 6.0, 6.0 \) Hz, 2H), 2.54–2.59 (m, 1H), 2.72–2.76 (m, 3H), 3.06 (dd, \(J = 6.0, 6.0 \) Hz, 2H), 3.93 (dd, \(J = 6.8, 9.2 \) Hz, 1H), 4.96–5.10 (m, 4H), 5.72–5.81 (m, 2H), 7.10 (dd, \(J = 7.6, 7.6 \) Hz, 1H), 7.28 (dd, \(J = 7.6, 7.6 \) Hz, 2H), 7.53 (d, \(J = 7.6 \) Hz, 2H); \(^{13}\)C NMR (100 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 21.2, 23.2, 23.3, 23.8, 34.4, 38.2, 40.6, 116.8, 119.5, 120.9, 124.3, 126.2, 128.6, 128.7, 132.3, 135.0, 135.7, 145.5, 146.7 \). HRMS (FAB): calcd for C\(_{21}\)H\(_{25}\)O\(_5\)S (M\(^+\)), 325.1626; found, 325.1629.

Sulfide 9b.

A colorless oil [purified by column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 30/1 to 20/1), 32% yield]; IR (neat) 696, 919, 1020, 1230, 1260, 1446, 1673 (C=O), 1769, 2934, 3075, 3435 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 1.31–1.67 \) (m, 4H), 2.29–2.48 (m, 4H), 2.97 (d, \(J = 6.9 \) Hz, 2H), 3.04 (d, \(J = 6.9 \) Hz, 2H), 4.88–5.13 (m, 4H), 5.62–5.83 (m, 2H), 7.14 (s, 1H), 7.29 (dd, \(J = 7.5, 7.5 \) Hz, 2H), 7.45 (dd, \(J = 7.5, 7.5 \) Hz, 1H), 7.60 (d, \(J = 7.5 \) Hz, 2H); \(^{13}\)C NMR (75 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 20.5, 21.7, 23.2, 23.4, 31.9, 39.2, 62.5, 117.8, 118.4, 120.1, 123.9, 128.3, 129.4, 132.5, 133.1, 133.9, 135.9, 136.4, 144.4, 194.8 \). HRMS (FAB): calcd for C\(_{22}\)H\(_{24}\)O\(_2\)S (M\(^+\)), 352.1497; found, 352.1495.
Sulfide 10b.

After the reaction of 1b at 80 °C was complete, 10b was obtained as a mixture of diastereoisomers (92% yield, d.r. = 79:21). These isomers could be separated by column chromatography on SiO2 with hexane/AcOEt (v/v = 20/1 to 4/1) as an eluent.

10b (major); a colorless oil; IR (neat) 646, 697, 767, 923, 1000, 1294, 1443, 1669 (C=O), 2359, 2932, 3507 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 1.30-1.49 (m, 2H), 1.58-1.69 (m, 2H), 1.71-2.12 (m, 5H), 2.21-2.28 (m, 1H), 2.68 (dd, \(J = 5.4, 10.8 \) Hz, 1H), 2.84-3.02 (m, 3H), 3.14 (dd, \(J = 9.5, 10.8 \) Hz, 1H), 4.28 (d, \(J = 17.0 \) Hz, 1H), 4.63 (s, 1H), 4.65 (d, \(J = 10.3 \) Hz, 1H), 5.47 (tdd, \(J = 7.6, 10.3, 17.0 \) Hz, 1H), 7.40 (dd, \(J = 7.5, 7.5 \) Hz, 2H), 7.50 (dd, \(J = 7.5, 7.5 \) Hz, 1H), 7.82 (d, \(J = 7.5 \) Hz, 2H); \(^1^3\)C NMR (75 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 22.5, 22.8, 23.2, 25.3, 36.2, 38.3, 38.9, 49.7, 64.1, 78.8, 103.7, 118.5, 128.2, 128.9, 131.5, 133.1, 138.6, 139.8, 143.4, 198.3. HRMS (FAB): calcd for C\(_{22}\)H\(_{25}\)O\(_2\)S (M+H\(^+\)), 353.1575; found, 353.1575.

10b (minor); a yellow oil; IR (neat) 639, 696, 921, 1003, 1230, 1445, 1597, 1667 (C=O), 2923, 3422 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 1.48-1.64 (m, 4H), 1.74-1.77 (m, 2H), 1.87-2.00 (m, 1H), 2.17-2.31 (m, 2H), 2.48-2.55 (m, 2H), 2.66-2.76 (m, 2H), 3.14 (dd, \(J = 8.4, 10.8 \) Hz, 1H), 3.45 (dd, \(J = 7.2, 13.2 \) Hz, 1H), 4.69 (d, \(J = 3.9 \) Hz, 1H), 5.03 (d, \(J = 17.1 \) Hz, 1H), 5.07 (d, \(J = 10.2 \) Hz, 1H), 5.76 (tdd, \(J = 6.9, 10.2, 17.1 \) Hz, 1H), 7.34 (dd, \(J = 7.2, 7.2 \) Hz, 2H), 7.43 (dd, \(J = 7.2, 7.2 \) Hz, 1H), 7.66 (d, \(J = 7.2 \) Hz, 2H); \(^1^3\)C NMR (75 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta 22.3, 22.9, 23.6, 24.4, 36.2, 37.7, 43.2, 49.6, 71.8, 80.8, 104.6, 119.3, 127.7, 128.6, 131.1, 133.8, 138.5, 140.1, 144.5, 201.7. HRMS (FAB): calcd for C\(_{22}\)H\(_{25}\)O\(_2\)S (M+H\(^+\)), 353.1575; found, 353.1573.

Sulfide 10c.

After the reaction of 1c at 80 °C was complete, 10c was obtained as a mixture of diastereoisomers (80% yield, d.r. = 67:33). These isomers could be separated by column chromatography on SiO\(_2\) with
hexane/AcOEt (v/v = 20/1 to 4/1) as an eluent.

10c (major); A yellow oil; IR (neat) 843, 920, 1185, 1360, 1440, 1675, 1690 (C=O), 2856, 2925, 3414 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta\) 1.33–1.48 (m, 2H), 1.62–1.70 (m, 2H), 1.73–1.78 (m, 2H), 1.81–1.88 (m, 2H), 1.93–1.98 (m, 1H), 2.15–2.28 (m, 1H), 2.32 (s, 3H), 2.64–2.72 (m, 2H), 2.78 (tdd, \(J = 5.4, 6.9, 9.3\) Hz, 1H), 2.93 (dd, \(J = 5.4, 14.4\) Hz, 1H), 3.11 (dd, \(J = 9.3, 10.2\) Hz, 1H), 4.71 (d, \(J = 4.5\) Hz, 1H), 5.00 (d, \(J = 10.2\) Hz, 1H), 5.12 (d, \(J = 17.1\) Hz, 1H), 5.87 (tdd, \(J = 7.2, 10.2, 17.1\) Hz, 1H); \(^13\)C NMR (75 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta\) 22.4, 22.8, 23.1, 25.1, 25.8, 35.8, 37.3, 39.1, 49.5, 65.8, 78.7, 102.4, 118.4, 134.3, 139.3, 143.8, 202.0. HRMS (FAB): calcd for C\(_{17}\)H\(_{22}\)O\(_2\)S (M\(^+\)), 290.1341; found, 290.1339.

10c (minor); A white solid; mp. 87.2–89.0 °C; IR (KBr) 649, 668, 678, 871, 924, 1071, 1123, 1450, 1535, 1635 (C=O), 2341, 2360, 2929, 3443 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta\) 1.41–1.62 (m, 4H), 1.71–1.76 (m, 3H), 1.86–1.90 (m, 1H), 2.11–2.16 (m, 1H), 2.23 (s, 3H), 2.42–2.55 (m, 3H), 2.70 (dd, \(J = 7.5, 10.8\) Hz, 1H), 3.16 (dd, \(J = 8.4, 10.8\) Hz, 1H), 3.29 (dd, \(J = 6.9, 13.5\) Hz, 1H), 4.66 (d, \(J = 3.6\) Hz, 1H), 5.09 (d, \(J = 10.5\) Hz, 1H), 5.13 (d, \(J = 17.1\) Hz, 1H), 5.75 (tdd, \(J = 6.9, 10.5, 17.1\) Hz, 1H); \(^13\)C NMR (75 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta\) 22.2, 22.8, 23.5, 24.4, 29.7, 35.6, 38.1, 41.7, 48.6, 72.0, 80.4, 104.0, 118.8, 134.0, 137.6, 145.4, 206.0. HRMS (FAB): calcd for C\(_{17}\)H\(_{22}\)O\(_2\)S (M\(^+\)), 290.1341; found, 290.1340.

Sulfide 10d.

After the reaction of 1d at reflux temperature of CH\(_2\)Cl\(_2\) was complete, 10d was obtained as a mixture of diastereoisomers (90% yield, d.r. = 73:27). These isomers could be separated by column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 10/1 to 4/1) as an eluent.

10d(major); A colorless oil; IR (neat) 698, 917, 976, 1003, 1130, 1219, 1436, 1731 (C=O), 2938, 3443 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CD\(_2\)Cl\(_2\), 25 °C) \(\delta\) 1.37–1.53 (m, 2H), 1.59–1.99 (m, 7H), 2.17–2.28 (m, 1H), 2.70–2.75 (m, 3H), 2.83–2.91 (m, 1H), 3.31 (dd, \(J = 9.6, 9.6\) Hz, 1H), 3.73 (s, 3H), 4.71 (d, \(J = 4.5\) Hz, 1H), 5.00 (d, \(J = 10.2\) Hz, 1H), 5.12 (d, \(J =\)
17.1 Hz, 1H), 5.87 (tdd, J = 6.3, 10.2, 17.1 Hz, 1H); 13C NMR (75 MHz, CD$_2$Cl$_2$, 25 °C) δ
22.3, 22.6, 22.9, 23.1, 36.6, 37.4, 38.7, 50.0, 52.3, 59.7, 79.4, 102.6, 118.2, 134.8, 138.3,
144.3, 173.2. HRMS (FAB): calcd for C$_{17}$H$_{22}$O$_3$S (M$^+$), 306.1290; found, 306.1290.

10d (minor); A yellow oil; IR (neat) 917, 992, 1126, 1267, 1433, 1731 (C=O), 2934, 3478 cm$^{-1}$; 1H NMR (300 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.43–1.77 (m, 7H), 2.03–2.16 (m,
1H), 2.18–2.29 (m, 1H), 2.37–2.48 (m, 1H), 2.52 (dd, J = 6.3, 13.2 Hz, 2H), 2.66 (dd, J = 6.3,
11.1 Hz, 1H), 3.15 (dd, J = 9.0, 11.1 Hz, 1H), 3.23 (dd, J = 7.5, 13.2 Hz, 1H), 3.65 (s, 3H),
4.65 (d, J = 4.2 Hz, 1H), 5.12 (d, J = 10.2 Hz, 1H), 5.15 (d, J = 17.1 Hz, 1H), 5.87 (tdd, J =
6.3, 10.2, 17.1 Hz, 1H); 13C NMR (75 MHz, CD$_2$Cl$_2$, 25 °C) δ 22.3, 22.7, 23.4, 34.7,
38.8, 41.9, 47.7, 52.7, 67.2, 80.0, 103.6, 118.8, 133.9, 138.1, 144.4, 171.1. HRMS (FAB):
calcd for C$_{17}$H$_{22}$O$_3$S (M$^+$), 306.1290; found, 306.1293.

Sulfide 12b.

A colorless oil [purified by column chromatography on SiO$_2$
with hexane/AcOEt (v/v = 30/1), 99% yield]; IR (neat) 700, 747,
918, 971, 1024, 1182, 1226, 1446, 1595, 1673 (C=O), 2853, 2934,
3052 cm$^{-1}$; 1H NMR (300 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.14–1.23 (m, 1H), 1.38–1.51 (m, 3H),
1.76–1.83 (m, 1H), 2.24–2.33 (m, 1H), 2.45–2.53 (m, 2H), 4.47 (d, J = 7.2 Hz, 1H), 4.80 (d, J
= 16.8 Hz, 1H), 4.92 (d, J = 10.2 Hz, 1H), 6.16 (ddd, J = 7.2, 10.2, 16.8 Hz, 1H), 6.97 (s, 1H),
7.16–7.38 (m, 13H), 7.72 (d, J = 7.5 Hz, 2H); 13C NMR (75 MHz, CD$_2$Cl$_2$, 25 °C) δ 19.3,
21.8, 22.1, 22.3, 55.1, 64.6, 115.5, 120.9, 122.3, 125.7, 126.5, 126.7, 128.4, 128.8,
130.1, 130.3, 130.8, 135.7, 135.9, 136.5, 138.8, 139.3, 142.7, 190.7. HRMS (FAB): calcd for
C$_{31}$H$_{29}$O$_2$S (M+H$^+$), 465.1888; found, 465.1887.

Sulfide 12d.

A colorless oil [purified by column chromatography on SiO$_2$
with hexane/AcOEt (v/v = 25/1), 93% yield]; IR (neat) 700, 753,
919, 1025, 1065, 1233, 1437, 1600, 1731 (C=O), 2926, 3076 cm$^{-1}$;
1H NMR (270 MHz, CD$_2$Cl$_2$, 25 °C) δ 1.19–1.38 (m, 2H), 1.40–1.49 (m, 2H), 1.56–1.67 (m,
1H), 1.86–1.94 (m, 1H), 2.38–2.42 (m, 2H), 3.36 (s, 3H), 4.35 (d, J = 8.9 Hz, 1H), 5.07 (d, J = 18.1 Hz, 1H), 5.09 (d, J = 10.0 Hz, 1H), 6.35 (ddd, J = 8.9, 10.0, 18.1 Hz, 1H), 6.90 (s, 1H), 7.07–7.23 (m, 10H); 13C NMR (75 MHz, CD2Cl2, 25 °C) δ 20.7, 22.7, 23.1, 23.6, 52.2, 57.9, 65.5, 118.0, 122.6, 123.2, 127.2, 127.8, 128.5, 129.2, 130.0, 132.1, 135.7, 136.5, 137.9, 139.8, 143.1, 169.1. HRMS (FAB): calcd for C26H27O3S (M+H+), 419.1681; found, 419.1676.

References and Notes

\begin{center}
\begin{tikzpicture}
 \node (4d) at (0,0) {\includegraphics[width=0.5\textwidth]{4d}};
 \node (5d) at (2,0) {\includegraphics[width=0.5\textwidth]{5d}};
 \draw[->] (4d) -- (5d) node[midway,above] {[3,5]};
\end{tikzpicture}
\end{center}

Chapter 8

Polyaddition and Polycondensation Reactions of (2-Furyl)carbenoid as Step-Growth Polymerization Strategies: Synthesis of Furylcyclopropane- and Furfurylidene-Containing Polymers

Abstract

As shown in Chapters 4, 6, and 7, (2-furyl)carbenoids generated \textit{in situ} from ene-yne-ketones are versatile and reactive intermediates for several catalytic carbene transfer reactions. In this chapter, the results of application of these carbene transfer reactions to polyaddition and polycondensation reactions of ene-yne-ketones are summarized. Ene-yne-ketones having suitable functionalities as carbene acceptors afford furylcyclopropane- and furfurylidene-containing polymers in good yields in the presence of [Rh(OAc)$_2$]$_2$ as catalyst. The key intermediate of these polymerizations is (2-furyl)carbene complex generated by a nucleophilic attack of a carbonyl oxygen to an internal alkyne carbon in π-alkyne complex or σ-vinyl cationic complex. The number-average molecular weight (M_n) of both polymers is measured in a range of 6000-7000. The fluorescence emission of furfurylidene-containing polymers indicates the extension of π-conjugation caused by elongation of furfurylidene units.
Introduction

Transition metal carbene complex-catalyzed polymerizations, such as ring-opening-metathesis polymerization (ROMP, Scheme 1a)\(^1\) and acyclic-diene-metathesis polymerization (ADMET, Scheme 1b),\(^2\) have generated great excitement in recent years as to their wide applicability to the synthesis of various alkene-containing polymers. These polymerizations are exemplified by the mechanistic feature of chain-growth and step-growth metathesis polymerizations, respectively, and both of which require the involvement of carbenoid species as a catalyst. In this chapter, the author demonstrated transition metal-catalyzed polyaddition (Scheme 2a) and polycondensation (Scheme 2b) as a new step-growth polymerization strategy without involving metathesis catalysts, in which the intermediate is, instead, a metal carbenoid generated from a carbenoid trigger embeded in monomers. This method using a new class of monomers having both carbenoid donor and acceptor provides new alternating copolymers containing cyclopropanes or alkenes. The author has already reported the formation of (2-furyl)carbenoid 2 from ene-yne-ketone 1a with group 6 transition metal complexes (Chapter 3),\(^3\) and their application to catalytic cyclopropanation of various alkenes.
leading to (2-furyl)cyclopropanes (Scheme 3, Chapter 4). His continuous study mainly focusing on the catalytic reactions involving (2-furyl)carbenoids led him to find new carbene transfer polymerizations of ene-yne-ketones having suitable functionalities as carbenoid acceptors.

