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SUMMARY

Synthetic studies of sampled-data control system are dealt in this
paper. The first five chapters are concerned with linear systems and
the remainder with non-linear systems.

It is the main purpose of Chapter 1'to show an evaluating methed

. of the quadratic control area of sampled-data control systems using the

advanced Z transform method. As one of direct methods of evaluating
the quadratic control area, the integrated-square error is alsé calcu-
lated in this chapter. The influence of the sampling period upon the
control performance.( stability, guadratic control area and integrat-
ed-gquare error ) is discussed in Chapter 2 using results of Chapter_
L. As ﬁhe results, it can be sh§Wn that there exists the optimum
value of the sampling period. This investigation is performed as the
first step for the development of many point control systems.

The following three chapters deal with finife—settliﬁg—time systems.
In Chapter 3 the synthesis of the systems by the method of minimizing
the integrated-square error is discussed. The case of finite-settling-
time system with a stationay random noise treated statistically by the
R.5.M.~Criterion in Chapter 4; In addition, when the system designed
statistically is exited by step, ramp and scceleration inputs, the
integrated-gguare error of the system is also considered in this chapter.
Chepter 5 is devoted to the fundamantal study of tﬁe finite~settiing—
time response. In order to make the mechanism of guch response clear,
the indicigl response of the controlled element is investigated in the
time domain. |

In Chapter 6, the evaluating method of the response of non~linear
sampled-data control Systems is described and the method can be also

applied to the continuous control system with non-linesr elements.



The experimental results for response of the control system wﬁth3$he
optimum non-linear controller using sampled-data iéldescribedSin‘bhapter
7 and the method proposed in Chapter 6 is used for determining‘the

optimum switching line of the system.
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Chapter 1

QUADRATIC CONTROL AREA OF SAMPLED DATA CONTROL SYSTEMS
1.1 Introduction

As a useful criterion for sampled data control systemé, we often
employ the method of the quadratic control area. In sampled data
control systems, this quantity can be obtained by using the advanced 7
transform method.,

Let e(t) be the control error, then the quadratic control area is

of the form

So{e(t) }2 dt (1.1)

0

This integral can be expressed as follows:

JERFECERVA 2 (1.2)
2 eft)p°dt .
n-:.o‘ll‘lto { ( )}

where tg is the sampling period. Transforming the integral variable

t to A by t = nty+ A 1 ( I>A =0 ) and exchanging the order of

the integration and summation, the expression (1,2) becomes

[ieg Z{ e migtat oRraA (1.3)

Let B{ z, & ) be the advanced Z transform of the control error,
then the integrand of (1.3) can be expressed in the complex integral

form as followét’

00 -1
Q= to & {emtyrtn} = f%ﬂjéﬁ(zﬁl‘;(z D) g7 (14)

where C is the unit circle in the Z plane. Therefore, the gquadratic

control area can be calculated by the following integral

(=)

‘fg{f;(t)}zdt:./o'ledA / (1-5)

(1)



1.2 Evaluation of the complex integral

The complex integral (1.%) can be evaluated only when the system is
stable. Generally E(z,A ) is a ratio of polynomials in 3 , and the
order of the numerator is lower than or equal to that of the denominator.

Therefore, the integrand of (1.4) is of the form

E@.N B g
z S R(2) - f (2

(1.6)

where f_ (Z2) is a polynomial of order ngfrf(z):z"fn (——Zl—) and .gn(z) is
a polynomial of order 2n-2. In the stable system, all zeroes of_‘fn(Z)
lies inside of the unit circle in the Z plane, therefore all those of
F*(2) lies outside of the unit circle.

The right-hand side of (1.6) can be expressed by the summation of

two rational functions as follows:

¢ () h) w(2
- 1.7
e Lo g ()

where h_(Z) and h! (Z) -are both polynomials of order n-1 or lower.

’ . . . . *
As h, (2) /(2 is regular in jz;< 1 , the integration of b’ (Z}/f, (2)
along the unit circle vanishes. Therefore,
1 g (7) 1 h(Z)
I = n dz=—f—0 47 (1.8)
2zi ¢ f,(2) f%(2) 2zjc f,(Z)
As the singularities of h @/f (2 a1l lie inside the unit

circle in the % plane, the integration (1.8) becomes
In:;_\iR (a,) (1.9)
where R( @y ) is the residue ata” which is a zero of polynomial f_ (Z)

On the other hand, the total sum of residues of a rational function

vanishes. Let R( e ) be the residue of h (7 f,(Z) at Z =« , then
| h, (2)
I =23 R (a)) =R (w) =¢im 2B
y=1 z—eo  f (Z) (1.10)
coefficient of z%! of h, (2)
" coefficient of Z% of £ Z)

Therefore, we have

(2)



1
__coef,of 27 of h (2)

P =y En(z

dZ=
arj c fn(i)f;(Z) coef,of Z® of fn(Z) (1.11)
Now, let us evaluate the integral I when
(@)= ayZ2+a 2% oo Zay | (129
(2= a Z%a__ 2% M. da, 2 4a, [ '
— 2n~2 2n—~3
gn ()= b, Z by 2 e Dyn-3Ztbypn_,y /1
If
- n—1 n=-2 \
b (2= Pz 4P 25 g [
I A QE— 2 .,
hi (D= aqgzn-1,a, 2" et day ( (1.13)
pvy
then, according to (1°10)9
1 g,(2) P
1=~ f n! . 4z =2 (1.14)
2z o £(Z)- £ (2) ay

Then we must calculate Pg-

Multiplying both sides of (1.7) by

ana (13
J(@). £¥(z) and substituting (1.12) in it, there results

n
22 n-1 o gyl

Sk n-l-kex (o -1k (1.15)
F b, Z =5 p, 2" T (ZH X q,Z £ (2)
K=o * E=0 " o4 2 O nl

namely,

~1 — —

pozn ﬁﬁﬂ:: po(anZn 1+an~1 720 2+_ .+a02n 1)
n-2 _
plzl ftl(z)"" pl (anz2ﬂ 2+ . +aOZD 2)
By - Cpl2F py @ Z™ v etay)
(1.16)

- 2n~1 2n~-2 1~ 1
qgz" et (Z= a4y @z Ha 27T e +a 2070

- 2 -
q, 2%t (7)== a; @eZ? " M pa 2P

r a :
N Ap @27 oo tay)

. 21-12 .

gl2)== L i s P P

Setting the terms of the same power in Z on both sides of (1.15)

équal to each other, we obtain the following simultaneous linear equations

in the matrix form:

(3)



an ay Py 0
ag—l an ay ay by bo
a . . a
1 a -1 .
n n . ao pn——l,__ ) (1.17)
a a . -
0 1 pn-1 3y 81, 2 a4 .
a
0 * ) 2n .
L3 q1 -
a a
X 0 nyiq,.
] . : L n-1 ‘\b2n—2
where elements in blank spaces are all equal to zero.
By the Cramer's rule, we can easily obtain By
p *
I,= 0 _  RpUy.fp (1.18)
a
0 agR( ) .

where R(fn ,fz ) is the determinant formed from coefficients of (1.17)

*
and Rb(qlgq] ) is the determinant formed by replacing the first row of

*
R(fnygp ) by the right hand side of (1.17)

n

an aO
qn—1 an ag a4y
. . . . . (1.19)
* ay : o4 an-1 ’ 3y
R(fn,fn) =
a4 2y 4n~1 3p 4p-1
ao . an »
a0 an
a4
by ay ay ag
1 - - - v »
. . a a. . a
Ry (f %) = ] a n-1 0 (1.20)
1t " fp~1 4 An~1 a4
ao L] an - .
LR a9 an




A few values of In are as in the following:

I =l (1.21)
ap T 3y
[ = ~a;bot+(ajta,) by~a b, (1.22)
(ao-az) (a0+a1+a2) (ag~-a t+a,)
mg b y+my bym, b,+m, b 4m, b, )
I, = (ayta ta,ta,) (a0-a1+az-33) (a§~aoa2+a‘las-a§)
where
my = a%-a032+ala3-—a§
m; == a,a,-aja; r(1.23)
m, = agta;a,~aja;-al
My = m
my = my J
1.3 Evaluation of guadratic control area

Integrating (1.18) in A from zero to unity, the quadratic control

area-can be obtained. The function of A 1is the coefficient of gn(Z)
only i.e. bo s by ye..y, and b, ., , and these coefficients are only in
the first row of R, { fﬂ-’f’:1 R Therefore, the integration in A
can be easily evaluated and there results
o0 2 B( .f)
f{e fat = * (1'24)
0 agRUE . E,)

where B(f .f; ) is the determinant as follows:

0 a,
1

£ bpdd ay a;  a

B(fn.f;:) = * ot 3 ah-1 * LY (1.25)

* ay 4n~1 an qn-1  ° 3y
) ao . ' an - »

WALTIUALIAN a, an

< /



1.4 Approximation of quadratic control area

As mentioned above, the gquadratic control area of the sampled data

control is given by the following expressions:

@?Mﬂ?dtzzﬁ@@da

However, the higher the order of the control systemn,

(1.26)

the more dif-

ficult it becomes to evaluate the advanced 7 transform and the integra-

tion in A

We may then adopt the following approximationss

{1emym

or
1

S e()Pdt =—

0 2

oo
. 2
==t I e =
0 n=90 n

Fig;l.l Quadratic control area and

its approximations.