Results and Discussion

At the outset of the studies, the author examined the synthesis of furylcyclopropane-containing polymer using catalytic cyclopropanation reaction. When ene-yne-ketone 1b having a vinyl group at ortho position of a phenyl ring was treated in CH$_2$Cl$_2$ in the presence of a catalytic amount of [Rh(OAc)$_2$]$_2$ at room temperature, the reaction was immediately complete to afford (2-furyl)cyclopropane-containing polymer 3b quantitatively as a yellow powder (85% yield after purification with gel permeation chromatography (GPC) in CHCl$_3$ eluent) (Scheme 4). Meta- and para-substituted ene-yne-ketones 1c and 1d also reacted to give the corresponding polymers 3c and 3d in 78% and 92% yield, respectively. The molecular weight measurements of polymers 3b-d were performed by GPC in CHCl$_3$ eluent using a calibration curve of polystyrene standards (Table 1). The number-average molecular weight (M_n) of 3b-d was in a range of 6300-6900, which corresponds to a degree of polymerization of 27-29 with M_w/M_n of 1.1. The molecular weights (M_n and M_w) of 3d obtained without any purification were diminished to 6100 and 6800, respectively, due to contamination of low-molecular weight oligomers. Optical properties of model compound
Scheme 4

1b (o-vinyl) 1c (m-vinyl) 1d (p-vinyl)

Table 1. Properties of 3a and polymers 3b-3d

<table>
<thead>
<tr>
<th></th>
<th>3a</th>
<th>yield</th>
<th>M_n</th>
<th>M_w</th>
<th>M_w/M_n</th>
<th>UV λ_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>3a</td>
<td>85%</td>
<td>6400</td>
<td>6800</td>
<td>1.1</td>
<td>316 nm</td>
</tr>
<tr>
<td>1b</td>
<td>3b</td>
<td>78%</td>
<td>6300</td>
<td>6800</td>
<td>1.1</td>
<td>323 nm</td>
</tr>
<tr>
<td>1c</td>
<td>3c</td>
<td>92%</td>
<td>6900</td>
<td>7600</td>
<td>1.1</td>
<td>327 nm</td>
</tr>
</tbody>
</table>

a Reaction conditions: a mixture of 1 (0.20 mmol) and [Rh(OAc)2]2 (0.0050 mmol) in CH2Cl2 (2 mL) were stirred at room temperature under N2 for 1 min. b Isolated yield after purification with GPC (CHCl3). c Determined by GPC (CHCl3) with polystyrene standard. d Absorption spectra were recorded in dilute CHCl3 solutions at room temperature.

3a and polymers 3b-d are also listed in Table 1. The UV-vis spectra of 3a-d in a dilute CHCl3 solution at room temperature exhibited absorption maxima near 320 nm. Although there is no obvious difference in absorption maxima between model compound 3a and polymers 3b-d, unique structures of alternating copolymers having regularly embedded cyclopropane units would attract a great deal of interest in polymer chemistry.

Since the extension of π-conjugation was anticipated by introducing a C=C bond instead of a cyclopropane ring in 3b-d, the author next investigated the synthesis of furfurylidene-containing polymer 4 by using a carbene transfer reaction (Scheme 2b). Prior to examine polycondensation reactions, the synthesis of furfurylidene-containing compound 4a was attempted as a model compound. When the reaction of 1a with 1.2 equiv of benzaldehyde and 1.2 equiv of triphenylphosphine was carried out in CICH2CH2Cl in the presence of 2.5 mol% of [Rh(OAc)2]2 at 70 °C for 1 h, 2-benzylidenefurran 4a was obtained in 77% yield (cis:trans = 10:90) (Scheme 5). In the absence of triphenylphosphine, 4a was not obtained at all. Therefore, the formation of 4a can be rationalized by intervention of (2-
furyl)phosphorus ylide 5 generated from (2-furyl)carbenoid 2 and triphenylphosphine followed by Wittig-type condensation of the ylide with benzaldehyde. Thus, he extended this condensation protocol to polymer synthesis. The polycondensation reaction of ene-yne-ketones, 1e and 1f, as monomers having a formyl functionality on phenyl ring afforded the corresponding polymers 4e and 4f in 51% and 58% yields, respectively. The number-average molecular weights (M_n) of 4e and 4f are 6000 and 6200, which corresponded to a degree of polymerization of 27 and 28, respectively. Optical properties of model compound

![Scheme 5](image)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>M_n</th>
<th>M_w</th>
<th>M_w/M_n</th>
<th>λ_{max}^{UV}</th>
<th>λ_{max}^{PL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>4a</td>
<td>77%</td>
<td>372 nm</td>
<td>433 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e</td>
<td>4e</td>
<td>51%</td>
<td>6000</td>
<td>6500</td>
<td>1.1</td>
<td>380 nm</td>
<td>461 nm</td>
</tr>
<tr>
<td>1f</td>
<td>4f</td>
<td>58%</td>
<td>6200</td>
<td>6900</td>
<td>1.1</td>
<td>457 nm</td>
<td>559 nm</td>
</tr>
</tbody>
</table>

* Table 2. Properties of 4a and polymers 4e and 4f

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>M_n</th>
<th>M_w</th>
<th>M_w/M_n</th>
<th>λ_{max}^{UV}</th>
<th>λ_{max}^{PL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>4a</td>
<td>77%</td>
<td>372 nm</td>
<td>433 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e</td>
<td>4e</td>
<td>51%</td>
<td>6000</td>
<td>6500</td>
<td>1.1</td>
<td>380 nm</td>
<td>461 nm</td>
</tr>
<tr>
<td>1f</td>
<td>4f</td>
<td>58%</td>
<td>6200</td>
<td>6900</td>
<td>1.1</td>
<td>457 nm</td>
<td>559 nm</td>
</tr>
</tbody>
</table>

a Reaction conditions: a mixture of 1 (0.20 mmol), triphenylphosphine (0.48 mmol) and [Rh(OAc)$_2$]$_2$ (0.0050 mmol) in CICH$_2$CH$_2$Cl (2 mL) were stirred at 70 °C under N$_2$ for 1 h.

b Isolated yield after purification with GPC (CHCl$_3$).

c Determined by GPC (CHCl$_3$) with polystyrene standard.

d Absorption and emission spectra were recorded in dilute CHCl$_3$ solutions at room temperature.

e Solutions (2.0 x 10$^{-4}$ M) were excited at 380 nm (4a and 4e) or 440 nm (4f).
4a and polymers 4e and 4f are summarized in Table 2. The UV-vis spectra of model compound 4a and polymer 4e exhibited absorption maxima at near 380 nm, while the spectra of 4f ($\lambda_{\text{max}} = 457$ nm) showed a red shift of 85 nm relative to 4a ($\lambda_{\text{max}} = 372$ nm) under the identical condition. This result indicates the effective extension of π-conjugation caused by elongation of 5-aryl-2-furfurylidene units in 4f. The fluorescence emission spectra of the solutions of 4a, 4e, and 4f in CHCl$_3$ (2.0 x 10$^{-4}$ M) at room temperature were also measured on excitation at 380 nm (4a and 4e) or 440 nm (4f). The emission peaks were observed at 433 nm, 461 nm, and 559 nm, respectively. In the case of polymer 4f, the dependence of the spectra on its concentration was also observed (Figure 1). These findings suggest that the emission peak at 559 nm in concentrated solution may be the result of intermolecular excimer formation. On the other hand, the formation of excimer in the solid film resulted in a decrease of luminescence yield, the weak emission λ_{max} of 4f being observed at 618 nm.

In conclusion, the author has developed the polymerization of ene-yne-ketones to give furylcyclopropane-containing polymer 3 and furfurylidene-containing polymer 4 using (2-furyl)carbene Rh-complexes generated in situ. The present new methodology may find a wide applicability to polymer synthesis and some applications in other polymerization.

![Fluorescence spectra](image.png)

Figure 1. Comparison of fluorescence spectra of 4a, 4e, and 4f in CHCl$_3$ solution (2.0 x 10$^{-4}$ M). Solutions were excited at 380 nm (4a and 4e) or 440 nm (4f).
Experimental

General Procedure. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl$_3$ with Me$_4$Si as an internal standard (1H and 13C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. UV-visible spectra were recorded on SHIMADZU MultiSpec-1500 spectrometer. Fluorescence emission spectra were recorded on a Perkin-Elmer LS50B luminescence spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University.
Synthesis of Substrates.

Substrates were prepared as shown in Scheme 6. Substrate 1a and amide 5 were prepared by our reported procedure.3,4

Scheme 6

![Scheme 6](image)

Typical Procedure for Synthesis of Ene-Yne-Carbonyl Compounds 1b-Id.

Ene-yne-carbonyl compound 1b.

To a suspension of Mg (99 mg, 4.0 mmol) in THF (5 mL) was dropwise added o-bromostyrene (0.73 g, 4.0 mmol) at 0 °C under N₂. The suspension was stirred for 1 h at room temperature, and the resulting mixture was slowly added to a solution of 5 (0.54 g, 2.0 mmol) in THF (15 mL) at -78 °C. After stirring for 48 h at room temperature, the mixture was washed with saturated aqueous NH₄Cl solution (20 mL x 2), and the aqueous phase was extracted with Et₂O (20 mL x 2). The combined organic phase was dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 30/1) as an eluent to afford crude ene-yne-ketone (62 mg, 0.20 mmol) as a yellow oil.

The crude product was dissolved in MeOH (2 mL) and to this solution was added K₂CO₃ (69 mg, 0.50 mmol) at room temperature. After stirring for 30 min, the suspension was poured into Et₂O/H₂O (20 mL/20 mL), and the aqueous phase was extracted with Et₂O (10 mL x 2). The combined organic phase was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 30/1) as an eluent to afford crude ene-yne-ketone 1b (43 mg, 0.18 mmol, 9% yield) as a yellow oil; IR (neat) 636, 670, 726, 766, 917, 1245, 1292, 1596,
1650 (C=O), 2090 (C=C), 2859, 2933, 3290 (≡C-H) cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 25 °C) δ 1.66-1.74 (m, 4H), 2.28-2.36 (m, 2H), 2.38-2.46 (m, 2H), 2.86 (s, 1H), 5.30 (d, J = 11.1 Hz, 1H), 5.64 (d, J = 17.6 Hz, 1H), 7.03 (dd, J = 11.1, 17.6 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.38-7.47 (m, 2H), 7.53 (d, J = 7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃, 25 °C) δ 21.6, 21.8, 26.8, 31.5, 82.0, 84.3, 116.1, 125.4, 126.3, 127.1, 129.2, 130.9, 135.1, 137.7, 138.2, 145.8, 199.5. HRMS (FAB): calcd for C₁₇H₁₇O (M+H⁺), 237.1279; found, 237.1275.

Ene-yne-carbonyl compound 1c.

A yellow solid (46% yield for 2 steps); mp. 40.5-42.5 °C;

¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.70-1.82 (m, 4H), 2.35-2.37 (m, 4H), 2.85 (s, 1H), 5.33 (d, J = 11.2 Hz, 1H), 5.82 (d, J = 17.6 Hz, 1H), 6.76 (dd, J = 11.2, 17.6 Hz, 1H), 7.41 (d, J = 7.6, 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 7.6, 1H), 7.93 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 21.5, 21.9, 27.4, 29.9, 82.3, 82.3, 115.1, 119.9, 127.0, 128.6, 129.1, 130.6, 135.4, 136.2, 137.9, 145.7, 198.7. HRMS (FAB): calcd for C₁₇H₁₇O (M+H⁺), 237.1279; found, 237.1281.

Ene-yne-carbonyl compound 1d.

A yellow solid (38% yield for 2 steps); mp. 40.0-41.2 °C;

¹H NMR (270 MHz, CDCl₃, 25 °C) δ 1.73-1.78 (m, 4H), 2.33-2.36 (m, 4H), 2.84 (s, 1H), 5.40 (d, J = 11.3 Hz, 1H), 5.88 (d, J = 17.3 Hz, 1H), 6.76 (dd, J = 11.3, 17.3 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.87 (d, J = 8.5 Hz, 2H); ¹³C NMR (68 MHz, CDCl₃, 25 °C) δ 21.5, 21.9, 27.4, 29.8, 82.2, 82.4, 116.6, 119.5, 126.2, 129.9, 135.0, 136.0, 142.1, 145.8, 198.2. Anal. Calcd for C₁₇H₁₆O: C, 86.40; H, 6.82. Found: C, 86.17; H, 6.80.
Typical Procedure for Synthesis of Ene-Yne-Carbonyl Compounds 1e and 1f.

Ene-yne-carbonyl compound 1e.

To a suspension of Mg (0.24 g, 10 mmol) in THF (20 mL) was dropwise added m-bromobenzaldehyde dimethylacetal (1.3 g, 10 mmol) at 0 °C under N₂. The suspension was stirred for 1 h at room temperature, and the resulting mixture was slowly added to a solution of 5 (1.3 g, 5.0 mmol) in THF (1 mL) at -78 °C. After stirring for 2 h at room temperature, the mixture was washed with saturated aqueous NH₄Cl solution (25 mL x 2), and the aqueous phase was extracted with Et₂O (20 mL x 2). The combined organic phase was dried over MgSO⁴. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 10/1) as an eluent to afford crude ene-yne-ketone (0.32 g, 0.89 mmol) as a yellow oil.

The crude product was dissolved in CH₂Cl₂/acetone (not dried, 20 mL/15 mL), and to this solution was added Montmorillonite K-10 (0.50 g, purchased from Aldrich) at room temperature. After stirring for 30 min, the suspension was filtered, and the solvents were removed under reduced pressure. The residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 10/1) as an eluent to afford crude ene-yne-ketone (0.28 g, 0.89 mmol) as a yellow oil.

The crude product was dissolved in DMSO (5 mL) and to this solution was added KF (0.40 g, 6.9 mmol) at room temperature. After stirring for 10 min, the suspension was poured into Et₂O/H₂O (20 mL/20 mL), and the aqueous phase was extracted with Et₂O (10 mL x 2). The combined organic phase was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 10/1) as an eluent to afford crude ene-yne-ketone 1e (0.15 g, 0.65 mmol, 13% yield) as an orange oil; IR (KBr) 648, 677, 696, 737, 795, 810, 954, 1107, 1154, 1199, 1261, 1281, 1296, 1355, 1382, 1434, 1599, 1667 (C=O), 1702 (C=O), 2094 (C=C), 2081, 2936, 3270 (≡C-H) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.75-1.82 (m, 4H),
2.32-2.44 (m, 4H), 2.84 (s, 1H), 7.65 (dd, J = 7.6, 7.6 Hz, 1H), 8.09 (d, J = 7.6 Hz, 1H), 8.16 (d, J = 7.6, 1H), 8.35 (s, 1H), 10.10 (s, 1H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 21.4, 21.8, 27.1, 30.1, 82.2, 83.5, 121.7, 129.3, 130.9, 133.1, 134.9, 136.5, 137.2, 144.7, 191.3, 197.6. HRMS (FAB): calcd for C$_{16}$H$_{15}$O$_2$ (M+H$^+$), 239.1072; found, 239.1070.

Ene-yne-carbonyl compound 1f.

A red solid (52% yield for 2 steps); mp. 47.5-49.0 °C; IR (KBr) 751, 796, 847, 1206, 1253, 1278, 1301, 1654 (C=O), 1697 (C=O), 2096 (C=O), 2915, 2937, 3257 (C=H) cm$^{-1}$; 1H NMR (270 MHz, CDCl$_3$, 25 °C) δ 1.72-1.84 (m, 4H), 2.30-2.46 (m, 4H), 2.84 (s, 1H), 7.95 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 10.10 (s, 1H); 13C NMR (68 MHz, CDCl$_3$, 25 °C) δ 21.5, 21.8, 27.1, 30.2, 82.2, 83.7, 122.0, 129.6, 129.8, 138.8, 141.0, 144.8, 191.5, 197.9. Anal. Calcd for C$_{16}$H$_{14}$O$_2$: C, 80.65; H, 5.92. Found: C, 80.37; H, 6.13.

Typical Procedure for Rhodium-Catalyzed Polymerization Using Sequential Cyclopropanation.

To a solution of ene-yne-carbonyl compound 1 (0.20 mmol) in CH$_2$Cl$_2$ (2 mL) was added [Rh(OAc)$_2$]$_2$ (2.2 mg, 0.0050 mmol) at room temperature under N$_2$. After stirring for 1 min, the rhodium catalyst was removed by centrifugal separator. The solvent was removed under reduced pressure to afford cyclopropane-containing polymer 3 as a yellow powder. Model compound 3a was prepared by our reported method.4

Polymer 3b.

A yellow powder (85% yield); IR (KBr) 759, 848, 907, 1246, 1445, 1600, 1669, 1725, 2856, 2929, 3060 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.12-1.86 (br m, 6H), 1.86-2.89 (br m, 6H), 6.57-7.85 (br m, 4H) [the following peaks are not attributed to polymer unit, and therefore they would indicate that there are terminal or internal alkene parts in this polymer 3b, the values of protons being relative ratios compared
with unit protons; δ 4.94-5.39 (m, 0.2H), 5.39-5.75 (br m, 0.2H), 6.28-6.57 (m, 0.2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 11.0, 14.1, 20.3-20.7 (br), 22.0-23.0 (br), 28.9, 29.7, 30.4, 34.1, 38.7, 68.1, 113.7, 119.2-119.4 (br), 120.7, 125.1-130.9 (br), 132.4, 135.4, 136.2, 137.2, 137.3, 145.4-145.5 (br), 167.8. UV/vis (CHCl$_3$): λ_{max} (e), 317 (3845).

Polymer 3c.

A yellow powder (78% yield); IR (KBr) 697, 797, 907, 1029, 1082, 1257, 1277, 1445, 1602, 1668, 2856, 2930 cm$^{-1}$;

1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 0.98-1.86 (br m, 6H), 1.86-2.97 (br m, 6H), 6.85-7.87 (br m, 6H) [the following peaks are not attributed to polymer unit, and therefore they would indicate that there are terminal or internal alkene parts in this polymer 3c, the values of protons being relative ratios compared with unit protons; δ 5.10-5.40 (br m, 0.3H), 5.56-5.96 (br m, 0.3H), 6.60-6.85 (br m, 0.3H)]; 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 10.8-10.9 (br), 14.0, 16.6, 20.7, 22.3-23.5 (br), 25.8, 29.7, 29.8, 30.0, 30.9, 34.1, 36.2, 44.6, 113.6-111.7, 119.3, 121.4-121.9 (br), 123.4, 123.7-123.8 (br), 124.2, 144.6, 145.3, 155.1. UV/vis (CHCl$_3$): λ_{max} (e), 323 (2490).

Polymer 3d.

A yellow powder (92% yield); IR (KBr) 697, 797, 907, 1029, 1082, 1257, 1277, 1445, 1602, 1668, 2856, 2930 cm$^{-1}$;

1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.06-1.92 (br m, 6H), 1.93-3.07 (br m, 6H), 6.81-8.76 (br m, 6H) [the following peaks are not attributed to polymer unit, and therefore they would indicate that there are terminal or internal alkene parts in this polymer 3d, the values of protons being relative ratios compared with unit protons; δ 5.07-5.54 (m, 0.2H), 5.54-6.06 (m, 0.2H), 6.50-6.80 (m, 0.2H)]; 13C NMR (68 MHz, CDCl$_3$, 25 °C) δ 10.9, 14.0, 20.7, 22.3-23.7 (br), 112.7, 118.2-
Rhodium-Catalyzed Carbene Transfer Reaction to Phosphine Atom and Sequential Wittig-Type Condensation of Resulting Phosphorus Ylide.

Model compound 4a.

To a solution of ene-yne-ketone 1a (42 mg, 0.20 mmol), benzaldehyde (24 µL, 0.24 mmol), and triphenylphosphine (68 mg, 0.24 mmol) in 1,2-dichloroethane (2 mL) was added [Rh(OAc)₂]₂ (2.2 mg, 0.0050 mmol) at room temperature under N₂. After stirring at 70 °C for 1 h, the solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 60/1) as an eluent to afford 4a (46 mg, 0.15 mmol, 77% yield determined by ¹H NMR) as a yellow oil. After recrystallization of 4a, trans-4a was obtained as a yellow solid; trans isomer: mp. 60.5-63.5 °C; IR (KBr) 542, 694, 723, 752, 763, 1028, 1071, 1120, 1176, 1258, 1438, 1448, 1491, 1597, 1665, 2858, 2932 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.80 (m, 4H), 2.60-2.72 (m, 2H), 2.76-2.84 (m, 2H), 6.89 (d, J = 16.2 Hz, 1H), 7.02 (d, J = 16.2 Hz, 1H), 7.32-7.51 (m, 8H), 7.70 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25°C) δ 21.1, 22.7, 23.0, 23.3, 115.0, 120.7, 123.4, 124.4, 125.0, 126.0, 126.2, 127.0, 128.5, 128.6, 131.3, 137.6, 146.1, 146.2. UV/vis CHCl₃: λ max (e), 372 (6867). HRMS (FAB): calcd for C₂₂H₂O (a mixture of cis and trans isomers) (M⁺), 300.1514; found, 300.1502.

Typical Procedure for Rhodium-Catalyzed Polymerization Using Wittig-Type Condensation of Phosphorus Ylide.

To a solution of ene-yne-carbonyl compound 1 (0.20 mmol) and triphenylphosphine (0.13 g, 0.50 mmol) in 1,2-dichloroethane (2 mL) was added [Rh(OAc)₂]₂ (2.2 mg, 0.0050 mmol) at room temperature under N₂. After stirring at 70 °C for 1 h, the solvent was
removed under reduced pressure to give crude polymer 4 containing phosphine compounds, which could be removed by GPC system with CHCl₃ as an eluent.

Polymer 4e.

An orange powder (51% yield); IR (KBr) 687, 698, 788, 795, 949, 1030, 1084, 1164, 1188, 1384, 1437, 1598, 1630, 1680, 2855, 2929, 3446 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.31-2.00 (br m, 4H), 2.20-2.97 (br m, 4H), 6.81-7.24 (br m, 1H), 7.20-8.25 (br m, 5H) [δ 10.00 (br s, 0.3H)]; ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 14.0, 21.0, 21.1, 22.3-23.2 (br), 29.7, 34.1, 115.1, 121.0-137.9 (br), 144.9-147.0 (br), 192.3. UV/vis (CHCl₃): λ_max (ε), 380 (17665).

Polymer 4f.

A red powder (58% yield); IR (KBr) 1083, 1438, 1598, 2857, 2928, 3427 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.37-2.14 (br m, 4H), 2.23-3.08 (br m, 4H), 6.69-7.18 (m, 1H), 7.11-8.20 (br m, 5H) [δ 9.95 (br s, 0.3H)]; ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.1-21.2 (br), 22.3-22.5 (br), 23.0-23.2 (br), 123.5-125.5 (br), 126.0-126.5 (br), 128.1, 128.2, 128.4, 128.6, 130.1-130.3 (br), 132.0-132.2 (br), 133.8, 134.0, 134.7, 135.1, 137.0, 191.6. UV/vis (CHCl₃): λ_max (ε), 457 (16672).

Acknowledgment

The author thanks Professor Yoshiki Chujo, Dr. Kensuke Naka, and Mr. Tomokazu Umeyama for their helpful discussion and assistance with GPC and fluorescence spectroscopy as well as helpful discussion.
References and Notes

(5) Phosphine-mediated generation of (2-furyl)phosphorus ylides followed by sequential Wittig-type condensation with aldehydes has already been reported. Kuroda, H.; Hanaki, E.; Kawakami, M. Tetrahedron Lett. 1999, 40, 3753. However, the reaction shown in Scheme 5 did not proceed smoothly to give 4a in the absence of [Rh(OAc)2]2 (<20% even after 24 h).

Part III

Transition Metal-Catalyzed Carbene Transfer Reactions Using Propargylic Carboxylates as Precursors of Vinylcarbenoids
Chapter 9

Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Carboxylates as Precursors of Vinylcarbenoids

Abstract

Intermolecular cyclopropanation reactions of various alkenes with propargylic carboxylates are catalyzed by [RuCl₂(CO)₃]₂ to give vinylcyclopropanes in good yields. The key intermediate of the reaction is a vinylcarbene complex generated in situ by nucleophilic attack of a carbonyl oxygen of the carboxylates to an internal carbon of alkyne activated by the ruthenium complex. A variety of transition metal compounds other than the Ru compound can also be employed in this system. Similar cyclopropanation proceeds with conjugated dienes as well to give trans-vic-divinylcyclopropane derivatives and cycloheptadiene derivatives, the latter being thermally derived from the initially formed cis-vic-isomers via Cope-type rearrangement. The present reaction is chemically equivalent to transition metal-catalyzed cyclopropanation reaction using α-diazoketones as carbenoid precursors.
Introduction

The *in situ* generation of carbenoid species involving transition metal compounds is well-known and the species has been applied mostly to cyclopropanation and insertion reactions. One of the most versatile methods to generate carbenoids is a decomposition reaction of diazoalkanes by transition metal complexes. This method is quite useful but formidable because of its explosive hazard and a number of unfavorable side reactions such as diazo dimerization and azine formation. To avoid such problems, safe alternatives for diazoalkane handling or special techniques involving slow addition of them are usually required. Recently, much attention has been paid to the activation of alkynes with transition metal complexes as another method to generate carbenoid species. For example, cyclopropylcarbenoids by skeletal reorganization of α,ω-enynes, dialkylidene ruthenium species from α-diyne, transition metal-containing carbonyl ylides from α-ethynylphenylcarbonyl compounds, and copper-(isoindazolyl)carbene intermediates from (2-ethynylphenyl)triazenes are recognized as new alternatives of carbenoid species in catalytic process. Most recently, the author has reported the synthesis of (2-furyl)carbene complexes from ene-yne-ketones with group 6 transition metal complexes and their application to catalytic cyclopropanation of alkenes (Scheme 1a). A wide range of transition metal compounds, such as Cr(CO)$_5$(THF), [Rh(OAc)$_2$], [(p-cymene)RuCl$_2$],

![Scheme 1](image-url)
[RhCl(cod)]_2, [RuCl_2(CO)_3]_2, PdCl_2 and PtCl_2 were found to be effective catalysts for the cyclopropanation. The key of the reaction is 5-exo-dig cyclization via nucleophilic attack of a carbonyl oxygen to an internal carbon of alkynes activated by transition metal compounds leading to a stable furan structure as a resonance form. This success stimulated him to develop a new method for the preparation of vinylcarbenoid intermediate A from propargylic carboxylates, in which the nucleophilic attack of a carbonyl oxygen followed by bond cleavage at propargylic position has been envisioned (Scheme 1b). Although this concept was invalid in most cases due to facile isomerization of propargylic carboxylates into allenyl carboxylates catalyzed by transition metal compounds, Rautenstrauch first demonstrated the validity of the protocol for a vinylcarbenoid intermediate in palladium-catalyzed inter- and intramolecular carbene transfer reactions using propargylic acetate. Most recently, it was shown that intermediary vinylcarbenoids were effectively trapped by an alkenyl moiety in the molecule to give carbocyclic compounds in PtCl_2-catalyzed cyclization of dienynes. His continuous investigation for vinylcarbene transfer reactions led him to find an efficient ruthenium-catalyzed intermolecular cyclopropanation of alkenes using propargylic carboxylates (Scheme 2). In this chapter, the author described the scope and limitations of the cyclopropanation reaction involving vinylcarbenoids generated in situ from propargylic carboxylates and [RuCl_2(CO)_3]_2. The reaction has also been applied to conjugated dienes to construct cycloheptadiene structures, representing a formal [3+4] cyclization using the carboxylates as three-carbons components.
Results and Discussion

1. Effect of Catalyst

At first, the cyclopropanation of styrene with 2-methyl-3-butyn-2-yl acetate (1a) in the presence of a transition metal catalyst (2.5-5 mol%), which had been effective for catalytic cyclopropanation via (2-furyl)carbene complexes, was examined. Results of catalyst-screening are given in Table 1. The reaction of 1a with styrene in the presence of a catalytic amount of [RuCl₂(CO)₃]₂ (2.5 mol%) in toluene at 60 °C for 18 h afforded the cyclopropanated product 2a in 86% yield (cis:trans = 84:16), along with 5% of allenyl acetate 3, the isomerization product of 1a (entry 1). The use of 5 mol% Ru catalyst completely suppressed the formation of 3 (entry 2), and the desired cyclopropane 2a was produced in

<table>
<thead>
<tr>
<th>entry</th>
<th>[M]</th>
<th>time</th>
<th>2a (%)b</th>
<th>cis:transb</th>
<th>allene (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[RuCl₂(CO)₃]₂</td>
<td>18 h</td>
<td>86</td>
<td>80:20</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>[RuCl₂(CO)₃]₂c</td>
<td>15 h</td>
<td>90</td>
<td>86:14</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>[Rh(OCOCF₃)₂]₂</td>
<td>30 min</td>
<td>trace</td>
<td>–</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>IrCl₃</td>
<td>24 h</td>
<td>45</td>
<td>72:28</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>IrCl(cod)₂</td>
<td>18 h</td>
<td>37</td>
<td>70:30</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>AuCl₃d</td>
<td>10 min</td>
<td>63</td>
<td>79:21</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>PtCl₂</td>
<td>1 h</td>
<td>93</td>
<td>78:22</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>GaCl₃e</td>
<td>28 h</td>
<td>26</td>
<td>65:35</td>
<td>0</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1a (0.2 mmol), styrene (1.0 mmol), catalyst (0.005 mmol), toluene (1.0 mL), 60 °C.
b Determined by GLC.
c 0.01 mmol.
d AuCl₃ (0.002 mmol) was used at room temperature.
e 1 M solution in methylcyclohexane.
90% yield (cis:trans = 86:14). In contrast, [Rh(OCOCF\textsubscript{3})\textsubscript{2}]\textsubscript{2}, which is known as a good catalyst for carbene transfer reaction, could not catalyze the present cyclopropanation, but it gave only allene 3 quantitatively (entry 3). IrCl\textsubscript{3}, [IrCl(cod)]\textsubscript{2}, and AuCl\textsubscript{3} were also found to catalyze the cyclopropanation to give 2a in 45%, 37% and 63% yields with 72:28, 70:30, and 79:21 diastereomeric ratios, respectively, along with 3 as a byproduct (entries 4, 5 and 6). Particularly, AuCl\textsubscript{3} showed a highest activity for both of cyclopropanation and allene formation, but it was difficult to control the product selectivity (entry 6). PtCl\textsubscript{2}, which can act as a good catalyst for intramolecular cyclopropanation (vide supra),12 catalyzed the present reaction effectively, along with allene formation to some extent (entry 7). GaCl\textsubscript{3} was marginally effective in the cyclopropanation to give 2a in 26% yield with other unidentified products (entry 8). Among other catalysts examined, Cr(CO)\textsubscript{5}(THF), RuCl\textsubscript{3}, RuCl\textsubscript{3}·3H\textsubscript{2}O, [(p-cymene)RuCl\textsubscript{2}]\textsubscript{2}, PdCl\textsubscript{2} and PdCl\textsubscript{2}(CH\textsubscript{3}CN)\textsubscript{2}11,14 were not effective for the present cyclopropanation.

2. Optimization of Reaction Conditions

Since the cyclopropanation of styrene using propargylic acetate as a vinylcarbenoid precursor was revealed to be efficiently carried out with [RuCl\textsubscript{2}(CO)\textsubscript{3}]\textsubscript{2} as a catalyst, the effects of other parameters such as solvent and reaction temperature on this catalytic reaction were investigated. Ruthenium-catalyzed cyclopropanation in 1,2-dichloroethane (DCE) occurred more efficiently than in toluene, producing 2a in 95% yield with 79:21 diastereomeric ratio (Table 2, entry 1 vs entry 2).15 The desired cyclopropanation occurred in cyclohexane as well to give 2a in 64% yield, but the prolonged time (42 h) was required (entry 3). On the other hand, the reactions conducted in THF, MeCN, and MeOH at 60 °C were very slow, giving only a trace amount of desired cyclopropanated product in each reaction (entries 4-6). Next, the cyclopropanation using toluene or DCE as effective solvents were carried out by varying the reaction temperature (Table 3). As a consequence, it was found that the cyclopropanation took place with excellent chemical yield and high
diastereoselectivity by heating a solution of 1a and styrene in toluene at 60 °C or in DCE at 50 °C (entries 2 and 5). As the optimized reaction conditions for the ruthenium-catalyzed cyclopropanation with a propargylic acetate were finely tuned by employing either DCE or toluene as solvent, the generality of this new reaction was next examined.

Table 2. Effect of Solvent.

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>conv. of 1a</th>
<th>yield (^b) (cis:trans) (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>100%</td>
<td>86% (84:16)</td>
</tr>
<tr>
<td>2</td>
<td>DCE</td>
<td>100%</td>
<td>95% (79:21)</td>
</tr>
<tr>
<td>3</td>
<td>cyclohexane</td>
<td>97%</td>
<td>64% (75:25)</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>24%</td>
<td>9% (67:33)</td>
</tr>
<tr>
<td>5</td>
<td>MeCN</td>
<td>5%</td>
<td>2% (-)</td>
</tr>
<tr>
<td>6</td>
<td>MeOH</td>
<td>18%</td>
<td>1% (-)</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1a (0.2 mmol), styrene (1.0 mmol), [RuCl\(_2\)(CO)\(_3\)]\(_2\) (0.005 mmol), solvent (1 mL), 60 °C, 18 h. \(^b\) GLC yield. \(^c\) Determined by GLC.

Table 3. Effect of Temperature.

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>temp.</th>
<th>yield (^b) (cis:trans) (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>50 °C</td>
<td>75% (87:13)</td>
</tr>
<tr>
<td>2</td>
<td>toluene</td>
<td>60 °C</td>
<td>86% (84:16)</td>
</tr>
<tr>
<td>3</td>
<td>toluene</td>
<td>80 °C</td>
<td>83% (76:24)</td>
</tr>
<tr>
<td>4</td>
<td>DCE</td>
<td>30 °C</td>
<td>83% (93:7)</td>
</tr>
<tr>
<td>5</td>
<td>DCE</td>
<td>50 °C</td>
<td>99% (87:13)</td>
</tr>
<tr>
<td>6</td>
<td>DCE</td>
<td>60 °C</td>
<td>95% (79:21)</td>
</tr>
<tr>
<td>7</td>
<td>DCE</td>
<td>80 °C</td>
<td>83% (77:23)</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1a (0.2 mmol), styrene (1.0 mmol), [RuCl\(_2\)(CO)\(_3\)]\(_2\) (0.005 mmol), solvent (1 mL), 18 h. \(^b\) GLC yield. \(^c\) Determined by GLC. 17% of 1a was recovered.
3. Cyclopropanation Using Various Propargylic Carboxylates and Alkenes

The reactions of styrene with other propargylic carboxylates in the presence of [RuCl₂(CO)₃]₂ (2.5 mol%) in DCE at 50 °C or in toluene at 60 °C were examined. Typical results are shown in Table 4. The reaction of propargylic benzoate 1b with styrene also

Table 4. Ru-Catalyzed Cyclopropanation of Styrene with 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>product</th>
<th>isolated yield</th>
<th>cis:trans<sup>b,c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OAc</td>
<td>2b</td>
<td>90% (81%)</td>
<td>88:12 (88:12)</td>
</tr>
<tr>
<td>2</td>
<td>OAc</td>
<td>2c</td>
<td>91% (91%)</td>
<td>88:12 (82:18)</td>
</tr>
<tr>
<td>3</td>
<td>OAc</td>
<td>2d</td>
<td>97% (69%)</td>
<td>90:10 (89:11)</td>
</tr>
<tr>
<td>4</td>
<td>OAc</td>
<td>2e</td>
<td>93% (60%)</td>
<td>94:6 (92:8)</td>
</tr>
<tr>
<td>5</td>
<td>OAc</td>
<td>2f</td>
<td>77% (75%)</td>
<td>75:25</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1 (0.2 mmol), styrene (1.0 mmol), [RuCl₂(CO)₃]₂ (0.005 mmol), DCE (1.0 mL), 50 °C. ^b The values in the parentheses were obtained from the reactions in toluene at 60 °C. ^c Diastereomeric ratios were determined by ¹H NMR or GLC.