(6)

S

{e(t)}z

(1.27)

(1.28)

b)) QO=t5>€
n=0

Wi

i

(€) Qo-ge; = Sed+ti €
N=1



These expressions give a good approximation when the sampling period

is small, Thelr geometrical meaning is shown in Fig. 1.1.
1.5 Supplement
(1) The evaluating method of the complex integral mentioned in the

section 1.2 can be also applied to the continuous system, if we set

f*n(z): f 2.
(2) The determinant R(fn.f;) is identical to the resultant formed
from fn(z)and f;(z) . On the other hand, fn(m = 0 andf:(z) = 0 have

a common root at the boundary of the stability, so R{ fn»f; ) =0

( Appendix I ).

Therefore, the series (1.4) diverges at the boundary of the stability.

(1)



Chapter 2

ON THE INFLUENCE OF SAMPLING PERICD UPON CONTROL

PERTORMANCE
2.1 Introduction

Introducing the digital controller into processes, we will come to
adopt a many point control system in order to make up for the cost of

the digital controller. Observing one controlled element only, we

can regard the many point control system as a single sampled data control
system. From the economical point of view, we would like to enlarge

a number of controlled elements which are controlled by one digital
controller concurrently. However, as a sampling period becomes large,
the control performance may become inferior.

Therefore, in this chapter we investigate the influence the sampling

period has upon the control performance { stability, and guadratic

control ares ).

controlled
hotd SysStem

controlter [/ T
./ ot

G

Fig. 2.1 Block diagram of many point
control system.

2.2 Digital integration + Oth order hold + lst order element

(8)



Let us consider the control system with the controlled element

whose transfer function is

kz
N (2.1)
TS + 1
as shown in Fig. 2.2. The advanced Z transform of the system error

to a unit step input is

Fig. 2.2 Block diagram of system
with controlled element

kz/CTs+l).

(=
Ln 4 - FYYs I-ew % n
— T_ — o = s Tset —

E(Z.H) =X(Z.0) — cOrez o Z) (2.2)
1+C7) HG (Z) '
where X(z), ¢(z) and HG(z) are Z transforms of an input, the controller
and the controlled element with a data hold element. X(zsA) and
HG(z,A) are the advanced Z transforms of X{(z) and HG(z). These

values of the system shown in Fig. 2.7 are as follows:

Z N
X(2) = X(Z.p) = ———
Z — 1
k,t,Z
K1Yy
C(2) =———
(2) Z~1
HG (2) = 22 (=) (2.3)
7—d
JAY AN
k,{ (1—d>) Z+d>—d}
- e 2
BEG(Z./) 7 — 4
t
d = -
exp ( -

(9)



Substituting (2.3) in (2.2) and arranging it, there results

G~k k,t (1-dD) 2% -az

22+ {k &yt (1-d) - (-+d) J24d

E(Z.A = (2.4)

Integrated-square error Q(2) can be obtained by (1.22); namely,

A+ (-t (1-dD) 1 Tz Q- (1=d Yo fkkyt, (1-d) = (140 } 2

Kikyfi-a) (2 (1) kK, ty (1=d))

5)

QA =

and especilally

(1-d%) +2dk, k, t
Qo) = 120 (2.6)
kik, (1-d) @ U+d) -k k,t; (1~d)

By sntegrating Q(4A ) from zero to unity, the quadratic control

area becomes as follows:

L (il 5 2 a0-a+2dh 5 (1) (3204+300) Heae (1) (a2 ++ (1) 1) 2
- — 2.
T 1-d) % @ A+ ~£ 2 (1~D) (2.7)
where g is the loop gain
t
£ =k k,T , and == ———T—Q~ (2.8)

By setting the denominator of Q(4) or Q(0) to zero, the boundary
of gtability is given by

k{2 (1+d) ~x 2 (1-4d) }=0 (2.9)

therefore, we have the region of stability as

coth"é*
> & > 0 (2.10)
‘2 -
2
The region of stability is shown in Fig. 2.3. This figure

shows that the region of stability decreases monotonously, as the

sampling period becomes large. The guadratic control area (2.7) is
shown in Fig. 2.4, where the parameter is the sampling period : 2==7£~.

The integrated-square error (approximate quadratic control area)

Q(0) in (2.6) is shown in Fig. 2.5. Digital integration + Oth

(1)
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FPig. 2.5 Integrated-square error FPig. 2.6 Minimized quadratic
of system of Fig. 2.2. contrel area and optimum
loop gain system of
Fig. 2.2.

order hold element tends to kl/s as t9=0(i.e. continuous). From Fig.

2.4 and Fig. 2.5, we can recognize that the sampling system has almost

equal control performance to that of the continuous control system when

tO/TfEO.l. The minimum value of the quadratic control area and g
at the minimum point (i.e. £ opt ) are shown in Fig. 2.6. The curve
of the former takes a minimum value at ty == 1.5T. Unexpectedly,

(11)



the continuous case (i.e. tg =0 ) and the open case (i.e. tO.» oo ) are

both inferior. However, the gain margin is infinity at t = 0 and
zero at to = oo e Fig. 2.7 shows the transient responses for t0= 0
and to =1 (Where T=1). From this figure, we can recognize that

the case of ty = 1 is better than the case of t; = O.

Fig, 2.7 Indicial responses of systen
of Pig. 2.2 for ts = 0 and
to = 1 (T =1,k ky=1237)

2.3 Digital integration + Oth order hold + 2nd order element
with non-oscillatory indicial response.

Next, let us consider the control system with the controlled

element whose transfer function is

Ky (2.11)
(T S+1) (T,S+1)

as shown in Fig. 2.8. The boundary of stability can be obtained by

setting the denominator of I, in (1.23) to zero, and the integrated

3

square error Q(0) of this system can be evaluated by tolse

But the following values must be substituted in a; and b; : namely,

(12)



a, = pu~1
a; = 1«:11&2"1"121 (ﬂ"l“{ﬂl“/ﬂdz) ~ (p~1) (1+d1-l—d2)

3 Tk k, T2 (d)~pd 1+ @-1D d;d))+ -1 ([dfd,+d,dy) :

33 = -~ (-1 d,d, -~ (2.12)
— — 2

b, = b, = (u-1 “dd,

by = b, =~ -1 %+, (+d;d))

@1 ? a+altdlied d,+dfad)

d1 €Xp P&O/TQ d2:: exp kto/Tp
p =T,/T, Ay =ty /Ty

I

!

For p=1 (i.e. Tj= T, ), we must take the limit of g - 1.

£5:T
i

€ 4 L] ‘
Ty KLz |-e s _ e N 15 2 1
Z- 1 S (TiSH)(TSH) 5 i \
Lo ‘v \ —\_

]

, !
0 Ao ) __J
] 0s 1.0 1.5 20 25 30 35 40
7\\=’%
Fig. 2.8 Block diagram of system Fig. 2.9 Boundary of stability
: with 2nd-order element of system of Fig. 2.8.

k /( Tys+l) ( Tys+l).

The region of stability and the integrated-square error Q(0) are
shown in Fig. 2.9 and Fig. 2.10 respectively. It is the remarkable
fact that the region of stability increases as the sampling period becomes
larger. This tendency ceases, however, at a certain value of the
sampling period ( i.e. (2, )0 in Fig. 2.9 ).

The integrated square error (i.e. approximate quadratic control
ares) is nearly equal to that of the continuous system ( t, =0 ) where
(2 )= 4= 0. As Q{0) is an excess approximation, the minimum
value of the quadratic control ares may become smaller than that of the

continuous case even in the domain zlzﬂjl)ﬂ

(13)
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Fig., 2.10 Integrated-square error of system of Fig. 2.8,

From these facts, we may conclude as follows: the optimum value of
the sampling period is (i) 0 (1i.e. (tO/T1 )0) where the gain margin
becomes maximum { Fig. 2.11 ). The transient responses to unit step
input are shown in Fig. 2.12. The case of ty= 3 is better than the

continuous case.

(14)



aE
HullﬁL

Fig. 2.11 Optimum sampling period Fig. 2.12

Indicial responses of
of system of Fig. 2.8.

system of Fig. 2.8 for

to= 0 and o= 3(kky=0336,
p=2),

2.4 Digital integral + Othvorder hold + 2nd order element

with oscillatory indicial response

We consider the system shown in Fig. 2.13. The transfer

function of a controlled element is

)

2.1
(TS+1) % + b? (2.13)

In . = s % dn
'—’T—‘_ . i g G g e

Fig. 2.1%5 Block diagram of system
with 2nd-order element
k,/ (Ts+1)*+ ©v*.

(15)



The boundary of stability of this system can be given by setting

the denominator of I; to zero, and the integrated square error Q(0) is

ty I3, But a, and b, in I,  are
3 1 i 3
\
a, == 1
klk?Tﬁ d .
a) =t (1~-cosdb~—sinidb) ~ (2d cos Ab+1)
1+b b
.———Z-dkikzz (@-cosAbi— bA)+d*+2dcos Ab '
— - ~cosAbt—— sin +2dcos 4
a 1+b b : > (2.14)
g = --d2
— — 12
b0-~—-b4 d
— b, == —2d (+d?) cos 2b

i

1 + 4d%sinip + at
‘Z = tO/T . d == e——z

The boundary of stabitity is shown in Pig. 2.14 and the integrated
squafe error is shown in ¥Fig. 2.15. From these figures, we can indicate
same facts as menticned in the preceeding section.