- 200 -
gave the cyclopropanated product 2b in 90% yield \((cis:trans = 88:12)\) (entry 1). Cyclic acetates 1c, 1d, and 1e reacted with styrene to give the corresponding products 2c, 2d, and 2e in 91%, 97%, and 93% yield, respectively (entries 2, 3 and 4). In the case of tertiary propargylic carboxylates, the reactions conducted in toluene gave the corresponding products with slightly lower yields compared with those in DCE. The reaction with secondary propargylic acetate 1f proceeded smoothly to give 2f in 77% yield with a 75:25 diastereomeric ratio, although the treatment in toluene at 60 °C was essential (entry 5).17,18 Secondary propargylic acetate 1g having an alkyl group at propargylic position was less reactive than 1f, affording a desired product in <30% yield with recovered 1g even after 48 h. Primary propargylic benzoate 1h and internal propargylic acetates 1i and 1j were less reactive and cyclopropane formation scarcely occurred even after 48 h. In the case of propargylic acetate 1k, an indene derivative 4 was mainly obtained together with a small amount of the cyclopropanated product, indicating that other ruthenium-catalyzed reaction competes with the cyclopropanation reaction. In fact, treatment of 1k in DCE without an alkene in the presence of a catalytic amount of \([\text{RuCl}_2(\text{CO})_3]_2\) yielded 4 in 68% yield for 18 h (Scheme 3).

The formation of 4 is considered to be attributed to formal insertion of vinylcarbenoid to C-H bond at ortho position of a phenyl ring. Next, the reactions of 1a with several alkenes in the presence of \([\text{RuCl}_2(\text{CO})_3]_2\) were examined (Table 5). The reactions of \(\alpha\)-methylstyrene and 1,1-diphenylethylene with 1a proceeded smoothly to give cyclopropanes 2l and 2m in 91% (d.r. = 68:32) and 71% yields, respectively (entries 1 and 2). 2-Ethylbut-1-ene and
Table 5. Ru-Catalyzed Cyclopropanation of Various Alkenes with 1a\(^a\)

\[
\begin{align*}
1a + \text{alkene} & \rightarrow 2.5 \text{ mol\% } [\text{RuCl}_2(\text{CO})_3\text{Cl}]_2 \text{ DCE, 50 °C, 18 h} \rightarrow \boxed{2} \\
\text{entry} & \quad \text{alkene} & \text{product} & \text{isolated yield}\(^b\) & \text{cis:trans}\(^b,\text{c}\) \\
1 & \text{Ph} & \text{Ph} & 91\% & 68:32\text{d} \\
2 & \text{Ph} & \text{Ph} & 71\% & \text{NA}\(^e\) \\
3' & \text{Et} & \text{Et} & 82\% (68\%) & \text{NA}\(^e\) \\
4' & \text{TMS} & \text{TMS} & 72\% (43\%) & 79:21 (67:33) \\
5 & \text{Ot-Bu} & \text{Ot-Bu} & 26\% (22\%) & 38:62 (36:64) \\
6' & \text{OA}c & \text{OA}c & 24\% (20\%) & 75:25 (75:25) \\
\end{align*}
\]

\(^a\) Reaction conditions: 1 (0.2 mmol), styrene (1.0 mmol), [RuCl\(_2\)(CO)\(_3\)Cl]\(_2\) (0.005 mmol), DCE (1.0 mL), 50 °C. \(^b\) The values in the parentheses were obtained from reactions in toluene at 60 °C. \(^c\) Diastereomeric ratios were determined by \(^1\)H NMR or GLC. \(^d\) Configuration is not yet known. \(^e\) N.A. = not applicable. \(^f\) Alkene (4.0 mmol) was used. \(^g\) 42 h.

allyltrimethylsilane slowly reacted with 1a to give 2n and 2o in 82% and 72% (cis:trans = 79:21) yields, although the use of 20 equiv of alkenes were required (entries 3 and 4). On the other hand, cyclopropanation of tert-butyl vinyl ether and vinyl acetate with 1a resulted in lower yields of 26% (cis:trans = 38:62) and 24% (cis:trans = 75:25), respectively (entries 5 and 6). The reaction of oct-1-ene or 3,3-dimethylbut-1-ene with 1a gave the cyclopropanated
products in much lower yield (10-20%) along with several unidentified products. Electron-deficient alkenes such as methyl acrylate did not work at all in the present cyclopropanation.

4. Mechanistic Consideration

The present cyclopropanation can be envisioned to proceed via a vinylcarbenoid intermediate generated *in situ* from a propargylic carboxylate and a ruthenium complex as shown in Scheme 1b. In the present cyclopropanation, the higher reactivity of electron-rich alkenes can be rationalized in terms of the electrophilic character of the postulated Ru-vinylcarbenoid intermediate (Figure 1). Takahashi *et al.* have reported the ruthenium-catalyzed cyclopropanation of norbornene using propargylic alcohols and their ethers via a ruthenacyclopentene intermediate, in which norbornene was the only alkene to react. Keeping this in mind, the reaction of norbornene with propargylic acetate 1a was carried out in the presence of [RuCl₂(CO)₃]₂ catalyst. However, no cyclopropanation of norbornene was observed. Although the difference in alkene reactivity between Takahashi’s reaction and our present reaction is obvious and the author thinks that Ru-vinylcarbenoids are likely as intermediates in our case, it might be meaningful to consider a step containing ruthenacycles. On the basis of mechanism proposed by Takahashi *et al.*, a plausible reaction course might be outlined in Scheme 4 in the present reaction. The scheme involves the formation of ruthenacycle B from a propargylic compound and an alkene followed by successive formation of an intramolecularly coordinated π-allene complex C and a ruthenacyclobutane D. Intervention of the π-allene complex C via β-elimination of a vicinal acetoxy group implies the possibility of the intermolecular transfer of acetate from one molecule to another. However, such possibility was excluded by the experimental results of crossover reaction.
using two types of propargylic carboxylates in the presence of \(\text{[RuCl}_2(\text{CO})_3]} \). Thus, when the reaction of styrene with a mixture of an equimolar amount of \(1b \) and \(1c \) as competitive reactants was carried out, two cyclopropanated products \(2b \) and \(2c \) were produced in high yields without any crossover products (Scheme 5). This result as well as the alkene reactivity strongly supports that the present cyclopropanation proceeds via a Ru-vinylcarbenoid (A)\(^{20,21}\) generated by an intramolecular acetoxy migration as shown in Scheme 1b.

5. Catalytic Cyclopropanation of Dienes

Finally, the author examined the cyclopropanation of conjugated dienes with propargylic carboxylates \(1a \), \(1b \), and \(1c \) in the presence of \(\text{[RuCl}_2(\text{CO})_3]} \) as a catalyst. In the reaction of isoprene with \(1a \), a more substituted double bond was selectively cyclopropanated to give \(\text{trans-2r} \)\(^{22}\) (46%) with 1,4-cycloheptadiene \(5r \) (38%) (Scheme 6). The reaction of 2,3-dimethyl-1,3-butadiene with \(1a \) also gave similar products, \(\text{trans-2s} \)\(^{22}\) (55%) and \(5s \) (28%). The formation of 1,4-cycloheptadiene \(5 \) in each case can be explained
Scheme 6

1a + \(\text{R} \) (20 equiv) \(\xrightarrow{2.5 \text{ mol\% } [\text{RuCl}_2(\text{CO})_3]_2, \text{DCE, 50}^\circ\text{C, 18 h}} \)
\(\text{trans-2r} \) (46%)
\(\text{trans-2s} \) (55%)
\(\text{5r} \) (38%)
\(\text{5s} \) (28%)

Scheme 7

by assuming [3,3]sigmatropic rearrangement of the initially produced \(\text{cis-2r} \) or \(\text{2s} \) (Scheme 7). As shown in Scheme 8, cyclopentadiene also served as a good acceptor of Ru-carbenoid intermediate to give mono-cyclopropanated product \(\text{syn(endo)-2t} \) in 55% yield together with 3-acetoxyl,4,4-dimethylbicyclo[3.2.1]octa-2,6-diene (5t) in 15% yield. Cyclopropanated product with \(\text{anti} \) configuration, \(\text{anti(exo)-2t} \), was not obtained at all. Efficient [3,3]sigmatropic isomerization of the isolated bicyclic compound \(\text{syn-2t} \) to the rearranged product 5t was attained by heating a solution of \(\text{syn-2t} \) in toluene at 120 °C for 24 h, the yield of 5t being 90%. Cyclopropanation reactions of cyclopentadiene with 1b and 1c followed by thermal rearrangement afforded bicyclo[3.2.1]octadienes 5u and 5v in 64% and 76% yields, respectively (Scheme 9). These reactions represent a formal [3+4] cycloaddition using propargylic acetates as three-carbons components to produce cycloheptadiene skeletons as shown in Scheme 10.

Scheme 8

1a + 5% \([\text{RuCl}_2(\text{CO})_3]_2 \) \(\text{DCE, 50}^\circ\text{C, 18 h}} \)
\(\text{syn-2t} \) (55%)
\(\text{5t} \) (15%)
toluene, 120 °C
24 h, 90%
In conclusion, the author has developed an effective Ru-catalyzed intermolecular cyclopropanation of various alkenes with propargylic carboxylates via vinylcarbene complexes. Tertiary or secondary propargylic carboxylates can be applied to this procedure with an exception of primary ones. It has also been demonstrated that the vinylcarbenoid intermediates can serve as three-carbons unit in a formal [3+4] cycloaddition reaction leading to 1,4-cycloheptadiene skeletons. Since the present vinylcarbenoid transfer reaction is chemically equivalent to the reaction using a combination of α-diazoketone and transition metal compounds, this provides another method for generating carbenoid species from readily available alkynes.
Experimental

General Procedures. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon. Other solvents were dried by the usual methods and distilled before use. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ with Me₄Si as an internal standard (¹H and ¹³C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University.

Typical Procedure for Synthesis of Vinylcyclopropane 2. The complex [RuCl₂(CO)₃]₂ (2.6 mg, 0.005 mmol) was placed in the flame dried Schlenk flask under N₂. A solution of substrate 1 (0.20 mmol) and alkene (1.0-4.0 mmol) in solvent (1.0 mL) was added to the flask at room temperature. After stirring at the fixed temperature for appropriate time, the mixture was cooled to room temperature, and the amount of products was determined by GLC analysis using 2,6-dimethylnaphthalene as an internal standard. All *trans*-cyclopropanes could not be easily separated by column chromatography on SiO₂ (hexane/AcOEt = 15/1). Pure *cis*-isomers of 2a-f, 2o, 2p, and major-2l were partially separated as a first fraction of column chromatography, whereas *trans*-isomers as minor products were eluted together with their *cis*-isomers. Because of this contamination, GPC on CHCl₃ was required to obtain pure *trans*-isomers in each case. The configuration of cyclopropane ring could be determined by ¹H NMR coupling constants between protons in a cyclopropane ring. Generally, coupling constanes of *J* = 7.0-9.0 Hz between protons in a cyclopropane ring indicate that the configuration is *cis*, while those of *J* = 4.0-6.0 Hz correspond to that of *trans*.
Vinylcyclopropane 2a.

Yields and ratios of two isomers were determined by GLC analysis.

\[\text{cis-2a: A colorless oil; IR (neat) 701, 733, 776, 1113, 1155, 1183, 1218, 1369, 1751 (C=O), 2916 cm}^{-1}; \]

\[^{1}H \text{ NMR (270 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 1.02 (\text{dd, } J = 5.4, 6.3, 6.3 \text{ Hz, 1H}), 1.25 (\text{dd, } J = 5.4, 8.9, 8.9 \text{ Hz, 1H}), 1.41 (\text{s, 3H}), 1.47 (\text{s, 3H}), 2.04 (\text{s, 3H}), 2.20-2.33 (\text{m, 2H}), 7.01-7.26 (\text{m, 5H}); ^{13}C \text{ NMR (67 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 11.6, 17.5, 18.6, 20.6, 21.7, 24.2, 123.2, 125.4, 127.2, 127.4, 138.1, 139.1, 169.1. \]

Anal. Calcd for C_{15}H_{18}O_2: C, 78.23; H, 7.88. Found: C, 78.49; H, 7.85.

\[\text{trans-2a: A colorless oil; IR (neat) 698, 760, 1102, 1159, 1196, 1214, 1369, 1749 (C=O), 2917 cm}^{-1}; ^{1}H \text{ NMR (270 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 1.02 (\text{dd, } J = 7.3, 7.3 \text{ Hz, 2H}), 1.57 (\text{s, 3H}), 1.79 (\text{s, 3H}), 1.94-2.09 (\text{m, 2H}), 2.16 (\text{s, 3H}), 7.06-7.30 (\text{m, 5H}); ^{13}C \text{ NMR (67 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 14.7, 18.2, 18.8, 20.6, 23.2, 23.5, 120.5, 125.7, 125.8, 128.3, 140.6, 141.9, 169.1. \]

Anal. Calcd for C_{15}H_{18}O_2: C, 78.23; H, 7.88. Found: C, 77.96; H, 7.91.

Vinylcyclopropane 2b.

A colorless oil (53 mg, 0.18 mmol, 90% yield, cis:trans = 88:12) (a mixture of cis and trans isomers); IR (neat) 702, 709, 771, 1025, 1069, 1091, 1114, 1155, 1177, 1245, 1279, 1451, 1497, 1602, 1728 (C=O), 2915 cm}^{-1}; cis-2b: ^{1}H \text{ NMR (300 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 1.09 (\text{dd, } J = 5.4, 6.6, 6.6 \text{ Hz, 1H}), 1.27 (\text{dd, } J = 5.4, 8.7, 8.7 \text{ Hz, 1H}), 1.47 (\text{s, 3H}), 1.63 (\text{s, 3H}), 2.27-2.38 (\text{m, 2H}), 7.08-7.11 (\text{m, 2H}), 7.15-7.27 (\text{m, 3H}), 7.38-7.44 (\text{m, 2H}), 7.53-7.60 (\text{m, 1H}); ^{13}C \text{ NMR (75 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 11.7, 17.6, 18.6, 21.3, 23.7, 123.4, 125.5, 127.5, 127.6, 128.2, 128.3, 129.7, 129.8, 133.0, 138.5, 139.2, 164.6. \]

trans-2b: ^{1}H \text{ NMR (300 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 0.84-0.90 (\text{m, 1H}), 1.07-1.13 (\text{m, 1H}), 1.82 (\text{s, 3H}), 1.85 (\text{s, 3H}), 2.06-2.17 (\text{m, 2H}), 7.07-7.12 (\text{m, 2H}), 7.14-7.27 (\text{m, 3H}), 7.36-7.43 (\text{m, 1H}), 7.47-7.60 (\text{m, 2H}), 8.10-8.14 (\text{m, 2H}); ^{13}C \text{ NMR (75 MHz, CDCl}_3, 25 ^\circ \text{C}) \delta 14.1, 18.1, 18.8, 23.3, 23.6, 23.7, 120.9, 125.7, 125.9, 128.3, 128.5, 129.6, 129.9, 132.8, 133.2, 142.0, 164.7. \]

HRMS (FAB): calcd for C_{20}H_{20}O_2 (M^+), 292.1463; found, 292.1460.
Vinylcyclopropane 2c.

A colorless oil (49 mg, 0.18 mmol, 91% yield, cis:trans = 88:12) (a mixture of cis and trans isomers) (After recrystallization of 2c, cis-2c was obtained as colorless crystals; mp. 53.4-55.0 °C); cis-2c: IR (KBr) 701, 774, 1009, 1061, 1073, 1112, 1157, 1178, 1216, 1236, 1256, 1370, 1446, 1745 (C=O), 2852, 2923, 2962 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.38-0.48 (m, 1H), 1.01 (dd, J = 5.7, 5.7, 5.7 Hz, 1H), 1.04-1.12 (m, 1H), 1.17-1.47 (m, 4H), 1.25 (ddd, J = 5.7, 9.0, 9.0 Hz, 1H), 1.71-1.81 (m, 1H), 1.89-2.02 (m, 1H), 2.05-2.15 (m, 1H), 2.09 (s, 3H), 7.02 (d, J = 7.5 Hz, 2H), 7.13 (dd, J = 7.5, 7.5 Hz, 1H), 7.23 (dd, J = 7.5, 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 11.5, 20.5, 21.5, 24.5, 26.1, 26.4, 26.5, 27.5, 28.6, 125.5, 127.2, 127.4, 130.4, 135.1, 139.3, 169.4. trans-2c: IR (neat) 698, 734, 756, 1020, 1068, 1103, 1111, 1161, 1189, 1213, 1237, 1255, 1368, 1448, 1498, 1604, 1755 (C=O), 2853, 2929, 2962 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.13 (dd, J = 7.2, 7.2 Hz, 2H), 1.45-1.60 (m, 6H), 1.96-2.08 (m, 4H), 1.96-2.04 (m, 3H), 2.14-2.32 (m, 3H), 7.06-7.09 (m, 2H), 7.13-7.16 (m, 1H), 7.19-7.24 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 14.7, 20.5, 22.8, 23.6, 26.4, 26.9, 27.2, 28.2, 29.0, 125.7, 125.8, 128.2, 128.3, 138.1, 139.3, 142.0, 169.3. Anal. Calcd for C₁₈H₂₂O₂: C, 79.96; H, 8.20. Found: C, 79.69; H, 8.15.