The optimum value of 20 where

the region of stability becomes

maximum as shown in Fig. 2.16. T

Fig. 2.14 Boundary of stability
) of system of Fig. 2.13.

(16)



‘ - 1 Pig. 2. Optimum sampling period
N LY /

of system of Fig. 2.153.
\
0 L T 1
[ 2 4 é 8 10 12 13 16 8 20
b=3 %, T

Fig. 2.15 Integrated-square error
of system of Pig. 2.13.

2.5 Conclusion

As the first step for the development of many point control systems,
we investigated the influence of the sampling period uporn the control
performance. The reults may be summarized as followss it is not
always optimum to make the sampling period tend to zero.

In the system shown in Fig. 2.2, the continuous case ( =0 ) and
the open case ( Ty = oo ) are both inferior, on the other hand, the control
performance is the best when tO% 1.5T in the sense that it minimizes the
quadratic control area. However, the gain margin is maximum at ty= O.

On the contrary, in the system with the 2nd order controlled
element as shown in Fig. 2.8 or Fig. 2.13%, the gain margin is not
maximum at t; = O, but it is maximum at ty= (A ), or b=, - That

(17)



is, at a certain value of the sampling period other than zero, the degree
of stability becomes the largest.

Therefore, we can expect that, when we adop many point control
systems, we can control concurrently by one controller much more controlled

elements than we expected without lowering the control quality.

(18)



Chapter 3

SYNTHESIS OF FINITE SETTLING TIME SYSTEMS BY THE METHOD

@
OF MINIMIZING INTEGRATED SQUARE ERROR

5.1 Introduction

The theory of finite settling time systems constituie an interest-
ing field for study in the theory of sampled data control systems,.

It is not always optimum to make a settling time the shortest.

3o in this chapter, we study the systhesis of finite settling time
systems by the method of minimizing integrated square error. In the

sampled data control shown in Fig. 3.1, the Z transform of a system

- He@— 4

|

Fig. 3.1 Block diasgram of sampled-data
control systen.

B(z) = K(z)+X(z) | (5.1)

where X(z) is the Z transform of an input x(t) and

k(z) = (3.2)

1
1+ C(z) Hue(z)
In order to respond without stesady state error to an integration

type input of the order m: namely,

(19)



%(2) = Fm (2) (5.3)
(1 -z )m

where F_ (z) is a polynomial in Z and ¥ (1) # 0, K(z) must contain a
factor ( 1 - z-1 )™

b igag gz (3.4)

K(z) = (1-2"H™ . @ +a 2"
Substituting (3.3) and (3.4) in (3.1), we obtain the system error
B(z) = (agta,; 2 Heeeita, 2V 0 (2) (3.5)

If an input of order k is added to this system, the system error

of this case becomes

B(z) = (1-z-1)@k (a0+ a7 e . +aNz"N) Fk(z) (3.6)
The problem to minimize the integrated square error
0 y) 1 1 dz
Q= el = — [ Elz). E (T —; (3.7)
n=_0 27y ¢ .

where

E(z) = z“”(b0+ blz“h --'-+sz“M)(ao+a1z4+ ...tagz ) (3.8)

will be treated in the following sections.

3.2 General procedure

The problem here is to evaluate a;, a;,+.., and ay which minimize

(3,7), where b, b and b, are known as in (3.8), under the initial

1,-:.,

condition
ag - 1=0 (3.9)
As
-y 3 N n| -
A S e (3-10)
~- M M-jm| _
ﬁb;‘?’? ‘z,‘blz 2 H (X bb+im))z m (3.11)
A=0 A=0 m=M #=0



‘the integrated square error is given by

1 RN
e (o =2 y .12
If we set
M~n
A=0
(3.11) becomes as follows:

— 2 10

- ngoaﬂ n—1 Njnau 4 pin (5.14)

e
Multiplying (3.9) by the lagramge'smultiplyer 2% and adding it to

(3.14), there ersults

B, ﬁ”a ”‘E\”’E’a B pya2E ag=1) (3.15)

n—=0

Differentiating (3.15) and setting the derivatives equal to zero,

we have
min (M '
a/lBO + n__gi &\gﬂ-f—n+au_n) Bn'“l‘li?aﬂ = 0 (5016)
(,lI:-O»l,Z----.N)
where
0, =1 —0) 7
SR = 2 (3.17)
Aptn = 0 (o> %
a#__n = 0 (,U—IP(O) J

A set of linear equations (3.16) can be expressed in the matrix

form as follows:

B, B, B, - By 1 a, 0

B1 B0 1 BN__1 0 a, 0

B, B, B, y—y O ay | _ 0

. . . . . . . . (3.18)
By By.y By, By 0 ay 0

1 0o 0 0 0 £ 1]

(21)



where

B = 0 ( k> nin(M,K) ) (3.19)

By solving (5.18), we can obtain desired values of a's. Therefore,

the pulse transfer function is determined by (3.2) as follows:

¢(z) = L - (=) (3.20)
76(z) K(z)

3.3 Evaluation of Min. @

The solution of (3.18) is given by Cramer's rule

D
aﬂ:__liil’___!—}—i._ (ﬁ:O,l,.-..,N) (5.21)

where D is the determinant formed from coefficients of (5.18) and DM+1
is that formed by replacing the g + lth row of D by the right hand side
of (3.18) and D,y is also the cofactor of (N+2,p +1) element.

To evaluate the minimized integrated square error, we substitute

(3.21) in (3.14)

Min Qe 1 B N mmin (MpN) N—n
MinQ=—- {By 2 a,D st 2 By 2 @Dy D) } (3.22)

Arranging (3. 22) in D's, there gesults

..... ' .2
Y E%; Dy ¢ Fay  BiFagBytag Byt e ss) (5.23)
As Dk+1 is the cofactor of (W42, k+l) element of D, the right hand

side of (3.23) becomes the determinant formed from D by replacing the
N+2th column of'D by
'"+ak—1Bf+ade+ak+lBL+“‘""') (5,24)
In this determinant, multiplying the 1st, 2nd,..., and N+lth
column by =80y =8 ey and —aN respectively and adding to the N+2th
column, all the elements in the N+2th column vanish except(N+29N+2)

element the value of which is

- a ( = -1 ) (3.25)

(22)



Therefore, we can obtain

Min Q = - P2 o - i ' (3.26)
D
This is the physical meaning of the Lagrange's multiplier £ .

3.4 Example

We will consider, as an example, the case where the system error
is given by
Blo=k 270 (1taz™) Gaptayz e a2 (3.27)

The factor kz™ does not contribute to the determination of a's.

By using
2
Bry= 1+ « )
0 (3.28)
1= & f
we will evaluate the determinants D and Dﬁ+1
By B 0 " 0 0 N
B1 BO By . O 0 0 By B1 O « O
0 By BO ., 0 O B1 B, Bl )
D = == J0 By B » O =-4 (3.29)
0 0 0 * B Bl 0 . .
0O 0 0 * B BO 0 O 0 0 - BO
1 00 " 0 0 O

If we set D to -4, as (3.29), Ay satisfies the following recurrence
relation

5 2 _ -
Ay =Bohy #87 Ay = 0 g (5.30)
w (e valhy = 0 J

Solving this recurrence relation under the following initial

condition

A =1 +ea? (=3)) (3.31)

L

A =1 -*761'24-0:4( = Bg— B% )

(23)



there results

Ay = 1 +gl gt veeerrepall (3.32)
On the other hand
1 N—ge1
St T A
By Bl . 0 0 1
By Bo - 0 = 0 0
; -1 u
Dyry= |0 By < 0O 0 0 = (-1) BY Ay, (3.33)
0 0 +« © 0 0
0 o0 - B
1 -0
and
Dyra = &y (3.3%4)
Therefore, we have
2, = —aHl | €B) A, ey o, M e 0 (5.35)
D . 1ot g ®
and
D A 2 2 842
MinQ:"'kz N+2 - k2 N_{—l - 1—+a +....—+a . kz (5'36>
D Ay P R
5edal To an acceleration input
As
o [ —~14 3 -1 N t(z)z~l(1+z—l)
E)=K(zgxld= U~z )" (@jta;z” +e- ... +ayz PRI N
t(z) ~1 -1 -1 —N (5340)
=z Utz ) (@gtagz He-etagz ) '
2
setting @ = 1 in (3.33) and (3.34), we have
N""'ﬂ'—i—l . (59,7)8)
a, = (1) H#——uw



and

Min Q tg e
viin T e

4 N+1 (3.39)
564.2 To make the system that has & finite settling time response

to a ramp input and is optimum for a step input.