Vinylcyclopropane 2d.

A colorless oil (50 mg, 0.19 mmol, 97% yield, cis:trans = 90:10) (a mixture of cis and trans isomers); cis-2d: IR (neat) 601, 700, 774, 1013, 1031, 1064, 1147, 1157, 1199, 1225, 1247, 1367, 1434, 1452, 1497, 1603, 1748 (C=O), 2867, 2954 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.07 (ddd, J = 5.4, 5.4, 6.6 Hz, 1H), 1.24 (ddd J = 5.4, 9.0, 9.0 Hz, 1H), 1.29-1.60 (m, 4H), 1.96 (s, 3H), 1.96-2.04 (m, 3H), 2.14-2.32 (m, 3H), 7.06-7.09 (m, 2H), 7.13-7.16 (m, 1H), 7.19-7.24 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 10.8, 20.4, 21.9, 23.4, 25.9, 26.5, 28.9, 29.2, 125.5, 127.5, 127.5, 134.2, 135.8, 139.2, 168.9. trans-2d: IR (neat) 698, 754, 1030, 1071, 1102, 1148, 1158, 1199, 1228, 1243, 1368, 1435, 1452, 1498, 1604, 1698, 1756 (C=O), 2954
em-I; IH NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.08-1.20 (m, 2H), 1.57-1.74 (m, 5H), 1.85-1.94 (m, 1H), 2.04-2.20 (m, 2H), 2.15 (s, 3H), 2.32-2.42 (m, 2H), 7.07-7.10 (m, 2H), 7.13-7.18 (m, 1H), 7.22-7.28 (m, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 13.9, 20.5, 22.5, 24.0, 26.2, 26.8, 29.3, 29.5, 125.7, 125.9, 128.3, 131.4, 137.8, 142.1, 169.0. Anal. Calcd for C$_{17}$H$_{20}$O$_2$: C, 79.65; H, 7.86. Found: C, 79.54; H, 7.86.

Vinylcyclopropane 2e.

A colorless oil (45 mg, 0.19 mmol, 93% yield, cis:trans = 94:6) (a mixture of cis and trans isomers); cis-2e: IR (neat) 699, 774, 1064, 1194, 1226, 1367, 1497, 1604, 1748 (C=O), 2921, 2951, 2983 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.12 (ddd, $J = 5.4, 6.3, 6.3$ Hz, 1H), 1.20 (ddd, $J = 5.4, 9.0, 9.0$ Hz, 1H), 1.78-1.90 (m, 2H), 1.85 (s, 3H), 1.95-2.08 (m, 1H), 2.23 (ddd, $J = 6.3, 9.0, 9.0$ Hz, 1H), 2.33-2.45 (m, 2H), 2.48-2.61 (m, 1H), 2.64-2.75 (m, 1H), 7.12-7.19 (m, 3H), 7.22-7.28 (m, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 9.7, 16.8, 19.8, 20.4, 22.5, 27.8, 27.9, 125.7, 127.7, 128.1, 130.2, 136.4, 138.9, 168.6. trans-2e: IR (neat) 698, 735, 752, 1030, 1070, 1099, 1197, 1225, 1250, 1368, 1498, 1604, 1759 (C=O), 2920, 2950, 2983 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 1.06-1.12 (m, 2H), 1.68-1.78 (m, 1H), 1.93-2.10 (m, 3H), 2.12 (s, 3H), 2.53-2.60 (m, 2H), 2.77-2.86 (m, 2H), 7.04-7.09 (m, 2H), 7.12-7.19 (m, 1H), 7.22-7.29 (m, 2H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 9.7, 16.8, 20.5, 22.1, 22.6, 27.6, 27.9, 125.7, 125.9, 128.3, 138.2, 141.9, 168.8. Anal. Calcd for C$_{16}$H$_{18}$O$_2$: C, 79.31; H, 7.49. Found: C, 79.05; H, 7.49.

Vinylcyclopropane 2f.

A colorless oil (43 mg, 0.16 mmol, 77% yield, cis:trans = 75:25) (a mixture of cis and trans isomers) (After recrystallization of 2f, cis-2f was obtained as colorless crystals; mp. 71.7-73.5 °C.); IR (neat) 698, 720, 752, 776, 832, 835, 925, 953, 1014, 1033, 1064, 1174, 1199, 1373, 1448, 1495, 1601, 1662, 1748 (C=O), 1755, (C=O), 2929, 3025, 3056 cm$^{-1}$; cis-2f: 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 1.32 (ddd, $J = 6.0, 6.4, 6.4$ Hz, 1H), 1.38 (ddd, $J = 6.0, 8.8, 8.8$ Hz, 1H), 1.99 (s, 3H), 2.32
(ddd, J = 6.4, 8.8, 8.8 Hz, 1H), 2.39 (ddd, J = 6.4, 8.8, 8.8 Hz, 1H), 5.90 (s, 1H), 7.10-7.25 (m, 10H); 13C NMR (100 MHz, CDCl₃, 25 °C) δ 11.0, 21.0, 23.6, 23.7, 118.3, 126.0, 126.8, 127.8, 128.1, 128.3, 134.2, 137.9, 146.5, 168.5.

trans-2f: 1H NMR (400 MHz, CDCl₃, 25 °C) δ 1.26 (ddd, J = 5.6, 5.6, 8.8 Hz, 1H), 1.35 (ddd, J = 5.6, 5.6, 8.8 Hz, 1H), 1.97 (ddd, J = 5.6, 5.6, 8.8 Hz, 1H), 2.16-2.28 (m, 4H), 6.09 (s, 1H), 7.10-7.38 (m, 10H); 13C NMR (100 MHz, CDCl₃, 25 °C) δ 17.7, 18.4, 18.8, 20.3, 27.6, 27.9, 121.6, 125.7, 127.7, 127.8, 139.1, 142.6, 169.1.

Vinylcyclopropane 2l.

A colorless oil (44 mg, 0.18 mmol, 91% yield, d.r. = 68:32) (a mixture of diastereoisomers); IR (neat) 700, 767, 883, 1031, 1082, 1123, 1181, 1214, 1368, 1445, 1498, 1603, 1754 (C=O), 2920, 2954 cm⁻¹; major-2l: 1H NMR (300 MHz, CDCl₃, 25 °C) δ 1.02 (dd, J = 5.1, 9.0 Hz, 1H), 1.20 (dd, J = 5.1, 5.1 Hz, 1H), 1.38 (s, 3H), 1.48 (s, 3H), 1.67 (s, 3H), 1.92 (s, 3H), 2.01-2.07 (m, 1H), 7.13-7.30 (m, 5H); 13C NMR (75 MHz, CDCl₃, 25 °C) δ 17.7, 18.4, 18.8, 20.3, 27.2, 27.6, 27.9, 121.6, 125.7, 127.7, 127.8, 139.1, 142.6, 169.1. minor-2l: 1H NMR (300 MHz, CDCl₃, 25 °C) δ 0.82 (dd, J = 4.8, 6.3 Hz, 1H), 1.32 (dd, J = 4.8, 9.6 Hz, 1H), 1.35 (s, 3H), 1.64 (s, 3H), 1.78 (s, 3H), 2.05-2.14 (m, 1H), 2.18 (s, 3H), 7.14-7.42 (m, 5H); 13C NMR (75 MHz, CDCl₃, 25 °C) δ 17.8, 19.0, 20.1, 20.6, 20.8, 26.7, 27.6, 122.7, 125.7, 126.2, 128.3, 139.8, 146.4, 169.2. Anal. Calcd for C₁₆H₂₀O₂: C, 78.65; H, 8.25. Found: C, 78.93; H, 8.24.

Vinylcyclopropane 2m.

A white solid (44 mg, 0.14 mmol, 71% yield); mp. 76.4-77.6 °C; IR (KBr) 703, 750, 765, 1179, 1220, 1370, 1444, 1497, 1599, 1747 (C=O), 2925 cm⁻¹; 1H NMR (400 MHz, CDCl₃, 25 °C) δ 1.46 (s, 3H), 1.46 (dd, J = 4.8, 8.8 Hz, 1H), 1.61 (dd, J = 4.8, 6.4 Hz, 1H), 1.90 (s, 3H), 2.20 (s, 3H), 2.70 (dd, J = 6.4, 8.8 Hz, 1H), 7.13-7.26 (m, 10H); 13C NMR (100 MHz, CDCl₃, 25 °C) δ 18.0,

Vinylcyclopropane 2n.

A colorless oil (34 mg, 0.16 mmol, 82% yield); IR (neat) 882, 1063, 1093, 1105, 1122, 1180, 1215, 1258, 1370, 1446, 1460, 1752 (C=O), 2934, 2963 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.34 (dd, J = 8.7, 8.7 Hz, 1H), 0.60 (dd, J = 4.5, 8.7 Hz, 1H), 0.89 (t, J = 6.9 Hz, 6H), 1.08 (q, J = 6.9 Hz, 2H), 1.40-1.57 (q, J = 6.9 Hz, 2H), 1.49-1.62 (m, 1H), 1.57 (s, 3H), 1.76 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 10.4, 10.6, 17.6, 17.8, 18.9, 20.6, 23.7, 24.8, 28.6, 28.6, 121.4, 140.8, 169.2. Anal. Calcd for C₁₃H₂₂O₂: C, 74.24; H, 10.54. Found: C, 74.46; H, 10.74.

Vinylcyclopropane 2o.

A colorless oil (35 mg, 0.14 mmol, 72% yield, cis:trans = 79:21) (a mixture of cis and trans isomers); cis-2o: IR (neat) 694, 841, 862, 1085, 1105, 1212, 1248, 1368, 1446, 1758 (C=O), 2918, 2954 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ -0.02-0.12 (m, 2H), 0.02 (s, 9H), 0.75-0.81 (m, 1H), 0.85 (ddd, J = 4.5, 9.0, 9.0 Hz, 1H), 0.92-1.05 (m, 1H), 1.60 (s, 3H), 1.67-1.74 (m, 1H), 1.77 (s, 3H), 2.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ -1.5, 11.9, 14.3, 16.3, 17.1, 17.7, 18.6, 20.6, 121.7, 140.4, 141.8, 169.2. trans-2o: IR (neat) 695, 843, 861, 1116, 1210, 1248, 1368, 1448, 1759 (C=O), 2896, 2917, 2953 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.01 (s, 18H), 0.34-0.43 (m, 2H), 0.62-0.85 (m, 3H), 1.36 (ddd, J = 4.5, 4.5, 9.0 Hz, 1H), 1.51 (s, 3H), 1.79 (s, 3H), 2.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ -1.5, 13.8, 14.3, 18.1, 18.6, 20.3, 20.4, 21.7, 118.8, 141.9, 169.1. Anal. Calcd for C₁₃H₂₄O₂Si: C, 64.95; H, 10.06. Found: C, 65.22; H, 9.93.

Vinylcyclopropane 2p.

A colorless oil (12 mg, 0.05 mmol, 26% yield, cis:trans = 38:62) (a mixture of cis and trans isomers); IR (neat) 1047, 1116, 1150, 1206,
1217, 1365, 1444, 1755 (C=O), 2933, 2976 cm⁻¹; cis-2p: ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 0.55 (ddd, J = 4.0, 6.0, 6.8 Hz, 1H), 0.77 (ddd, J = 6.0, 6.0, 9.6 Hz, 1H), 1.14 (s, 9H), 1.50 (s, 3H), 1.55-1.65 (m, 1H), 1.71 (s, 3H), 2.02 (s, 3H), 3.27 (ddd, J = 4.0, 6.0, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 12.1, 17.1, 18.3, 18.9, 20.9, 28.1, 51.2, 74.8, 121.1, 138.9, 168.7. trans-2p: ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 0.64 (ddd, J = 6.4, 6.4, 6.4 Hz, 1H), 0.81 (ddd, J = 4.0, 6.4, 9.6 Hz, 1H), 1.15 (s, 9H), 1.44 (s, 3H), 1.69-1.74 (m, 4H, including δ 1.73, s, 3H), 1.71 (s, 3H), 3.12 (ddd, J = 3.2, 4.0, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 13.1, 18.2, 18.5, 20.2, 20.6, 28.2, 51.4, 75.0, 119.6, 140.3, 169.0.

HRMS (FAB): calcd for C₁₃H₂₃O₃ (a mixture of cis and trans isomers) (M+H⁺), 227.1647; found, 227.1643.

Vinylcyclopropane 2q.

A colorless oil (10 mg, 0.05 mmol, 24% yield, cis:trans = 75:25) (a mixture of cis and trans isomers: these two isomers could not be separated by column chromatography on SiO₂ or GPC on CHCl₃ as eluent); IR (neat) 606, 1019, 1048, 1114, 1160, 1211, 1237, 1370, 1441, 1750 (C=O), 2919, 2934 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 0.87-0.98 (m, 2H, [1H from cis-2q and 1H from trans-2q]), 1.04-1.16 (m, 2H, [1H from cis-2q and 1H from trans-2q]), 1.55 (d, J = 0.9 Hz, 3H, trans-2q), 1.58 (d, J = 1.5 Hz, 3H, cis-2q), 1.78 (s, 3H, cis-2q), 1.80 (s, 3H, trans-2q), 2.03 (s, 6H, [3H from cis-2q and 3H from trans-2q]), 2.12 (s, 3H, cis-2q), 2.15 (s, 3H, trans-2q), 4.15 (ddd, J = 3.0, 3.9, 6.9 Hz, 1H, trans-2q), 4.29 (ddd, J = 3.6, 6.6, 6.6 Hz, 1H, cis-2q); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 10.3 (cis-2q), 12.8 (trans-2q), 17.3 (cis-2q), 17.9 (trans-2q), 17.9 (cis-2q), 18.5 (trans-2q), 18.7 (trans-2q), 18.7 (cis-2q), 20.4 (trans-2q), 20.5 (cis-2q), 20.8 (trans-2q), 20.8 (cis-2q), 52.4 (trans-2q), 53.4 (cis-2q), 122.0 (trans-2q), 123.6 (cis-2q), 136.9 (cis-2q), 138.5 (trans-2q), 169.0 (cis-2q), 169.3 (trans-2q), 171.3 (trans-2q), 171.6 (cis-2q). HRMS (FAB): calcd for C₁₁H₁₇O₄ (a mixture of cis and trans isomers) (M+H⁺), 213.1127; found, 213.1129.
Typical Procedure for Cyclopropanation of Dienes. The complex [RuCl$_2$(CO)$_3$]$_2$ (6.4 mg, 0.013 mmol) was placed in the flame dried Schlenk flask under N$_2$. A solution of substrate 1 (0.50 mmol) and diene (10 mmol) in CICH$_2$CH$_2$Cl (2.5 mL) was added to the flask at room temperature. After stirring at 50 °C for 18 h, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was subjected to column chromatography on SiO$_2$ with hexane/AcOEt (v/v = 15/1) as an eluent to afford a vinylcyclopropane trans-2 and a seven-membered compound 5.

Vinylcyclopropane trans-2r.

A colorless oil (18 mg, 0.09 mmol, 46% yield); IR (neat) 758, 894, 1069, 1090, 1121, 1180, 1215, 1369, 1445, 1634, 1754 (C=O), 2917 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, 25 °C) δ 0.66 (dd, $J = 6.3$, 8.1 Hz, 1H), 0.94 (dd, $J = 4.8$, 6.3Hz, 1H), 1.09 (s, 3H), 1.61 (s, 3H), 1.70 (s, 3H), 1.78-1.89 (m, 1H), 2.13 (s, 3H), 4.92 (d, $J = 10.5$ Hz, 1H), 4.97 (d, $J = 17.4$ Hz, 1H), 5.52 (dd, $J = 10.5$, 17.4 Hz, 1H); 13C NMR (75 MHz, CDCl$_3$, 25 °C) δ 16.3, 17.6, 18.7, 19.5, 20.5, 25.3, 27.0, 110.2, 122.7, 139.2, 145.2, 169.2. HRMS (FAB): calcd for C$_{12}$H$_{18}$O$_2$ (M$^+$), 194.1307; found, 194.1312.

Cycloheptadiene 5r.

A colorless oil (14 mg, 0.07 mmol, 38% yield); IR (neat) 595, 813, 833, 871, 912, 1063, 1093, 1210, 1368, 1452, 1759 (C=O), 2928, 2966 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 1.02 (s, 6H), 1.77 (s, 3H), 2.12 (s, 3H), 2.15 (d, $J = 7.2$ Hz, 2H), 2.72 (d, $J = 6.4$ Hz, 2H), 5.22 (t, $J = 6.4$ Hz, 1H), 5.54 (t, $J = 7.2$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 21.1, 24.7, 26.8, 27.0, 29.4, 38.6, 38.9, 114.5, 122.3, 140.4, 154.4, 169.7. HRMS (FAB): calcd for C$_{12}$H$_{18}$O$_2$ (M$^+$), 194.1307; found, 194.1313.

Vinylcyclopropane trans-2s.

A colorless oil (23 mg, 0.11 mmol, 55% yield); IR (neat) 606, 1019, 1048, 1114, 1160, 1211, 1237, 1370, 1441, 1750 (C=O),
2919, 2934 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 0.52 (dd, \(J = 4.8, 6.0\) Hz, 1H), 1.05 (dd, \(J = 4.8, 9.3\) Hz, 1H), 1.11 (s, 3H), 1.61 (d, \(J = 1.5\) Hz, 3H), 1.71 (s, 3H), 1.76 (s, 3H), 1.86-1.96 (m, 1H), 2.14 (s, 3H), 4.72-4.76 (m, 1H), 4.76-4.79 (m, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 17.7, 18.2, 18.7, 18.8, 20.1, 20.5, 24.7, 28.3, 109.4, 122.2, 139.9, 148.8, 169.2. HRMS (FAB): calcd for C\(_{13}\)H\(_{20}\)O\(_2\) (M\(^+\)), 208.1463; found, 208.1468.

Cycloheptadiene 5s.

A colorless oil (12 mg, 0.06 mmol, 28% yield); IR (neat) 1070, 1209, 1368, 1384, 1758 (C=O), 2924, 2964 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.02 (s, 6H), 1.73-1.77 (m, 6H), 2.11 (s, 3H), 2.24 (s, 2H), 2.70 (d, \(J = 6.3\) Hz, 2H), 5.25 (t, \(J = 6.3\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 20.6, 21.0, 21.7, 26.8, 26.8, 30.8, 38.5, 46.0, 115.2, 128.4, 132.0, 154.0, 169.8. HRMS (FAB): calcd for C\(_{13}\)H\(_{20}\)O\(_2\) (M\(^+\)), 208.1463; found, 208.1459.

Typical Procedure for Cyclopropanation of Dienes. The complex [RuCl\(_2\)(CO)\(_3\)]\(_2\) (6.4 mg, 0.013 mmol) was placed in the flame dried Schlenk flask under \(\text{N}_2\). A solution of substrate 1 (0.50 mmol) and cyclopentadiene (10 mmol) in CICH\(_2\)CH\(_2\)Cl (2.5 mL) was added to the flask at room temperature. After stirring at 50 °C for 18 h, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residue which contains 2 and 5 was dissolved in toluene (2.5 mL) and the mixture was stirred at 120 °C for 24 h. The resulting mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was subjected to column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 15/1) as an eluent to afford a bicyclic compound 5.

Bicyclic compound \textit{syn(endo)}-2t.

Before the rearrangement reaction in toluene, this compound was \textit{syn}-2t obtained as a colorless oil by using column chromatography on SiO\(_2\) with hexane/AcOEt (v/v = 15/1) as an eluent in 55% yield (21 mg, 0.11 mmol); IR (neat) 678, 702, 1013, 1092, 1111, 1221, 1262, 1369, 1435, 1747 (C=O),
2915 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.53 (s, 3H), 1.74 (s, 3H), 1.86 (ddd, J = 6.8, 6.8, 7.2 Hz, 1H), 1.95-1.99 (m, 1H), 2.11 (s, 3H), 2.13-2.19 (m, 1H), 2.21-2.26 (m, 1H), 2.51 (dd, J = 6.8, 18.0 Hz, 1H), 5.44-5.47 (m, 1H), 5.67 (dd, J = 1.6, 5.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 17.3, 18.6, 20.8, 22.8, 23.3, 30.3, 33.0, 123.1, 129.2, 129.6, 138.7, 169.1. Anal. Calcd for C₁₂H₁₆O₂: C, 74.97; H, 8.39. Found: C, 74.81; H, 8.54.

Bicyclic compound 5t.

A colorless oil (25 mg, 0.13 mmol, 65% yield); IR (neat) 557, 736, 841, 908, 936, 1021, 1036, 1095, 1113, 1212, 1369, 1471, 1653, 1755 (C=O), 2941, 2967 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 0.91 (s, 3H), 1.16 (s, 3H), 1.84 (ddd, J = 4.8, 4.8, 9.6 Hz, 1H), 1.97 (d, J = 9.6 Hz, 1H), 2.10 (s, 3H), 2.48 (dd, J = 3.2, 4.8 Hz, 1H), 2.79 (ddd, J = 3.2, 4.8, 7.2 Hz, 1H), 5.71 (d, J = 7.2 Hz, 1H), 5.84 (dd, J = 3.2, 6.0 Hz, 1H), 6.36 (dd, J = 3.2, 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 21.1, 21.5, 27.4, 38.3, 39.1, 40.3, 51.2, 119.9, 131.1, 140.1, 150.8, 169.5. Anal. Calcd for C₁₂H₁₆O₂: C, 74.97; H, 8.39. Found: C, 75.01; H, 8.34.

Bicyclic compound 5u.

A colorless oil (33 mg, 0.13 mmol, 64% yield); IR (neat) 623, 707, 841, 908, 936, 1026, 1061, 1098, 1118, 1176, 1228, 1247, 1271, 1280, 1451, 1738 (C=O), 2941, 2966 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.01 (s, 3H), 1.26 (s, 3H), 1.90 (ddd, J = 4.4, 4.4, 9.6 Hz, 1H), 2.06 (d, J = 9.6 Hz, 1H), 2.54 (dd, J = 2.8, 4.4 Hz, 1H), 2.79 (ddd, J = 2.8, 4.4, 6.8 Hz, 1H), 5.89 (d, J = 6.8 Hz, 1H), 5.90 (dd, J = 2.8, 6.0 Hz, 1H), 6.42 (dd, J = 2.8, 6.0 Hz, 1H), 7.45 (dd, J = 7.6, 7.6 Hz, 2H), 7.57 (dd, J = 7.6, 7.6 Hz, 1H), 8.06 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 21.7, 27.6, 38.4, 39.4, 40.3, 51.4, 120.1, 128.3, 129.7, 129.8, 131.2, 133.0, 140.9, 151.0, 165.1. Anal. Calcd for C₁₇H₁₈O₂: C, 80.28; H, 7.13. Found: C, 80.05; H, 7.28.

Tricyclic compound 5v.

A colorless oil (35 mg, 0.15 mmol, 76% yield); IR (neat) 733, 841, 894, 905, 915, 1015, 1096, 1112, 1136, 1187, 1201, 1214, 1368, 1454,
1651, 1763 (C=O), 2863, 2934 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.10-1.27 (m, 2H), 1.38-1.63 (m, 6H), 1.63-1.73 (m, 2H), 1.84 (ddd, J = 4.4, 4.4, 9.6 Hz, 1H), 1.89 (d, J = 9.6 Hz, 1H), 2.11 (s, 3H), 2.77 (ddd, J = 2.8, 4.4, 6.8 Hz, 1H), 3.12 (dd, J = 2.8, 4.4 Hz, 1H), 5.74 (d, J = 6.8 Hz, 1H), 5.80 (dd, J = 2.8, 6.0 Hz, 1H), 6.36 (dd, J = 2.8, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 21.2, 21.2, 21.2, 25.8, 28.4, 32.4, 38.1, 39.6, 42.4, 42.7, 121.1, 130.6, 141.0, 150.4, 169.6. HRMS (FAB): calcd for C₁₅H₂₀O₂ (M⁺), 232.1463; found, 232.1460.

Ruthenium-Catalyzed Synthesis of Indene 4.

![Image of indene 4](image)

The complex [RuCl₂(CO)₃]₂ (2.6 mg, 0.005 mmol) was placed in the flame dried Schlenk flask under N₂. A solution of substrate 1k (0.20 mmol) in CH₂Cl₂ (1.0 mL) was added to the flask at room temperature. After stirring at 50 °C for 18 h, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was subjected to column chromatography on SiO₂ with hexane/AcOEt (v/v = 15/1) as an eluent to afford indene 4 as a pale yellow solid (34 mg, 0.14 mmol, 68% yield); mp. 69.0-71.8 °C; IR (KBr) 700, 721, 755, 772, 858, 1012, 1184, 1208, 1236, 1369, 1461, 1494, 1600, 1766 (C=O), 3025, 3056 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 2.19 (s, 3H), 3.78 (s, 2H), 7.09-7.12 (m, 1H), 7.19-7.33 (m, 3H), 7.34-7.51 (m, 5H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 21.0, 37.4, 114.9, 120.1, 123.7, 124.9, 126.4, 127.6, 128.1, 128.4, 128.5, 138.2, 142.4, 150.7, 168.8. Anal. Calcd for C₁₇H₁₄O₂: C, 81.58; H, 5.64. Found: C, 81.28; H, 5.48.

X-ray Crystallographic Studies of cis-2c and cis-2f. White crystals of cis-2c and cis-2f suitable for X-ray analysis were obtained by recrystallization from hexane and AcOEt, respectively. Both of the single crystals were sealed in a Pyrex glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of
crystal and data collection parameters are summarized in Tables 6 and 7. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of cis-2c and cis-2f is shown in Figures 2 and 3, respectively.

Figure 2. Crystal structure of cis-2c
Table 6. Summary of Crystallographic Data of cis-2c

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C₁₈H₂₂O₂</td>
</tr>
<tr>
<td>fw</td>
<td>270.37</td>
</tr>
<tr>
<td>crystal syst</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P2₁/n (No. 14)</td>
</tr>
<tr>
<td>cryst color</td>
<td>colorless</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>15.625(0)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>5.935(4)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>17.382(1)</td>
</tr>
<tr>
<td>(\beta) (Å)</td>
<td>106.92(9)</td>
</tr>
<tr>
<td>(V) (Å³)</td>
<td>1542.2(2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g cm(^{-3}))</td>
<td>1.164</td>
</tr>
<tr>
<td>(\mu) (Mo K(\alpha)) (cm(^{-1}))</td>
<td>0.74</td>
</tr>
<tr>
<td>(F(000))</td>
<td>584</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoK(\alpha) ((\lambda) = 0.71069 Å)</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>(\omega-2\theta)</td>
</tr>
<tr>
<td>Max. 2(\theta) (°)</td>
<td>55</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 127980; unique, 3275 ((R_{\text{int}} = 0.025))</td>
</tr>
<tr>
<td>no. of observns ((I > 3.00\sigma(I)))</td>
<td>2004</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least squares</td>
</tr>
<tr>
<td>no. of variables</td>
<td>260</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>7.71</td>
</tr>
<tr>
<td>residuals: (R : R_w)</td>
<td>0.046; 0.043</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>1.72</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.09</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å(^{-3}))</td>
<td>0.18</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å(^{-3}))</td>
<td>-0.15</td>
</tr>
</tbody>
</table>
Figure 3. Crystal structure of cis-2f
Table 7. Summary of Crystallographic Data of *cis-2f*

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C${19}$H${18}$O$_2$</td>
</tr>
<tr>
<td>fw</td>
<td>278.35</td>
</tr>
<tr>
<td>crystal syst</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>$P2_1$ (No. 4)</td>
</tr>
<tr>
<td>cryst color</td>
<td>colorless</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>8.115(9)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.330(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.366(1)</td>
</tr>
<tr>
<td>β (Å)</td>
<td>97.600(8)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>778.(0)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>D_{calc} (g cm$^{-3}$)</td>
<td>1.188</td>
</tr>
<tr>
<td>μ(Mo Kα) (cm$^{-1}$)</td>
<td>0.76</td>
</tr>
<tr>
<td>F(000)</td>
<td>296</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoKα ($\lambda = 0.71069$ Å)</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>$\omega-2\theta$</td>
</tr>
<tr>
<td>Max. 2θ ($)</td>
<td>54.7</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 6774; unique, 1863 ($R_{int} = 0.022$)</td>
</tr>
<tr>
<td>no. of observns ($I > 3.00\sigma(I)$)</td>
<td>1649</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least squares</td>
</tr>
<tr>
<td>no. of variables</td>
<td>253</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>6.52</td>
</tr>
<tr>
<td>residuals: R; R_w</td>
<td>0.042; 0.048</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>3.43</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.08</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å$^{-3}$)</td>
<td>0.15</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å$^{-3}$)</td>
<td>-0.16</td>
</tr>
</tbody>
</table>
References and Notes

(8) There are many reports on generation of carbene complexes such as Dötz reaction via metathesis between alkynes and carbene complexes. For reviews on enyne metathesis, see: (a) Poulsen, C. S.; Madsen, R. *Synthesis* **2003**, 1 and references therein. (b) Mori, M. *Top. Organomet. Chem.* **1998**, *1*, 133.

(15) In PtCl₂-catalyzed case, cyclopropanation in DCE resulted in lower yield of **2a** (74%) together with a substantial amount of allenyl acetate (23%).

(16) Almost all of cyclopropanes could not be easily separated by column chromatography. Each pure isomer was separated by GPC (gel permeation chromatography) on CHCl₃. Purification details are shown in Experimental Section.

(17) Geometry of an alkenic part in the major product _cis-_**2f** was assigned to _Z_ by X-ray diffraction analysis (see Experimental Section). Since the NMR data of _trans-_**2f** are similar to that of _cis-_**2f** with an exception of cyclopropane ring assignment, we assume that the geometry in _trans-_**2f** would be also _Z_.

(18) The reaction of **1f** with styrene in DCE was not complete even after 36 h.

(19) Takahashi _et al._ have already reported that cyclopropylketones were obtained from propargylic alcohols and norbornene in the presence of [Cp’Ru(CH₃CN)₃]PF₆ catalyst.

(20) Oxidative addition of propargylic acetate to a ruthenium complex leading to _σ_-allenylruthenium acetate **E** followed by transposition of an acetate group from **E**.
ruthenium to C-2 of \(\sigma \)-allenyl ligand is another possible route to the vinylcarbenoid. However, experimental results of no formation of crossover products also rule out such route where the acetoxy group might liberate in the system.

![Chemical structure](image)

(22) The reaction of trans-2r or trans-2s in toluene at 120 °C did not produce 5r or 5s after stirring for 24 h. The results as well as \(^1\)H NMR spectrum of 2r or 2s might support the configuration of trans-cyclopropane.

(24) *Syn* stereochemistry of *2t* was more clearly determined by NOE analysis. Thus, percentage increments (6% and 5%) in the area intensities of vinyl protons on a cyclopropane ring were observed by irradiation at two methyl groups of an isopropylidene of *2t*, respectively.

Chapter 10

Ruthenium-Catalyzed Ring-Opening Reactions of Heteroaromatic Compounds Using Propargylic Carboxylates as Precursors of Vinylcarbenoids

Abstract

The reaction of heteroaromatic compounds with propargylic acetates in the presence of a catalytic amount of [RuCl$_2$(CO)$_3$]$_2$ gives trienes in good yields. The key intermediate of this reaction is (1-acetoxyvinyl)carbene complex generated by the nucleophilic attack of a carbonyl oxygen to an internal alkyne carbon of the activated propargylic acetates. The reaction of benzofuran with the acetates produces cyclopropanated products and formal insertion products instead of trienes. Trienes and formal insertion products would be produced through an electrophilic attack of the charge separated ruthenium carbenoid species.
Introduction

Rhodium(II) acetate which is one of superior catalysts for the *in situ* generation of transient electrophilic carbenoids from α-diazocarbonyl compounds effectively catalyzes various inter- or intramolecular carbenoid transfer reactions.\(^1\) The reactions of transient electrophilic carbenoids with furan and 2-alkylfuran have been found to serve as one of the most convenient routes to 1,6-dioxo-2,4-diene derivatives,\(^2\) which have been applied to the synthesis of a number of natural products\(^3\) and heterocyclic systems.\(^4\) Recently, much attention has been paid to activation of alkynes with transition metal complexes as an alternative route to generate carbenoid species.\(^5-10\) The author has already demonstrated the *in situ* generation of furylcarbenoids A from ene-yne-ketones (Scheme 1a, Chapter 3) and vinylcarbenoids B from propargylic carboxylates (Scheme 1b, Chapter 9), and their application to catalytic carbene transfer reactions.\(^11\) Further investigation based on the generation of vinylcarbenoids B led him to find the catalytic ring-opening reaction of heteroaromatic compounds as carbenoid acceptors (Scheme 2).