As
—- - 1
El)=K(2x(d= U~2"" 7% @yta 2 e e otay £ e
- 1 —1 —~ N (3"40)
= (-2 %) (ao—}—alZ —+e .—{—aNZ )
setting ¢ = - 1 in (5:35) and (3.34), there results

Ne 1

W Ty (5.41)

N+1

Min Q= Ntz (3.42)

N+ 1

(25)



Chapter 4

STATISTICAL SYNTHESIS OF FINITE-SETTLING-TIME SYSTEMS

4.1 Introduction

The problem of finite settling time systems has attracted the
interest of many investigators and contributions to this field have
been made by many authors, but they did not treat the finite settling
time system with a random noise. In.%his chapter, we study a method
of determining the pulse transfer function of a controller of a sampled
data control system with a stationary random noise which has been

designed to respond to an integration-type input of order m :
F(Z
~1ym (4'l>
(1-277) '

where F(z) is a polynomial in Z'!( F(1) # 0 ) without steady state

error by the R.S.M.~ Error Criterion.
4.2 General procedure

Let us consider the system in the presence of a stationary random

noise v(t) as shown in Fig. 4.1, The autocorrelation function of a

. Stw)

N -Gy e »
x + Y
—ijt“fLPRd_?Lquﬂ_*F”“” Oy

Fig. 4.1 | Block diagram of sampled-data control system,

(26)



stationary and ergodic process may be obtained by an average of samples

according to

N
¢(7)=¢im 2N+11’£~§ (ty) vt +1) (4.2)

where to is a sampling period. Setti1¥§¢(nt0) = ¢, the pulse spectral

density of the noise is defined by the following expression
Sw) = o2 2 g cos nwt, (4.3)
=1

The mean square error of this system is evaluated by the following

integral
2 ty .t - '
<fr>=—2 LRl 2.8 dw (4.4)
o E
where
K@= : (4.5)
T T 1+6(7)C(2) 4.5

On the other hand, in order to obtain the finite settling time

. . -1
response, K{(z) must be a polynomial in z

K@= & a,z”* (4.6)

Substituting (4.3) and (4.6) in (4.4) and evaluating the integral,

there results

2 - _ 2 ¥ ok
<e, == ¢, Eaﬂ-{—zﬁgoklf a3,y (4.7)

=0 k=1 =0
In order that this system responds to an integration-type input of
order m without steady state error, K(z) must contain a factor (l-z"1)™,

Therefore, a's, coefficients of the polynomial K(z), must satisfy

the following m conditions

" 7 , : .
E{ }aﬂ:O » (v:O.l,Z.----,m~1)
/(:av b .

where

(27)



{ l,f} = p(e-1) -« (umv+1)  (g>v>0) > (4.8)
{Z} = ¢!
{83 =1 :
and an initial condition
a, - 1=0 (4.9)

Now, our purpose is to determine a's ( i.e. polynomial K(z) )
which minimize*<’eg:> in (4.7) under conditions (4.8) and (4.9).

Multiplying (4.8) and (4.9) by Lagrange's nmultipliers 10,21 eseun

R SR R and a2dding them to (4.7), there results
no, n n-k m-1_ B g (4.10)
0y 2 A, + 28 ¢ I aa, s @D X4, 2 {8%a,
#=0 k=1 =0 =0 H=y

It is seen that the mean square error (4.10) is a function of the
coefficients a2's which must be so chosen as to minimize (4.10).
Differentiating and setting the derivatives equal to zero, we
obtain a set of n+l linear equations in a's : namely,
m-—1 ~

n
¢ =
202,12 2 Yx @pctad +E0 b 2 A5 =0

w: 0.1'2,--no.n)

where

5 (4.11)

1, (u=0)
0,=4 ., (Cuxo)

a’u_k:O » (P’-"k<0)
Ay = 0 (ﬂ+k>n)

From equations (4.8), (4.9) and (4.11), we can evaluate a's .

Expressing these n+m+2 equations in the matrix form, we have

(28)



2{00 2¢1
2¢1 2§00

2902 2901

l 0
1 i
0 1
0 0
0 0

2¢2
2§01

2§00

Nh 2%}1 Zﬂrz

0

.

% i1 1 0 0 0
|
{
w o 11 o 0
!
2,00 1 2 2o+ 0
i
‘ » -
-l - - -
| n
2 0 L oD - {1}
1
0 :0 0 0 0 . 0
1‘;000 0 0
n 10 0 0 0 0
|
-mfm){o 0 0 0 . 0
|
i
LI . - . - .
§
b
| 0 0 0 0

*{ i}

(4.12)

The solutions of these linear equations are given by the Cramer's

rule : namely,

where

A
a :——#iL~ (‘u:O 152, e )
# A
ﬂ) ¢1 ¢2 ¢h 1 0 0 . 0
% ¢b %. . %kl 0 1 0 - 0
qb ¢1 ﬂ) . %rﬂ 0 2 2.1 . 0
n
% et % 0 noa@gh - m-1
1 0 0 - 0 0 0 0 . 0
1 1 1 1 0 0 0 . 0
0 1 2 - n 0 0 0 0
0 0 2.1 n@ld |0 00 . 0
o0 o LYo 00 . 0

(4.13)

(4.14)



and A,y 1is the determinant formed by replacing the # +1th row of the
determinant A by the row vector of the right hand side of (4.12).

Naturally'éxl = A,

Therefore, the pulse transfer function of the controller C(z)

hecomes as follows:

n
DN Y A
C(Z= 1Kz 1 sl M (4.15)
G (2) Kz) G2 o L
u:g'(;) Bpe1?

Eg.(4.15) is the required result of this chapter.

In evaluating a's 1t is convenient to note that a's do not change
their values if ¢ 1is replaced by Mo ( M is an arbitrary constant ),

because 1t only means that <fe§>»~>hm<g§:> by the quation (4.7)_
4.3 On the evaluation of minimized mean square error

To evaluate the minimized mean square error Min<:eé:>, substitution

of (4.13) into (4.7) gives

) 2 N n =k
M1n<en>:(p%2; aﬂ+21?21; Oy ;‘;’1 2,3, 1y
(4.16)
1 n n nk
JAN #=0 k=1 M=
Arranging this expression imlgﬂ , there results
A - o1
K=0 w=0
As AN is a cofactor of the (n+2,k+2) element of. the determi-
nant A , A Min <Te§j>>becomes the determinant formed by replacing

the n+2th row of A by

n
AT I

(k=0 41,2, ccne-- 0 ) (4.18)

(30)



and O, Multiplying the first, secondy;....., and n+lth column of this
new determinant A Min <feé:> by'ao, Blacocnny and a, respectively and

subtracting them from the n+2th column, all the elements in this n+2th

column vanish by conditions (4.8) except the n+lth element. As this
n+lth element is -a ( = -1 ), there results
. 2 A
Min <e, > = —_jiiﬁ— (4.19)

By the notice mentioned at the end of the previous section, we

obtain

(4.20)

Min <el >=_ 1 .
2

This is the physical meaning of the Lagrange's multiplier & .
4.4 Example

To illustrate the application of the general theory, it will be
applied to the system with a stationary random noise having a finite
bandwidth, including frequency components up to but not beyond a

frequency of 2f rad/sec

Stw)

-anf 0 2nf

Fig, 4.2 Spectral density of noise.
Let its spectral density be as follows ( Fig. 4.2 )

S{w=— {1 , lol < 2=f
“ i (4.21)

0 s lw‘ = 2wt

The autocorrelation function of this noise becomes

(31)



1 Jeo ;"t 1 Zﬂff -"t
()= —— /Bl eitaw =—— /" eI
v 277 ~eo 27 “onf (4.22)
sin it
- 7t
therefore,
sin 2r17rft0 (4 23)
- . » :Zf s
“n 2omft Yo o
4.4.1 The case of a sampling period t, = 1/2f .
If ty = 1/2f, the autocorrelation coefficients become
(4.24)

Pp =0 . @%0) 1 @, = 2f

and the pulse spectral density becomes constant in ( —7E/t0,+7f/to) as

shown in ¥Fig. 4.3 In the evaluation of aﬂ , We may set_¢p:::1

N

Yig. 4.3 Pulse spectral density
9

of noise ( tp = 1 /2f).

according to the notice mentioned at the end of the section 3.

in this case can be reduced to

Therefore, the determinant A

(mym) determinant as follows ( Appendix II-1 ) :

(4.25)

— oyl
A= D™ e

where

n
_ u Lo .26
Cp-q ”‘ﬂi {p~1}{q~1 1= Cq-p (4 )

(32)



and especially

n ™
pw=1
c n n (o+1) c
:‘41 o -— 2
12 — A F 0 21
c *g ) D@+l @ntl)
22 T o H T p
_n  @-Dn@+)
Crg =2 #@-D= = Gy v (4.27)
o, _ (@=-Dn @) @Gn+2)
Cpg =2 17 1) = 12 = Y32
c % 2 () ? @-1) n @+)@En-2)
—_ g — o
38 5! 15
/
Similarly A, vecomes { Appendix II-2 )
Ay = GO P (4.28)
where | & peq [ is the determinant formed fron {Cp.qw by replacing

the first column by the following set of wvalues

JZ p(p=1) .-

Finally

e iy

where all elements of 1C”p-q[ except ¢,

( Appendix II-3 ) and

”

€y — C M*Fl

Then we obtain

(33)

..,{m"_‘l}

(4.29)

(4.30)

are equal to those of ]Cp |

a

(4.31)



Ic" 5.q! okt l
a, = _.T~mii_9T~. and Min_<feé >=__ P4 (4.32)
Cop.q ICh.q y
B Derivations of (4.25), (4.28), and (4.30) are given in Appendixes
-1 1-2 -3 )
T5—3F, and FH. Table 4.1 shows some values of a's and Min<fenj>> When

m= 1, 2, and 3 ( step, ramp, and acceleration ).

Table 4.1
input a, ux0) Min < ele =
step ~*£ !
n (.1+ "n‘ )SDO
- 2 2 2n+1)
ramp | 7 3p~ (2nt1) {1+ ———
n (n-—«]_) { # } = + n ([1—1) }GDO

{ @n’+3042)
dcc. n (n-1) (~2) ( 3 (3n 24-3n+2)
1 e ettt
+n (n~1) (n—-2)

1

-4 (3n~1) #+102 (#~1) }

The relation between Min <feﬁ:>>and n ( settling time ) ig shown in

Fig. 4.4 .

20 ~O——

Fig. 4.4 Minimized mean square

<e/p
&

error ( case 1 ).

i

j J
o]
TR
4 s 7

“leo ®
ol oo

] /0

The sign © ghows the Min<feé > of the system which has been
designed to respond to a step input without steady state error, & to

. . .
a ramp input, and (O to an acceleration input. Of course, the

smaller the Min <{eﬁ >and n are, the better the performance of the

(34)



control system becomes. However, the Min<<ei:> decreases monoto-
nously with the order 1/n as found in Table 4.1. On the other hand,
for a fixed n, the Min‘<e§3> increases according as the condition
becomes severer in such a way as step, ramp, and acceleration ( as m
increses ).

These results are reasonable.

Judging from Fig. 4.4 only, we had better not choose n=3 or 4

when we demand the finite seftling time response to an acceleration

input ( O , m=3 ). Similarly, we had better not choose n=2 to a
ramp input ( @ , n=2 ), In order to make these facts clearer,

o
let's examine the integrated square error E%ei of the system

n—

designed as mentioned above for a step input, a ramp input, or an
acceleration input. Fig. 4.5 shows integrated square errors for a
step input of systems designed not orily to respond to a step input

( © ), a ramp input ( ), and an acceleration input {( O )
without steady state error, but also to optimize the response to a
randem noise with the constant pulse spectral density as shown in
Pig. 4.%5 . Pig. 4.6 shows integrated sgquare errors for z ramp

input of such systens.

[

H]
5. .
FN “f]? d
- | :
] L
4 ‘ 4
0 o ° d o °
o o °
2 ° o < °
2 o >
° o ¢ o [ ‘.r 0
[} ®
0
o s 2 3 4 s 6 7 8 ¢ s 00 , 2 3 4 & 6 7 8 9 0
Fig. 4.5 Integrated-square error Fig, 4.6 1Integrated-square error
for step input (case l), for ramp input (case 1).
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e

Fig. 4.7 Integrated-square error e e

for acc. input (case 1).

Fig. 4.7 shows the same for an acceleration input.

Now, we consider a number of systems having the capability of
responding to an acceleration input without steady state error ( @) ).

According as n increases, Min‘<:e§:> decreases monotonously (by

2

o
Fig. 4.4 ), and 2 e for an acceleration input increases monotonously
n=0

n
( by Fig. 4.7 ).
However, Fig. 4.5 shows that mgoeﬁ for a step input takes the
minimum values at n=8 and Fig. 4.6 shows that Hgoeﬁ for a ramp input
takes the minimum value at n=4. From these facts, we can conclude

that 1t is the best to choose the settling time as five or six sampling

periods. The characteristics of these systems as a filter,
lK(eith) |2= %az-}-Z g‘, néka a coskwt g (4.33)
=0 # Tk=1pa=g #OHTE

are given in Eign 4.8 ( for systems having the capability of responding
to a step input without steady state error ), Fig. 4.9 ( for a ramp
input ), and Fig. 4.10 { for an acceleration input ). As the pulse
spectral density is constant, each system 1s designed to minimize the
area enclosed by the corresponding curve and the horizontal axis under

conditions (4.8) and (4.9).
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~

8
ng2
. |® T L |2 —_— ‘ .
Nl \ —
i 3 b . ‘ ‘ ﬂ/ § 6
\

//7(/1//7\\‘\3 | | 4ﬁﬁAﬁW
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Fig. 4.8 Characteristics as a fig. 4.9
filter (m=1 ; case 1).

Characteristics as a
filter (m=2 j; case 1).

Fig.4.10

N

Characteristics as a
filter (m=3 3 case 1)

JKre)?
&
L]
G

4odo?2

The case of a sampling period t

= 1/4f¢

Putting t, = 1/4f in (4.22), the autocorrelation coefficients of
this case become

sin =5
gon = nmw {00 ' g00 = Af (4-34)
Tz
Therefore, the pulse spectral density becomes as follows

oo sin 227—2

s* W)= @0{1+2 & Ty = cos nwt g} (4.35)
n==1 7

* . T ) \
W= 2¢, in € 2t0 , 2ty ) (4.36)
=0 Otherwise
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as shown in Fig. 4.11

Fig.

4,11

Pulse spectral density
of noise { ty= 1/4F ).

S'tw)
28

claf—-
Nia

Substituting (4.%4) in (4.13) and (4.14) and evaluating a's, there

results Table 4.2 when we demand that systems respond to a step input

without steady state error ( m =

1), Table 4.% for systems responding

to a ramp input without steady state error (m = 2 ), and Table 4.4 to

an acceleration imput ((m = 3 ).
Table 4.2
For a step input (m = 1)
n a, a, a, % a, a, a.
11, -1. ’
2 1. -1.3760 0.3760
3 1. ~1.6935 1.5%84 ~0.8449
4 1. -2.1699 2.4057 ~1.7996 0.5638
5 1. -2.6249 3.8414 -3.7097 2.2884 -0.7955
Table 4.3
for a ramp input (m = 2 )
n ay ay a, a, 2, ac
2 1. -2, 1.
3 1. -2.26%2 1.5265 ~0.2596 B
4 | 1. -2,513%2 1 2.9337 -2.3277 1 0.9073
5 1. -3%.0098 4.1246 -3.783%8 2.1521 -0.4837
Table 4.4
for an acceleration input (m =3 )
n a, ay a, a, a, ag
5 | 1. -3, 1.
4 1. -3,2102 3.63%09 -1.6309 0.2105




o0
0

o
»'-N‘

IKtet)*

SN

E—

N
IKe)?
\

4 | | / n-ls 4 } } i |
: |
= /
2 7, : A '
L~ 3
|~ / 4/\s
0
? 4 90° ErE o 4° 0 935 %0
Fig, 4.12 Characteristics as a Fig. 4.1% Characteristics as &
filter (m=1 j case 2). filter (m =2 5 case 2).

00

IKe )2
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Fig. 4.14 Characteristics as &
/ filter (m=3 ; case 2).

The characteristics as a filter IK(eiwtONZare shown in Pig. 4.12
(m=1), Fig. 4.13 (m =2 ), and Fig. 4.24 {m = 3 ).

The remarkable feature of these curves is that they appoach zero

o]
in 90%2“”025"90 This tendency is opposite to that of the pulse

spectral density as shown in PFig. 4.11. As we degigned so as to mini-

o) (o]
mize the area enclosed by the curve in the interval 970 ot >=90"  4n4

the horizontal axis under conditions (4.8) and (4.9), this is reasonable,
The larger the n ( settling time ) or m ( a sort of an input as a
constraint ) becomes, the more remarkable the tendency is.

3 Q Q
At the ideal state IK(e'“'0150 190 201=-90 then <el>-0

Five pairs of these curves — (n=1,n=2),{(n=3,n=4)

in Fig. 4.12, ( n=2 , n=3 ),( n=4 , n=5 ) in Fig. 4.13, and ( n=3 , n=4 )

in Pig. 4.14 —— regsemble one another, therefore, we had better
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choose the smaller n in each pair.

mean square errors, Min_<ieg:> , of this case ( f = 1/4f ).

Fig. 4.15 shows the minimized

we can

recognize that five pairs mentiond alsc resemble one another in Fig. 4.15.

Figs 4.16, 4.17, and 4.18 show integrated square errors to a step

input, a ramp input and an acceleration input respectively.

2
n

>/2%

_<e
|
|

a4

Fig., 4,15 Minimized-mean square
error { case 2 ).

el | | $
s 1]
| ]
2
o |
0 / 2 3 4 5

Fig. 4.17 Integrated-square error
for ramp input (case 2).

e [ ]
R N
10
8
. S S
21
0
o
Pig., 4.16 Integrated-square error
for step input (case 2).
3
x;\l‘g
2
/ )—
o
2 3 4 n %
A Y
Fig. 4.18 1Integrated-square error

for acc. input (case 2).

Comparing the Min.<:ei:> of this case with that of the case 1, we

can recognize that if we choose a sampling period which is determined by

the sampling theorem ( case 1 ), the Min <:ei:> ig alwayé larger than the

variance of noise ( i.e. ¢, ), and on the other hand, for a half of the

sampling period determined by the theorem ( case 2 ), Min<ie§>*+0 as

(40)



n— 0O, Therefore, we had better choose a smaller sampling period
than that which is determined by the theorem.
Fig. 4.19 shows the relation between minimized mean square errors

and a sampling period.

nt
Fig. 4.19 Relation bhetween minimized mean
G — “ square error and sampling period.
v L 2
\-/’7
/fﬂ —
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4.5 Conclusion

Under the constraint that the system must respond to the integration-
type dinput of the order m without steady state error, the pulse transfer
function of the controller which minimize the mean sguare error of the
control system to a stationary random noise is determined by (4.15)o

From two examples of the noise having a finite bandwidth, we can
conclude the following : if we reserve 2 or 3 freedoms without meking the
settling time the shortest and use them to adjust the system statisti-
cally as mentioned, then we can make small not only the mean square ervror
for the noise, but also the integrated square error for the integration-

type input.