Scheme 1

![Scheme 1](image1.png)

Scheme 2

![Scheme 2](image2.png)
Results and Discussion

At first, when the reaction of 2-methyl-3-butyn-2-yl acetate (1a) with 5 equiv of furan in dichloroethane (DCE) was carried out in the presence of [RuCl₂(CO)₃]₂ (2.5 mol%) under the effective conditions for catalytic cyclopropanation via vinylcarbene complexes, triene (2E, 4E)-2a was obtained in 62% yield (eq 1). Next, the author examined carefully the

![Chemical structure of 1a reacting with 5 equiv of furan](1a + (5 equiv) → 2a (62%))

Next, the author examined carefully the reaction of 2-methoxyfuran with propargylic acetate 1a in order to find optimized reaction conditions. The results are summarized in Table 1. In contrast with the reaction of furan shown in eq 1, the reaction of 2-methoxyfuran gave a mixture of trienes (2Z, 4E)-3a and (2Z, 4Z)-4a (entry 1). It was found that the ring-opening reaction took place with good chemical yield by heating a solution of 1a and 2-methoxyfuran (1.5 equiv) in DCE (2.5 mL) at 50 °C in the presence of 2.5 mol% ruthenium catalyst (entry 3). Under this condition, the reactions of

<table>
<thead>
<tr>
<th>entry</th>
<th>cat. (mol%)</th>
<th>n (equiv)</th>
<th>DCE (mL)</th>
<th>isolated yield</th>
<th>ratio (3a:4a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>5.0</td>
<td>2.5</td>
<td>82%</td>
<td>38:62</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>2.0</td>
<td>2.5</td>
<td>85%</td>
<td>41:59</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>2.5</td>
<td>86%</td>
<td>42:58</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>1.2</td>
<td>2.5</td>
<td>80%</td>
<td>44:56</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.5</td>
<td>62%</td>
<td>38:62</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>1.5</td>
<td>1.0</td>
<td>84%</td>
<td>41:59</td>
</tr>
</tbody>
</table>

*The reaction of propargylic acetate 1a (0.5 mmol) with 2-methoxyfuran (0.6-2.5 mmol) in DCE was carried out under N₂ in the presence of a catalytic amount of [RuCl₂(CO)₃]₂.
2-methoxyfuran with other propargylic carboxylates were next examined, and the results are summarized in Table 2. The reaction of propargylic benzoate 1b with 2-methoxyfuran also gave a mixture of trienes (2Z, 4E)-3b and (2Z, 4Z)-4b in 86% total yield (3b:4b = 43:57) (entry 1). From cyclic acetates 1c, 1d, and 1e, the corresponding products 3c/4c, 3d/4d, and 3e/4e were obtained in 83%, 86%, and 89% total yields, respectively (entries 2, 3 and 4). In the case of the reaction of secondary propargylic acetate 1f, a mixture of 3f and 4f was obtained in 44% total yield with 57:43 diastereomeric ratio. Primary propargylic benzoate

<table>
<thead>
<tr>
<th>entry</th>
<th>product</th>
<th>isolated yield</th>
<th>ratio (3:4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>86%</td>
<td>43:57</td>
</tr>
<tr>
<td>2</td>
<td>1c</td>
<td>83%</td>
<td>39:61</td>
</tr>
<tr>
<td>3</td>
<td>1d</td>
<td>86%</td>
<td>62:38</td>
</tr>
<tr>
<td>4</td>
<td>1e</td>
<td>89%</td>
<td>50:50</td>
</tr>
<tr>
<td>5</td>
<td>1f</td>
<td>44%</td>
<td>57:43</td>
</tr>
</tbody>
</table>

Table 2. Ru-Catalyzed Ring-Opening Reaction of 2-Methoxyfuran with Propargylic Carboxylates

The reaction of propargylic carboxylate 1 (0.5 mmol) with 2-methoxyfuran (0.75 mmol) in DCE was carried out under N₂ in the presence of a catalytic amount of [RuCl₂(CO)₃]₂.
was less reactive and the formation of the corresponding product was scarcely detected even after 48 h. The reaction of 1a with 2-methylfuran gave triene (2Z, 4E)-5 exclusively in 78% yield (eq 2). The reaction of 2-methoxythiophene gave triene (2E, 4E)-6 in 61% yield (eq 3). From benzofuran, tricyclic cyclopropane 7 and 3-substituted benzofuran derivative 8 were obtained in 19% and 32% yields, respectively, and the triene was not obtained at all in this case (eq 4). The reaction of 1a with 2,5-dimethylfuran gave 3-substituted-2,5-dimethylfuran 9 selectively in 50% yield (eq 5).

\[
\begin{align*}
1a + \text{2.5 mol\% } [\text{RuCl}_2(\text{CO})_3]_2 & \quad \text{DCE, 50 °C, 18 h} \quad (\text{5 equiv}) \\
\text{5 (78\%)} \\
1a + \text{2.5 mol\% } [\text{RuCl}_2(\text{CO})_3]_2 & \quad \text{DCE, 50 °C, 18 h} \quad (\text{5 equiv}) \\
\text{6 (61\%)} \\
1a + \text{2.5 mol\% } [\text{RuCl}_2(\text{CO})_3]_2 & \quad \text{DCE, 50 °C, 18 h} \quad (\text{5 equiv}) \\
\text{7 (19\%)} & + \text{8 (32\%)} \\
1a + \text{2.5 mol\% } [\text{RuCl}_2(\text{CO})_3]_2 & \quad \text{DCE, 50 °C, 18 h} \quad (\text{5 equiv}) \\
\text{9 (50\%)}
\end{align*}
\]

The plausible reaction pathway to account for the formation of these products involving trienes, cyclopropanes, and substituted products is shown in Scheme 3. A ruthenium-carbenoid formation is the first step which is followed by nucleophilic attack of a double bond in a heteroaromatic compound to the carbenoid carbon. In the latter step, two pathways for carbon-carbon bond formation with the carbenoid species would be anticipated. The bond formation at 2- or 3-position of a heteroaromatic compound gives cationic intermediates.
II, respectively. The charge-separated intermediate I successively undergoes ring-opening (step a) and cyclopropanation (step b) leading to trienes and cyclopropanes IV, respectively. Sigmatropic rearrangement of cyclopropanes IV (step c) may also be responsible to the triene formation. The charge-separated intermediate II allows mainly hydride shift and aromatization (step d) to produce 3-substituted products. Reactions of benzofuran and 2,5-dimethylfuran favor the intermediary of II probably due to the stability of the carbocation and the sterical preference. It appears reasonable to attribute the configuration of triene double bonds to their thermodynamic stability, whereas Z configuration of 2-position stems from the possible bond cleavage in a five-membered cyclic structure such as an intermediate III or an initially formed cyclopropane IV.
Experimental

General Procedure. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ with Me₄Si as an internal standard (¹H and ¹³C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded on an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University. All new compounds prepared were fully characterized.

Typical Procedure for Ruthenium-Catalyzed Ring-Opening Reactions of Heteroaromatics. The complex [RuCl₂(CO)₃]₂ (2.6 mg, 0.010 mmol) was placed in the flame dried Schlenk flask under N₂. A solution of substrate 1 (0.20 mmol) and heteroaromatic compound (0.24-1.0 mmol) in DCE (1.0 mL) was added to the flask at room temperature. After stirring at 50 °C, the solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ (hexane/AcOEt = 15/1 – 4/1).

Triene (2E, 4E)-2a.

A colorless solid (62% yield); mp. 103.0-103.8 °C;

IR (KBr) 532, 594, 878, 948, 987, 1013, 1115, 1167, 1183, 1202, 1215, 1371, 1443, 1604, 1679, 1743 (C=O), 2916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.74 (s, 3H), 1.97 (s, 3H), 2.29 (s, 3H), 6.17 (dd, J = 7.6, 15.2 Hz, 1H), 6.26 (dd, J = 11.2, 15.2 Hz, 1H), 6.91 (d, J = 15.2 Hz, 1H), 7.17 (dd, J = 11.2, 15.2 Hz, 1H), 9.56 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 19.3, 19.3, 20.5, 124.3, 131.6, 132.0, 132.2, 140.4, 151.4, 193.2. Anal. Calcd for C₁₁H₁₄O₃:
C, 68.02; H, 7.27. Found: C, 67.87; H, 7.37.

Trienes (2Z,4E)-3a and (2Z,4Z)-4a.

(2Z, 4E)-3a: A white solid; mp. 83.0-85.0 °C; IR (KBr) 821, 962, 1003, 1021, 1177, 1196, 1218, 1234, 1377, 1412, 1439, 1577, 1609, 1715 (C=O), 1748 (C=O), 2950 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.73 (s, 3H), 1.93 (s, 3H), 2.31 (s, 3H), 3.72 (s, 3H), 5.66 (d, J = 11.6 Hz, 1H), 6.64 (dd, J = 11.6, 11.6 Hz, 1H), 6.70 (d, J = 15.2 Hz, 1H), 7.42 (dd, J = 11.6, 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 19.1, 19.2, 20.6, 51.1, 117.0, 123.2, 129.8, 130.9, 140.7, 144.2, 166.6, 168.8. (2Z, 4Z)-4a: A colorless oil; IR (neat) 684, 756, 817, 888, 1011, 1099, 1109, 1177, 1195, 1209, 1370, 1441, 1611, 1716 (C=O), 1759 (C=O), 2951 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.69 (s, 3H), 1.82 (s, 3H), 2.18 (s, 3H), 3.73 (s, 3H), 5.73 (d, J = 11.6 Hz, 1H), 6.36 (d, J = 11.6 Hz, 1H), 7.13 (dd, J = 11.6, 12.0 Hz, 1H), 7.27 (dd, J = 11.6, 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 18.5, 19.7, 20.7, 51.2, 118.5, 124.3, 127.9, 128.5, 139.7, 139.9, 166.4, 168.4. HRMS (FAB): calcd for C₁₂H₁₇O₄ (a mixture of 3a and 4a) (M+H⁺), 225.1127; found, 225.1124.

Trienes (2Z,4E)-3b and (2Z,4Z)-4b.

(2Z, 4E)-3b: A pale yellow oil; IR (neat) 711, 820, 1065, 1092, 1176, 1195, 1247, 1288, 1438, 1451, 1613, 1713 (C=O), 1732 (C=O), 2949 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 1.77 (s, 3H), 2.00 (s, 3H), 3.48 (s, 3H), 5.62 (d, J = 11.4 Hz, 1H), 6.65 (dd, J = 11.4, 11.4 Hz, 1H), 6.80 (d, J = 15.0 Hz, 1H), 7.39 (dd, J = 11.4, 15.0 Hz, 1H), 7.51 (dd, J = 8.1, 8.1 Hz, 2H), 7.60-7.66 (m, 1H), 8.20-8.23 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 19.2, 19.2, 50.8, 117.5, 123.5, 128.6, 129.3, 130.1, 130.1, 131.0, 133.4, 140.8, 143.8, 164.4, 166.6. (2Z, 4Z)-4b: A colorless oil; IR (neat) 710, 802, 1024, 1068, 1086, 1108, 1159, 1175, 1194, 1244,
1273, 1451, 1609, 1716 (C=O), 1737 (C=O), 2949 cm⁻¹; \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.74 (s, 3H), 1.89 (s, 3H), 3.69 (s, 3H), 5.58 (d, \(J = 11.7\) Hz, 1H), 6.46 (d, \(J = 11.7\) Hz, 1H), 7.15 (dd, \(J = 11.7, 11.7\) Hz, 1H), 7.32 (dd, \(J = 11.7, 11.7\) Hz, 1H), 7.46-7.51 (m, 2H), 7.59-7.65 (m, 1H), 8.12-8.15 (m, 2H); \(^1\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 18.5, 19.7, 51.1, 118.6, 124.5, 127.8, 128.6, 128.8, 129.3, 129.9, 133.5, 139.9, 139.9, 164.2, 166.5. Anal. Calcd for C\(_{19}\)H\(_{18}\)O\(_4\) (a mixture of 3b and 4b): C, 71.31; H, 6.34. Found: C, 71.28; H, 6.45.

Trienes (2Z,4E)-3c and (2Z,4Z)-4c.

(2Z, 4E)-3c: A pale yellow oil; IR (neat) 820, 1017, 1209, 1371, 1439, 1610, 1713 (C=O), 1759 (C=O), 2855, 2933 cm⁻¹; \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.56-1.69 (m, 6H), 2.12-2.17 (m, 2H), 2.31 (s, 3H), 2.36-2.41 (m, 2H), 3.72 (s, 3H), 5.65 (d, \(J = 11.4\) Hz, 1H), 6.64 (dd, \(J = 11.4, 11.4\) Hz, 1H), 6.75 (d, \(J = 15.0\) Hz, 1H), 7.45 (dd, \(J = 11.4, 15.0\) Hz, 1H); \(^1\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 20.5, 26.2, 27.1, 27.6, 29.1, 29.5, 51.1, 116.9, 123.5, 130.7, 137.6, 137.9, 144.4, 166.7, 169.1. (2Z, 4Z)-4c: A white solid; mp. 73.6-75.3 °C; IR (KBr) 824, 116Q, 1178, 1206, 1239, 1371, 1443, 1597, 1712 (C=O), 1760 (C=O), 2935 cm⁻¹; \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.54-1.69 (m, 6H), 2.10-2.18 (m, 2H), 2.17 (s, 3H), 2.19-2.25 (m, 2H), 3.72 (s, 3H), 5.72 (d, \(J = 11.4\) Hz, 1H), 6.35 (d, \(J = 11.4\) Hz, 1H), 7.15 (dd, \(J = 11.4, 11.4\) Hz, 1H), 7.32 (dd, \(J = 11.4, 11.4\) Hz, 1H); \(^1\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 20.7, 26.1, 27.0, 27.3, 28.2, 29.8, 51.2, 118.4, 125.0, 128.0, 135.6, 136.5, 140.2, 166.6, 168.7. Anal. Calcd for C\(_{19}\)H\(_{20}\)O\(_4\) (a mixture of 3c and 4c): C, 68.16; H, 7.63. Found: C, 67.98; H, 7.53.
Trienes \((2Z,4E)-3d\) and \((2Z,4Z)-4d\).

\((2Z, 4E)-3d\): A colorless oil; IR (neat) 820, 1018, 1028, 1159, 1174, 1199, 1268, 1371, 1437, 1611, 1713 (C=O), 1759 (C=O), 2871, 2952 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.64-1.82 (m, 4H), 2.24-2.34 (m, 2H), 2.28 (s, 3H), 2.45-2.55 (m, 2H), 3.72 (s, 3H), 5.65 (d, \(J = 11.4\) Hz, 1H), 6.52 (d, \(J = 15.3\) Hz, 1H), 6.63 (dd, \(J = 11.4, 11.4\) Hz, 1H), 7.39 (dd, \(J = 11.4, 15.3\) Hz, 1H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 20.5, 25.9, 26.7, 29.9, 30.5, 51.1, 116.9, 122.3, 132.6, 138.2, 142.3, 144.3, 166.8, 168.7. **(2Z, 4Z)-4d**: A white solid; mp. 58.0-60.5 °C; IR (KBr) 809, 1008, 1148, 1174, 1193, 1205, 1222, 1378, 1444, 1608, 1714 (C=O), 1741 (C=O), 2956 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.64-1.79 (m, 4H), 2.19 (s, 3H), 2.23-2.30 (m, 2H), 2.41-2.47 (m, 2H), 3.72 (s, 3H), 5.66-5.75 (m, 1H), 6.22-6.32 (m, 1H), 7.15-7.25 (m, 2H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 20.8, 25.9, 26.7, 30.2, 30.4, 51.2, 118.3, 122.4, 128.4, 138.2, 139.8, 142.4, 166.6, 168.2. Anal. Calcd for C\(_{14}\)H\(_{18}\)O\(_4\) (a mixture of 3d and 4d): C, 67.18; H, 7.25. Found: C, 66.92; H, 7.21.

Trienes \((2Z,4E)-3e\) and \((2Z,4Z)-4e\).

\((2Z, 4E)-3e\): A pale yellow oil; IR (neat) 820, 1000, 1027, 1174, 1198, 1229, 1370, 1439, 1613, 1713 (C=O), 1760 (C=O), 2952 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 2.07 (tt, \(J = 8.4, 8.4\) Hz, 2H), 2.26 (s, 3H), 2.67-2.74 (m, 2H), 2.89-2.95 (m, 2H), 3.72 (s, 3H), 5.65 (d, \(J = 11.4\) Hz, 1H), 6.30 (d, \(J = 15.0\) Hz, 1H), 6.60 (dd, \(J = 11.4, 11.4\) Hz, 1H), 7.38 (dd, \(J = 11.4, 15.0\) Hz, 1H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 16.6, 20.5, 28.4, 28.7, 51.1, 117.0, 122.0, 131.0, 138.2, 139.9, 144.2, 166.8, 168.4. **(2Z, 4Z)-4e**: A pale yellow oil; IR (neat) 813, 1001, 1025, 1056, 1114, 1173, 1190, 1215, 1370, 1446, 1608, 1715 (C=O), 1760 (C=O), 2952 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 2.04 (tt, \(J = 8.4, 8.4\) Hz, 2H), 2.18 (s, 3H), 5.65 (d, \(J = 11.4\) Hz, 1H), 6.30 (d, \(J = 15.0\) Hz, 1H), 6.60 (dd, \(J = 11.4, 11.4\) Hz, 1H), 7.38 (dd, \(J = 11.4, 15.0\) Hz, 1H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 16.6, 20.5, 28.4, 28.7, 51.1, 117.0, 122.0, 131.0, 138.2, 139.9, 144.2, 166.8, 168.4.
2.64-2.70 (m, 2H), 2.81-2.88 (m, 2H), 3.72 (s, 3H), 5.65-5.75 (m, 1H), 6.00-6.09 (m, 1H), 7.13-7.23 (m, 2H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 16.4, 20.8, 28.6, 28.9, 51.2, 118.2, 122.2, 126.6, 138.4, 139.7, 140.1, 166.6, 167.9. Anal. Calcd for C\(_{13}\)H\(_{16}\)O\(_4\) (a mixture of 3e and 4e): C, 66.09; H, 6.83. Found: C, 65.70; H, 6.82.

Trienes (2Z,4E)-3f and (2Z,4Z)-4f.

(2Z, 4E)-3f: A white solid; mp. 95.7-97.2 °C; IR (KBr) 692, 758, 819, 1013 1176, 1199, 1211, 1442, 1610, 1628, 1713 (C=O), 1762 (C=O) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 2.38 (s, 3H), 3.73 (s, 3H), 5.73 (d, \(J = 11.4\) Hz, 1H), 6.38 (s, 1H), 6.49 (d, \(J = 15.3\) Hz, 1H), 6.65 (dd, \(J = 11.4, 11.4\) Hz, 1H), 7.24-7.37 (m, 3H), 7.47 (d, \(J = 7.2\) Hz, 2H), 7.62 (dd, \(J = 11.4, 15.3\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 20.9, 51.2, 118.2, 124.2, 125.3, 128.4, 128.7, 129.0, 133.8, 135.6, 143.3, 145.6, 166.6, 168.1. (2Z, 4Z)-4f: A pale yellow solid; mp. 72.8-75.5 °C; IR (KBr) 692, 758, 818, 998, 1012, 1176, 1199, 1211, 1442, 1610, 1627, 1712 (C=O), 1761 (C=O) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 2.25 (s, 3H), 3.74 (s, 3H), 5.79 (d, \(J = 11.1\) Hz, 1H), 6.25-6.28 (m, 1H), 6.32 (s, 1H), 7.24-7.39 (m, 5H), 7.42-7.47 (m, 2H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 21.2, 51.3, 119.6, 124.6, 125.7, 128.4, 128.6, 128.9, 131.4, 133.7, 138.9, 145.3, 166.5, 167.7. Anal. Calcd for C\(_{16}\)H\(_{16}\)O\(_4\) (a mixture of 3f and 4f): C, 70.57; H, 5.92. Found: C, 70.28; H, 5.88.