(41)



Chapter 5

FUNDAMENTAL STUDY OF FINITE SETTLING TIME RESPONSE

.1 Introduction

W

A synthesis of finite settling time systems has been studied by
using the Z transform method or the advanced 7 transform method.

However, in order to make the mechanism of such systems clear, we
must investigate indicial responses of the controlled element in the
time domain. This chapter will be devoted to the fundamental study
of the finite settling time response.

1

5.2 The case of the second order controlled system: e
s(Ts+1)

Let us congider the case of the second order controlled element

whose transfer function is

1
s(Ts+1) . (5.1)

The indicial response of this element is
~L ,
g{t) = t - T(l-e T ) . (5.2)
If we assume the zero-order hold element, this system can give

finite settling time response to a step or a ramp input.
5¢2.1 Step response synthesis

The response tc three step signals of magnitudes ko, k; and kj;,

which are supplied at the instants t = O, t; and 2%;, becones

y(t)

il

g)g(t) + kjg(t—to) + k g(t-21t) (5.3)

- Tkt ky+ ky) = to( &+ 2k,)

it

t
. 2 -
+ ( kgt K+ k)b o+ ( ky+ mk +om kz) e~ F
In order that (5.%) is equal identically to unity, the following
t
relations must be satisfied because 1, t and e T are linearly

independent.

(42)



k+ 2k,= -1/t
Ko+ ki + ky= 0 (5.4)
k+ ke + o k= O |
Solving these equations, there results
k= 1/t,(1-4)
k= - (1+d)/t(1-) | T (5.5)
ko= d/t(1-d)
where d = 1/m = e'ﬂ%oa Therefore, the system responds without
steady state error to the manipulated signal shown in Fig. 5.1.
The pulse transfer function of a contrcller in an open loop as

shown in Fig. 5.2 becomes

>——

L/—b'bab
0 GBI i Ham

X(B/ -Ca(Z) v gii 2t Yet)

-

Fig. 5.1 Manipulated signal for
illustrative example.

Fig. 5.2 Block diagram of sampled
~-data system with series
compensator.

Colz) = ¥+ klz"l kzz”i (1~z"5(1-d51)/t0(1-d) (5.6)

. . . 3
This is the same result that is obtained by Jury-Schrecder's meth%&%)

H5e242 Ramp response synthesis

As we can not obtain a signal at t = O for a ramp input, we must
supply three step signals of magnitudes ki, k, and k3 at t = t;, 2t

and Bto respectively. The response for t = BtO becomes

(43)



y(t) = k g(t-1))+k, g(t-2t  )+k g(+-3% )
=T (kl+k2+k3)—t0(kl+2k2+3k3) t
+ (i +k, ey ) 64T (miepm’ ke b’ ey )e T (5.7)

t

"‘1“"" i
. @

where m = e Therefore, we obtain the following relations:

k1+ kz + k3 =1

k, + 2k, + 3k = -1/t, (5.8)
2 3
mkl+m.k2+m k3= 0
The solution of these equations becomes
k= o { 2+%) (1=d) ~d}
(1-d) to
S T 2y —24? (5.9)
k= { 4+ (1=a") —24
d T
k — 2{ ('H‘TO) (1-d) "'d}
3o0-9
~L10
Therefore, we have the pulse transfer fun-

where d = l/m = e T .
ction of the controller in the open-loop as followss
-1

. (1-z -1 -9
CO(@- : @1+k22 +k,z )
0
(1-2"Y (1=az7h) £ -1
=0 { -+ (-2 +50 (- (-2 D} 10)
0
5.3 Method by reverse-device

It is not neccessary for obtaining the finite settling time

response to supply step signals at equal intervals of time to,

Another method of designing finite settling time systems was
4% It is achieved by introducing a reverse-

proposed by 3. Hoshingi

device but has some defects. His mefhod can be radically improved

by the method mentioned above. To illustrate the technique,

(44)



the system, which is used in the preceding section, is considered.
If three step signals of amplitudes X,-2K and K are supplied at t = O,
ty and t, , the response of the system in t = to ‘becomes as follows:

y(t) = Ke(s)-2Ke (b=t )+Kg(t-t )

1y -(');. ¢
= K (2%, -ty )+KT(1-2¢ Tve T )e =T (5.11)

In order that (5.11) is equal identically to unity in t°Z= by,

the following conditions must be satisfied

(5.12)

This the same result that is given by Hoshino.
The feed-back system is constructed by introducing & reverse-device

as shown in Fig. 5.5 where t; is a sampling period. The manipulated

r o
K

Fig. 5.3 BSampled-data system Fig., 5.4 Manipulated signal of
with reverse~-device. systen of Fig. 5.3.

gignal is shown 1n Fig. 5.4, and the step signal is reversed at the

instant t = tl( t>t, > 0 Y.
5.4 Settling time

If we supply manipulated step signals at equal intervals of time

t

09 the settling time depends only upon a number of linearly independent

(45)



functions which construct the indicial response of a controlled element.

Assume the number to be N, then the seftling time becomes

(W-1) %, for a step input
(5.13)
and ¥t for a higher order input
where t, is a sampling period. However if we choose the sampling

period so as to reduce the number of linearly independent functions,
we make the settling time shorter than (5.1%).

For example, assume an indicial response to be

, —t T
g{t) =1 - e cos Y (5.14)
then
g(t-ty)=1-e"" (cos—g—tocos-g- t+sin-’-2r— %, sin—g— t). (5.15)

If we choose the sampling period as t, = 2, (5.15) becomes
2 : '
g(t) = 1 + egie—tcos-%'t . (5.16)
Therefore, the response for two step signals of magnitudes k; and

k; at the instants t = 0 and t = %32 becomes

y(%) = ko(l—e“t cos%; t)+k1(l+eze* cosg;t)
(5.17)
=k, +k —(ko—ezkl)e"f cos% t.
If we choose ky and ky as
N
SR
L __d
1”1 +4d (5.18)
d = g2

we can settle the response completely to unity after t = ;72 ( Fig.

5.5 ).
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Fig. 5.5 Compensated response of

system used in example. ‘
1
) T R A N S S i
[
% T 3 i s v
t
5.5 Experimenf
If a transfer function of a contrclled element is
% (5.19)

(s +a )2+ bt ,

we can obtain the finite settling response by supplying three step signal

of the following magnitude k; at the instants t = 0, t, and 2t0 '

alsp? elaty
k =
0 k ezat0~2eat0cosbt0+1
2
4p —edt
kl:: a e 0cosbt0 (5.20)
k ezatO—ZeatOCOSbt0+1
a2+b2 1
Kk ==
2 k ezato-—Zeatocosbt0

The results of an experiment by an analoge computer are shown in

Fig. 5.6 and Fig. 5.7. Fig. 5.6 shows the indicial response of (5.19)

and Fig, 5.7 shows the compensated response of this systems, where a

1/4, b = 2, and k = 1 in (5.19).
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Fig. 5.6 Indicial response of Fig. 5.7 Compensated response of
system of (5.19). system of (5.19).
5.6 Generalization of theory

We can generalize the above theory as follows.
Assume an indicial response of a controlled system to be given by

& linear conbination of N linearly independent functions fj (t)

N
g (W)= Za;f; (1) (5.21)
=l

and that the number of linearly independent functions ( i.e. N ) is

invariable or its increase is finite by a transfer of the origin of time,

g(t--tﬂ)r:.liz%I a"i‘fi ) A (5.22)

i=
where éf is a function of t, , then we can settle the response to the
desired value by supplying step signals N times.

The response of this system to step signals of magnitude k; , k,,
<o and Ky, which are supplied at the instants t = tl’ 5 ge.e and tN

respectively, becomes as follows:

N N N N N
i — — 5 lu — . N .u 5023
zlkﬂg(t tﬂ)—Elkﬂiilaifi(t)-lzl{ zlaiku}fi(t) ( )

1f thé setting signal is given by the linear combination of the

same functions that construct the indicial response of the system:

namely,

N
Zbf (5+24)

i=1

(48)



then we can obtain the finite settling ftime response as follows,

Setting (5.25) identically equal to (5.24), there results

N N
3 {éla/;‘kﬂ—bi}fi ()= 0 (5.25)

i==1
As the functions fj (t) are linearly independent, wé have the

following relations

Ea’;‘k =b, (i=01,24¢ee.,5) (5.26)

Solving (5.26), we have the required manipulated signal as shown

in ig. 5.8, The settling time is ty .

Fig. 5.8 Manipulated signal.

|
T f’b\*& i

T e

0 z t2 4 tu 3

5.6.1 Step response synthesis

Assume that
t, = (#- 1 )% (5.27)
where 1, 1s the sampling period, and the pulse transfer function of

the controller in the open loop as shown in Fig. 5.2 becomes

x -
¢, (z):ﬂglkuz - (5.28)
5.6.2 Ramp response synthesis
Assume that
t, =t (5.29)



then

(-z—bh x
Cp (@) =i 3 kA 5.3%0
0 to T (39)

The controller in a closed loop is given from Cy (z) by the follow-

ing relation

0(z) = Co () (5.31)
1 - G(z) G (z)

5.7 Conclusion

The finite settling time response means to exiract only the
desired signal out of an indicial response by supplying the same type
inputs several times t6 a controlled system.

The finite settling time systems can be designed in the following
case, if we employ the zero-order hold element.

(1) The indicial response is constructed by a linear combination
of a finite number of linearly independent functions,

{(2)  The number is invariable or its increase is finite by a
transfer of the origin of time.

(3)  The setting signal must be given by a linear combination of
the game functions thét construct the indicial response, as an old
proverb says 'Wai sode wa furenu. ( Out of nothing nothing comes,)‘

Then the settling time is determined by the number of the above

functions and the sampling period.
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Chapter 6

EVALUATING METHOD OF TRANSIENT RESPONSE OF NON-LINEAR

SAMPLED DATA CONTROL SYSTEMS

6.1 Introduction

It is the purpose of this chapter to present the evaluating method
of the transient response of sampled dats contrcl systems with non-linear

elements.
6.2 General procedure

In the sampled data control system with s non-linear element :

Vn::f(%l’en-l,'“enél) as shown in Fig. 6.1 , let e, be the value of

Fig. 6.1 Block diagram of sampled
data system with non-
) linear element.

Gz -
. 4

z, |
i . OLD PLANT |[-¢——
‘*ﬁ?ﬁg NL 71t

the control error e(t) at sampling instants, then it can be expressed

as follows :

en:xn-G(Z)f (eﬂ'%"‘l,"". en__l) (6'1>
where X is an input and G(z) is the pulse transfer function of the

plant including the data hold element, If G(z) is a ratio of poly=-

nomials in % of the form

-m

bmz +....+qu"q

G(2) = (6.2)

1+31Z-1+. .. .+apZ—-p

(51)



then, substituting (6.2) in (6.1), there results -

bmz~m+- . 9+b Zﬂq
a fle_,e e )
en:Xn——- g e ¢ n* " n~-1"'""**"n-1 (6'5)
1+ﬁlz ﬁﬁ..+bpl :

Multiplying both sides of (6.3) by the denominator of G{z) and

putting Z—%%::X z7ke =e

n~k* n n—k etc. , there results the following

recurrence rslation

e = [Xn+alxn_1 +. . ,+aan__p]———(alen_1—l—-, . ,+ape n—‘pj

(6.4)
— b f (en_m, A T L L b f (en_q P

' n—l-¢ ]

Therefore, under suitable initial conditions, we can calculate all
values of e_ succesively by (6.4) .

The above mentioned method describes the behavier of the system at
sampling instant only. On the other hand, by employing the modified
or advanced Z transformation method, we can obtain the information
between sampling instants. With the fictitious time advance
em>QStOS) inserted ag shown in Fig., 6.1 , the value of the conirol
error hecomes a function of & . Therefore, the following recurrence
relation must be added to (6.1)

ey (8)=X (8)2G@,2) fle, e, | voiey ) (6.5)
where G(z,% ) is the advanced pulse transfer fuction of the plant with

the data hold of the form

%(A) 27, .‘f“bp (4;) A

G@ ,A):
ra Z2= 4 tagpzZp

(6.6)

If & =0, then G(z , o )-—0(z). Substituting (6.6) in {(6.5),
the recurrence relation in this case can be written as follqws H

e (&) = (X ta X _Fova X J—( e, (&) 4 ta e (o))

(6.7)

- Ebm (A> f (el’l"‘ﬂ’l, v 'en—l-m*? +- . '+bq (A) f (en__q’ s v 'en—-l—q):]

(52) -



6

Since e (= e (0) ) or fle v ..e ;) may be calculated (6.4),
the value of the continuous control error is explored at any sampling

intervals, if & is taken as a number ranging between zero and unity.

Bxample

To illustrate the technique, the sampled data control system

shown in Fig. 6.2 will be used as an example. The pulse transfer

Fig. 6.2 Block diagram for
illustrative example.

e G(Z)
n

- i
'—*E‘g N.L et SGTD

IS

function of the plant including the zero-order hold element of the
system shown in Fig. 6.2 becomes

(t g—i+d) 27 (1—d—t gd) 272

G(Z) = (1_—_2——1) (1-—@2"1) (6.8)

where d = exp ( -t ) and ty is the sampling period.

The recurrence relation corresponding to (6.4) becomes as follows:

e —(1+d) ey tde =X —CHd) X _ +dX,_,
(6.9)
—(t —1ta )i (e )~ (—a—t e )

If 4= 0.1, then

en=1.90484e | —0.90484e _ +(X ~1,90484X _ +0,90484X__,)

—0.00484f(e . )—0.0U4681(e )
n-1 n-=2 (6.10)
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As non-linear elements, let us assume those as shown in Fig. 6.3,

and the responses of the control

in Fig. 6.4 and Fig. 6.5 .

Fig. 6.3 Non-linear elementss
1) saturation, 2) linear,

error to step inputs become as shown

-05

Lo
e,\\\4§\ ! | “‘T
a5

‘ —1@

- 2hoe | .
2 K\—"‘-/\' ‘ 3 5
i

| | |

oy L l | | 5

Fig. 6.4 Transient responses to

3) quadratic and 4) cubic.

£.3

Fig.

unit step input.

6.5 Transient responses %o
step input of magnitude
2.

Application to many point control system with reays

Let us congider the many point control system with relays shown

in Fig. 6.6 and assume that every relay takes only two states:.unit

positive output and unit negative output, and that for all relays a

common digital computer determines their switching points.

For the system described by the difference equation, or the

recurrence formuls of order N, the optimum sewitcing line would be given

(54)
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Fig. 6.6 Block diagram of many Fig. 6.7 Block diagram of system
point control system with linear switching
with relays. ‘ line.

by functions of N-1 sampled data, € s Cpoproee and e .,

— = 6.11
Fi(en’en-—l""en—N-FZ)“O (i=1.2, ... ) ( )

As an example, the same system as discussed in the previous section
will be used. Let all controlled systems G{s)'s be equal to 1/s(s+1),
fhen the many point control system as shown in Fig. 6.6 can be replaced
by a single sampled data control system as shown in Fig. 6.7 .

In case of linear switching, ep - # g, = 0, where 2 is a

suitably chosen constant, the error response of this control system to

unit step input can be calculated by the following recurrence relation

en::1.90484en_-—U.90484en_2—0.00484vn_1—0.OD4u8Vn

1 -2

(6.12)

Yn=sign (en——ﬂ en-—l)

where the initial condition is e, = 1 and e = 0.99516,

Although this differnce equation can easily be solved analytically,
it is more practical to employ the prbcedure mentioned below to determine
the values of V_, (= 1 or -1 ). As the switching line becomes a
straight line with tangent # passing through the origin of the ( e, s

€—1 ) plane, V, changes its sign from 1 to -1 or from -1 to 1 at the

(55)



first point across the switching line when we plot ( e e ) deter-

n ? n—1

mined by the recurrence relation (6.12). The responses of this systen
for # = 0, 0.75 and 0.9 are given in Figs. 6.8 (a),(b), and (c) respec-

tively.

€n
10
€20
AN
€n, 0 / \/4 n
(@) pu=20
&
10 L0 /0
ol En-0.75€m120 -
(24
0 /0 o 7 2 3 4 n
(b) 2 = 0.74
10 0 ?
' s A r-0.9€m1 20
09
of
0 1.0 0 /2 3 4 n
) p =209

Fig. 6.8 Transients of system
shown in Fig. 6.7.
On the other hand, the so-called optimum switching line correspond-
ing to that of the continuous system can be obltained as the solution of
the difference equation (6.12) ( V,_, =V = 1 or -1 ) passing

through the origin. The difference eguation describing the behavier

of the system shown in Fig. 6.7 for any step input can be written as

en—(1+d) en‘1+den_1:iA. ( A= const,) (6513)
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The general solution of (6.13) becomes

- nA
e, =C #pd T - - (6.14)
1-d
where C; and Cy are arbitrary constants. Bliminating n from e, and
e , there results
-l
A 1 ! 2
—d 4 e ~de _ . —C (1-d)F7
en'-en__l-'::t—;—:&- -GZH;—.(] A{ n n=1 "1 1-d (6.15)

Determining C; and €, so that this solution curve may pass through

the origin of the ( e, e,_; ) plane, (6.15) becomes
1
=t e { {dT "} (6.16)

As A is -%5(1-d), if t; = 0.1, the switching line becomes

e ~0,90404e )
e ~e =+0,1{1-exp(t .1
0.9516 } <6 7>

or
e’ ={1-exp(x (e +0,9086e )] }
6.18
* en_en—-l ( )

ty

These two curves are shown in Fig. 6.9 and Fig. 6,10, However,
this switching line is not necessarily optimum, because the switching
does not occur at the instant the trajectory crosses the switching

line on the { e, , e ) plane, but, owing to the discrete detection

n n—-1

of the error signal, it occurs at the next sampling instant.
Therefore, the linear switching is more practical in respect of simpli-

city.
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Pig. 6.9 Optimum switching line Tig. 6.10 Optimum switching line
in ( egsep~; ) Pplane. in { e , e, ) plane.
6.4 Conclusion

The transient response of sampled data control systems with non-
linear elements can be calculated exactly, if there are a sampler and
a hold element before and after each non-linear element. Otherwise,
fictitious ones must be inserted for each non-linear element, but in
this case, of course, we obtain the response only approximately.