Triene (2Z, 4E)-5.

A white solid; mp. 53.4-55.0 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\), 25 °C) \(\delta\) 1.72 (s, 3H), 1.95 (s, 3H), 2.27 (s, 3H), 6.15 (dd, \(J = 11.1, 15.0\) Hz, 1H), 6.16 (d, \(J = 15.3\) Hz, 1H), 6.85 (d, \(J = 15.0\) Hz, 1H), 7.19 (dd, \(J = 11.1, 15.3\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 25 °C) \(\delta\) 19.1, 19.1, 20.4, 27.3, 105.8, 124.8, 130.5, 131.2, 140.5, 142.9, 168.6, 198.2. Anal. Calcd for C\(_{12}\)H\(_{16}\)O\(_3\): C, 69.21; H, 7.74. Found: C, 69.01; H, 7.59.
Triene (2E, 4E)-6.

An orange solid; mp. 94.3-95.0 °C; IR (KBr) 514, 603, 746, 881, 946, 981, 1004, 1015, 1133, 1164, 1181, 1199, 1212, 1227, 1273, 1333, 1377, 1433, 1581, 1597, 1757 (C=O), 2941, 2993 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.70 (s, 3H), 1.92 (s, 3H), 2.26 (s, 3H), 4.12 (s, 3H), 6.14 (dd, J = 11.2, 15.2 Hz, 1H), 6.47 (d, J = 15.2 Hz, 1H), 6.46 (d, J = 15.2 Hz, 1H), 7.40 (dd, J = 11.2, 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 19.1, 19.2, 20.4, 58.3, 124.8, 124.8, 130.1, 131.2, 131.7, 140.7, 168.3, 210.3. Anal. Calcd for C₁₂H₁₆O₃S: C, 59.97; H, 6.71. Found: C, 59.71; H, 6.60.

Cyclopropane 7.

A colorless oil; IR (neat) 749, 830, 1001, 1015, 1046, 1103, 1118, 1218, 1229, 1262, 1367, 1464, 1477, 1745 (C=O), 2917 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.34 (d, J = 1.6 Hz, 3H), 1.75 (s, 3H), 2.02 (s, 3H), 2.04-2.11 (m, 1H), 2.97 (dd, J = 5.2, 9.2 Hz, 1H), 4.89 (dd, J = 5.2, 5.2 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.86 (dd, J = 7.6, 7.6 Hz, 1H), 7.09 (dd, J = 7.6, 7.6 Hz, 1H), 7.26 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 17.3, 17.4, 18.8, 20.7, 26.6, 65.5, 109.3, 120.4, 124.5, 125.0, 127.0, 127.1, 135.0, 159.9, 169.3. Anal. Calcd for C₁₅H₁₆O₃: C, 73.75; H, 6.60. Found: C, 73.85; H, 6.66.

3-Substituted benzofuran 8.

A colorless oil; IR (neat) 751, 1011, 1102, 1144, 1168, 1215, 1255, 1369, 1455, 1587, 1601, 1755 (C=O), 2920 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.64 (s, 3H), 1.83 (s, 3H), 2.09 (s, 3H), 3.76 (s, 2H), 6.45 (s, 1H), 7.15-7.24 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.46-7.49 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 17.9, 18.9, 20.7, 29.6, 103.3, 110.8, 120.3, 121.8, 122.4, 123.3, 128.6, 137.7, 154.8, 154.9, 169.2. Anal. Calcd for C₁₅H₁₆O₅: C, 73.75; H, 6.60. Found: C, 73.70; H, 6.63.
3-Substituted-2,5-dimethylfuran 9.

A colorless oil; IR (neat) 791, 925, 1010, 1077, 1120, 1142, 1217, 1254, 1369, 1435, 1583, 1748 (C=O), 2921 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) δ 1.57 (s, 3H), 1.79 (s, 3H), 2.08 (s, 3H), 2.15 (s, 3H), 2.20 (s, 3H), 3.25 (s, 2H), 5.74 (s, 1H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), 25 °C) δ 11.3, 13.5, 17.7, 18.7, 20.7, 25.5, 107.4, 115.6, 118.9, 141.1, 145.7, 149.2, 169.1. Anal. Calcd for C\(_{13}\)H\(_{18}\)O\(_3\): C, 70.24; H, 8.16. Found: C, 70.11; H, 8.18.

X-ray Crystallographic Studies of (2Z, 4E)-3a and (2E, 4E)-6. Colorless crystals of (2Z, 4E)-3a and (2E, 4E)-6 suitable for X-ray analysis were obtained by recrystallization from AcOEt-hexane. Both of the single crystals were sealed in a Pyrex glass capillary under N\(_2\) atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-K\(\alpha\) radiation. Details of crystal and data collection parameters are summarized in Tables 1 and 2. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY).\(^\text{13}\) An ORTEP drawing of (2Z, 4E)-3a and (2E, 4E)-6 is shown in Figures 1 and 2.
Figure 1. Crystal structure of (2Z, 4E)-3a

Figure 2. Crystal structure of (2E, 4E)-6
Table 1. Summary of Crystallographic Data of (2Z, 4E)-3a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C_{12}H_{16}O_{4}</td>
</tr>
<tr>
<td>fw</td>
<td>224.26</td>
</tr>
<tr>
<td>crystal syst</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1 (No. 2)</td>
</tr>
<tr>
<td>cryt color</td>
<td>colorless, platelet</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.864(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.025(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.013(1)</td>
</tr>
<tr>
<td>α (Å)</td>
<td>76.782(3)</td>
</tr>
<tr>
<td>β (Å)</td>
<td>75.253(8)</td>
</tr>
<tr>
<td>γ (Å)</td>
<td>80.105(6)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1294.(9)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³)</td>
<td>1.150</td>
</tr>
<tr>
<td>μ(Mo Kα) (cm⁻¹)</td>
<td>0.86</td>
</tr>
<tr>
<td>F(000)</td>
<td>480</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoKα (λ = 0.71069 Å)</td>
</tr>
<tr>
<td></td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>ω-2θ</td>
</tr>
<tr>
<td>Max. 2θ (°)</td>
<td>55</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 9138</td>
</tr>
<tr>
<td>no. of observsn (I > 3.00σ(I))</td>
<td>2830</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least-squares on F</td>
</tr>
<tr>
<td>no. of variables</td>
<td>345</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>8.20</td>
</tr>
<tr>
<td>residuals: R; R_w</td>
<td>0.066; 0.070</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>0.28</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.36</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å⁻³)</td>
<td>0.26</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å⁻³)</td>
<td>-0.23</td>
</tr>
</tbody>
</table>
Table 2. Summary of Crystallographic Data of (2E, 4E)-6

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C_{12}H_{16}O_{3}S</td>
</tr>
<tr>
<td>fw</td>
<td>240.32</td>
</tr>
<tr>
<td>crystal syst</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1 (No. 2)</td>
</tr>
<tr>
<td>crystal color</td>
<td>orange, platelet</td>
</tr>
<tr>
<td>lattice params</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>5.787(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.636(0)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.477(2)</td>
</tr>
<tr>
<td>α (Å)</td>
<td>93.18(1)</td>
</tr>
<tr>
<td>β (Å)</td>
<td>95.00(1)</td>
</tr>
<tr>
<td>γ (Å)</td>
<td>94.36(3)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>667.7(7)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³)</td>
<td>1.195</td>
</tr>
<tr>
<td>μ(Mo Kα) (cm⁻¹)</td>
<td>2.33</td>
</tr>
<tr>
<td>F(000)</td>
<td>256</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>radiation</td>
<td>MoKα (λ = 0.71069 Å)</td>
</tr>
<tr>
<td></td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>temp (°C)</td>
<td>23.0</td>
</tr>
<tr>
<td>scan type</td>
<td>Ω-2θ</td>
</tr>
<tr>
<td>Max. 2θ (°)</td>
<td>55</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>total, 4547</td>
</tr>
<tr>
<td>no. of observns (I > 3.00σ(I))</td>
<td>1806</td>
</tr>
<tr>
<td>structure soln</td>
<td>direct methods (SIR92)</td>
</tr>
<tr>
<td>refinement</td>
<td>full-matrix least-squares on F</td>
</tr>
<tr>
<td>no. of variables</td>
<td>191</td>
</tr>
<tr>
<td>reflection/parameter ratio</td>
<td>9.46</td>
</tr>
<tr>
<td>residuals: R; R_w</td>
<td>0.103; 0.111</td>
</tr>
<tr>
<td>goodness of fit (GOF)</td>
<td>5.43</td>
</tr>
<tr>
<td>max shift/error in final cycle</td>
<td>0.02</td>
</tr>
<tr>
<td>maximum peak in final diff map (e Å⁻³)</td>
<td>0.46</td>
</tr>
<tr>
<td>minimum peak in final diff map (e Å⁻³)</td>
<td>-0.46</td>
</tr>
</tbody>
</table>
References and Notes

General Conclusion

In this thesis, new efficient catalytic reactions using alkyne-based transition metal-carbene and -vinylidene complexes have been studied. The results mentioned in three parts (ten chapters) of this thesis are summarized as follows.

In Part 1, which consists of two chapters, synthesis of 2-pyrynylidene complexes via electrocyclization of vinylidene-ene-carbonyl complexes (Chapter 1) and their application to catalytic transformation of ethynylcyclopropanes (Chapter 2) have been described. The catalytic valence isomerization reaction smoothly gave phenol derivatives in high yields under mild conditions. Seven-membered cyclic Fischer-type carbene complexes generated via vinylidene intermediates are proposed as plausible intermediates for the valence isomerism.

In Part 2, which consists of six chapters, synthesis and efficient application of (2-furyl) and (2-pyrrolyl)carbene complexes generated from ene-yne-ketones and ene-yne-imino compounds with various transition metal compounds have been described. Chapter 3 dealt with the stoichiometric synthesis of (2-furyl)carbene complexes from ene-yne-ketones with group 6 metal carbonyls. The key step of this carbenoid formation is 5-exo-dig cyclization caused by nucleophilic attack of a carbonyl oxygen at an internal alkyne carbon activated by group 6 transition metal compounds. In Chapter 4, group 6 transition metal-catalyzed cyclopropanation reaction of alkenes with ene-yne-ketones leading to furylcyclopropanes has been described. Various transition metal compounds have been proved to be effective for the catalytic cyclopropanation reactions. In Chapter 5, the rhodium-catalyzed cyclopropanation via the formation of (2-pyrrolyl)carbenoid as a nitrogen analogue of (2-furyl)carbenoid has been summarized. (2-Furyl)carbenoids generated in situ from ene-yne-ketones are also useful intermediates for other (2-furyl)carbene transfer reactions, such as σ-bond insertion reactions and ylide formation reactions, as shown in Chapters 6 and 7, respectively. Ene-yne-carbonyl compounds having an electron-withdrawing substituent at an alkyne terminus, which could be expected to enhance the electrophilicity of intermediary carbenoid species to
carbene acceptors, reacted efficiently rather than those having terminal alkynes to give carbenoid-insertion products. In Chapter 8, the results of application of the (2-furyl)carbene transfer reactions to polymer synthesis have been shown. The rhodium-catalyzed polymerizations of ene-yne-ketones having suitable functionalities as carbene acceptors gave furylcyclopropane- and furfurylidene-containing polymers. Unique structures of alternating copolymers having regularly embedded furylcyclopropanes or furfurylidenes would attract a great deal of interest in polymer chemistry.

In Part 3, which consists of two chapters, the catalytic reactions using propargylic carboxylates as vinylcarbenoid precursors have been summarized where the principle of 5-exo-dig cyclization mode of ene-yne-carbonyl compounds was extended successfully to the propargylic carboxylates to generate vinylcarbenoids. In Chapter 9, the efficient intermolecular catalytic cyclopropanation between alkenes and propargylic carboxylates has been described for the first time. In Chapter 10, the catalytic vinylcarbenoid transfer reactions to heteroaromatic compounds for the synthesis of functionalized trienes or alkylated heteroaromatics has been described.

The present studies on the in situ generation of carbenoid species from alkynes activated by transition metal compounds provide a variety of efficient carbene transfer reactions, and shall contribute to the development of organic synthesis as well as organometallic chemistry.
List of Publications

Part I Generation of Cyclic Fischer-Type Carbene Complexes from Vinlylidene Complexes and Their Application to Catalytic Reactions

Chapter 1 “Novel Pyranylidene-Complexes from Group 6 Transition Metals and β-Ethynyl α,β-Unsaturated Carbonyl Compounds”
Kouichi Ohe, Koji Miki, Tomomi Yokoi, Fumiaki Nishino, Sakae Uemura
Organometallics 2000, 19, 5525.

Kouichi Ohe, Tomomi Yokoi, Koji Miki, Fumiaki Nishino, Sakae Uemura

Part II Generation of (2-Furyl)carbene Complexes from π-Alkyne Complexes and Their Application to Catalytic Carbene Transfer Reactions

Chapter 3 “Synthesis of 2-Pyranylidene or (2-Furyl)carbene-Chromium Complexes from Conjugated Enyne Carbonyl Compounds with Cr(CO)5(THF)”
Koji Miki, Tomomi Yokoi, Fumiaki Nishino, Kouichi Ohe, Sakae Uemura

Chapter 4 “Novel Approach for Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne”
Koji Miki, Fumiaki Nishino, Kouichi Ohe, Sakae Uemura
Chapter 5 “Rhodium-Catalyzed Cyclopropanation with Ene-yne-imino Ether Compounds as Precursors of (2-Pyrrolyl)carbenoids”
Fumiaki Nishino, Koji Miki, Yumiko Kato, Kouichi Ohe, Sakae Uemura

Chapter 6 Chromium- and Rhodium-Catalyzed Insertion Reactions Using Ene-Yne-Carbonyl Compounds as Precursors of (2-Furyl)carbenoids
Yumiko Kato, Koji Miki, Fumiaki Nishino, Kouichi Ohe, Sakae Uemura
In preparation.

Chapter 7 “Doyle-Kirmse Reaction of Allylic Sulfides with Diazooalkane-Free (2-Furyl)carbenoid Transfer”
Yumiko Kato, Koji Miki, Fumiaki Nishino, Kouichi Ohe, Sakae Uemura

Chapter 8 “Polyaddition and Polycondensation Reactions of (2-Furyl)carbenoid as Step-Growth Polymerization Strategies: Synthesis of Furylecyclopropane- and Furfurylidene-Containing Polymers”
Koji Miki, Yosuke Washitake, Kouichi Ohe, Sakae Uemura
Submitted to Angew. Chem. Int. Ed.
Part III Transition Metal-Catalyzed Carbene Transfer Reactions Using Propargylic Carboxylates as Precursors of Vinylcarbenoids

Chapter 9 “A New Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Acetates as a Precursor of Vinylcarbenoids”
Koji Miki, Kouichi Ohe, Sakae Uemura

“Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Acetates as Precursors of Vinylcarbenoids”
Koji Miki, Kouichi Ohe, Sakae Uemura

Chapter 10 “Ruthenium-Catalyzed Ring-Opening Reactions of Heteroaromatic Compounds Using Propargylic Carboxylates as Precursors of Vinylcarbenoids”
Koji Miki, Michinobu Fujita, Kouichi Ohe, Sakae Uemura
In preparation.
Other Publications

The following publications are not included in this dissertation.

"Selective Conjugate Addition to Zerumbone and Transannular Cyclization of Its Derivatives"
Kouichi Ohe, Koji Miki, Shin-ichi Yanagi, Takumi Tanaka, Seiji Sawada, Sakae Uemura

"Catalytic Reactions via Carbene, Vinylidene, and Allenylidene Complexes through Activation of Alkynes with Transition Metal Complexes"
Kouichi Ohe, Koji Miki, Sakae Uemura
In preparation.

"Direct Generation of Alkylidene and Vinylidene Complexes from Alkynes as a New Tool for Catalytic Reactions"
Kouichi Ohe, Koji Miki, Sakae Uemura
Synlett
In preparation.
Acknowledgments

The present thesis is the summary of the author’s work investigated during April 1999 to October 2003 at the Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University.

The author would like to express his sincerest gratitude to Professor Sakae Uemura for his kind guidance, invaluable discussions, and continuous encouragement throughout the course of these studies. He is also grateful to Professor Take-aki Mitsudo and Professor Tamejiro Hiyama for their valuable comments and discussions. He would like to express his deepest gratitude to Associate Professor Kouichi Ohe for his helpful suggestions and stimulating discussions throughout the work.

The author is deeply grateful to Assistant Professor Yoshiaki Nishibayashi, Assistant Professor Takahiro Nishimura, Dr. Koji Yonehara, Mr. Takumi Tanaka, Mr. Shin-ichi Yanagi, and Dr. Yoshihiro Miyake for their hearty encouragement and helpful discussions.

The author wishes to express his appreciation to Mr. Tomomi Yokoi, Mr. Fumiaki Nishino, Ms. Yumiko Kato, Mr. Yosuke Washitake, and Mr. Michinobu Fujita for their active and valuable collaboration, and also to all members of Professor Sakae Uemura’s research group.

The author thanks Professor Yoshiki Chujo, Associate Professor Kensuke Naka, and Mr. Tomokazu Umeyama for their helpful discussion and assistance with GPC and fluorescence analyses.

Finally, the author sincerely thanks his family, Mrs. Kimi Miki, Mr. Hiroshi Miki, Mrs. Takako Miki, Mr. Takayuki Miki, Ms. Chika Miki, and Ms. Makiko Miki for their constant assistance and encouragement.

October 2003

Koji Miki