This fact implies that this method can be also applied to calculate
approximately the transient response of the conventional continuous
non-linear control systems. In this case, as the physical realiza-
bility of the fictitious hold element need not be considered, we can
improve the accuracy of the approximation by using the higher order hold
element.

In the control system with relays as mentioned in the section 6.3,
it is not economical to use the digital computer for determining the
switching point only. This form of the control is not practical
unless we use a part of the function of the digital computer equipped

for the so-called computing control, profit control etc.
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Chapter 7

TRIAL MANUFACTURE OF OPTIMUM NON-LINEAR CONTROLLER USING SAMPLED
DATA

7.1 Control circuit

This chapter is concerned with the optimum non-linear controller

using sampled data. This type of the controller has been already
proposed by Prof. Y. Sawaragli and otheréé) We made it especially

for process control.
The principle of this controller is shown in Fig. 7.1. Sampler

A closes long enough for a signal to remain in the memory of a poten=-

tiometer.

.|
) TTete AC 100V
™ <\ Potentiometer
AC
E

Fig, 7.1 Block diagram of optimum
non~linear controller.

Sampler B operates one sampling period after the sampler A.
A operates immediately after B was opened. These operations are
repeated, so we obtain the signal at the previous sampling instant from the
potentiometer whenever B closes. Relay R in & manipulated part opera-
tes by discriminating the sign of

EnH4en—y (7‘1)



2arz

Fhoctric Ros,s tance Type Ther omoton

Fige 7.2 Over-all circuit of optimum non-linear controller

by a phase detector as shown in Fig. 7.1, where e, 1is the present
sample and e,y 1s the previous one. Fig. 7.2 shows the circuit
of this controller.

The transients of inner temperature of the water tank as shown in

Healer, |.3 KW
Cott Waler AC. joov
q.2cc/gec.
1
-~
Loo)
<k

Fig. 7.3 Controlled system ( water tank ), outer tank : 4.45
litre, inner tank : 0.6 litre.
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Fig. 7.3. are shown in PFigs. 7.4 (a),(b), and (c). If we choose the
value of u properly, we have good response which has no overshcoot and

has small hunting.

Fig. 7.4 Comparison of transients for threevalues of 4,4 .

7.2 Evaluation of optimum switching line

The transfer function of the controlled system shown in Fig. 7.4 is

ke——SL
G(2)=
(T18+1) (T,S+1)
k =42-3°C

L =2.0 min, (7 2)
Ti=4, 8min,

Ty)=17.9min,
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so we have the Z transform of it as follows:

az P lipyzml
. HG (2) = gy s
tO (1_d1 ) (1~d22 )
dl—«e_i}‘z .
~to L, T1@dy (7.3)
dsz=e T ' a = 1— +
2 2 2 Tz_fq
L Ty (dy—dq)
m = ' b=-d, (1~=d,)+ Ll ,
0 Ty~T

Therefore, we obtain the recurrence relation which describes the

response of the system as

e - (d1+d2) en__l-i-dldzen__z

(7.4)
= (1=d) (1-d,) ~aVv__

V =sign{ep—suey1}

mwl—bvn—m—z

The optimum switching line of this case is given by calculating

(7;4) successively backward in such a way as ep=e—1=U,e9s€gsev...

( Fig. 7.5 ), when we set Vo .y = Vo_m.y; = +1 or -1 in (7.4)

€n A8y = €n-ECny
: ( ?

I £ B I~ 40 L 1|

B o LN | |

(56 60 40 o 2 40 6 |6 wa-zoaaowwen

A 20 ]
o J { | t ad \
€Q),(€4,8454) Plane (b) |, (4€n,6) Plane

Fig. 7.5 Optimum swiching line.

N
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APPENDIXES
o , . A Y P
Appendix I-1 Analytical Test for Stability

A sampled data control system is stable if all 'the roots of the
system characteristic equation f{z) = O lie within the unit circle.
For the polynomisl

f(@:anzn+alzn—l+....+an:=D (A.l)

aO 8,1 B . . an
i
8,0 . . . ; ah_l an
H
Dp = a ' a . . . a (8.2)
S 0 S S
2y Bt S5
an . 3 al ‘&0
3 . ° i . » . .
;
a a » o -
n n-l at0

then we make D _, by taking off 2 columns and 2 rows with number n and

2n from D, . Dh—2 1is formed from Dy-~; 1in the same way.,.....and
finally
a, a, 'og ;
0 I !
|
a, & a ra a
| 8
D, = fomeesoa®l oW . Di= | 0 B (A.3)
i ! :
ar1 an--li a'0 1 a'n &
{
8 8y 8y

The stability criterion can be formulated as
Dy > 0, (k=1,2, .co, n) (A.4)
The above (2n,2n) determinant D, can be reduced to the following

(n,n) determinant



i i t
1 P
dnt dp—p g
o ‘ |
R R R
L, = O T ! (1.5)
: |
dn,n d'n,n---l Gng
where
p=1 adl apu ( )
d_ - = ) A+pu = pt+q—1 .
b4 /{:0 a pi a (A 6)
n— n—
and a, = 0 for #>n,
If we set
a, a,
= (A, u) (4.7)
An—2 qn-u |
(A.6) becomes as follows
dy g = ©,p+a=1)+ (1,p+a=2) ++ - +4(p~1,q) | (4.8)
If we pay attention to
(hy,h)=0,(h,k)+(k, h)=0 (4.9)
the following relations can easily be shown
dp,q ::dq.p (4.10)
and from (A.8)
dp,q = dn—-p+1,n—-q+1:dn—q+l,n—p+l (A'll)

Therefore, the determinant (A.5) is simmetrical about two diagonals.
Thus the stability criterion can also be formulated as @
All the principal minors of (A.5) = 0 (A.12)
Examples
| For a quadratic polynomial
f(@::aozz+a1z+a2 (A.13)

the following determinants are obtained :
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2.2

d12=d 1::(0 ] 2):30 aj

2

dy1=d,y,=(, )=aj (a 03 ,)

Py = :(ao—a2)2 (a0+a1+a2) (ao—al+a2)

Then the stability conditions are

22
(a0+al+az) (ao-—al-i-az) > 0
Similarly, for a third order system,
f (z):—:_aoza+a1z2+azz+a3 = (4.15)

the following determinants are obtained :

2 2
d3 = (0,3) = a - aj
dy = (0,2) = ga- a,a,
d1 = (0,1) = a,a," 8 a,
2 2
dy, = (095> + (192) = 89~ 8 + & -8,
2
Dy =dy =8 - 2]
| A dizi idls dy
& i i a1 la, a
| 9y 22 | e VI ¥
) - A 2V(a 2 .2
= (ao +ay8,- & a8 aa)(ao 8, a, +a, a, a3)
dg  diz dy dy3 djp dp
Dy = dpg dyy dyy) = | dp dy dp
d; G i | du dp dig

2 2.2
=(a0 -5 8 +a,a,- a, )(aLOA—a1 +a, + 8, )(ao -a, +a,-a, )

Therefore, the stability conditions are
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a%—-a% > 0

(ag+a0a2—-ala3-a§) (a(z)—aoaz+a1a3—~a§) > 0 (A.16)

(ao+a‘+az+a3) (ag—aj+ajy—ajy) > 0

Appendix I-2 On the Boundary of Sﬁability

The Schur's determinant D of (A4.2) is nothing.but the resultant
formed from the following two polynomials :
f(z):aozn+alzn"'1+-~--+an_1z+an ,
¥ (D) e=magzitag 120~ 4. +ajztag (A.17)
namely, Dn = 0 is the necessary and sufficient condition in which f£(z)
=0 and f*(z) = O have commom Toots.
On the other hand, if we assume f(z) = O to be the system characte-
ristic egquation, f(z) = 0 and f*(z) = 0 have commom roots at the boundary

of stability. This fact can be proved as in the following : if f(z)

= 0 , the characteristic equation with real coefficients, has a root

=rel® | it nas also its complex conjugate root a@=re”iY, On that
. . . 1 ~i¢g 1 1 i@
occasion, £*(z) = 0 has two roots : — T Te and—g-:—~—e . As
r ¥

a (aroot of £(z) =0 ) and 1/ ( a root of £*(z) = O ) have the
same argument § , these two roots ceincide on the unit circle ( i.e.
at the boundary of stability ).
Thus Dn = 0 i1s the necessary condition for the boundary of stability,

but not the sufficient one.
Appendix II-1 Derivation of (4.25)
Let B be (n,n) unit matrix and O, be (n,n) zero matrix, then

En+1 /\t En /\:

FoaN jromery -

A Omt-1 | N2 Om (&.3)

where A 1is the (m+l,n+l) metrix as follows
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10 0 0 0 0
1 01 1 1 1 1
0 : 1 2 3 n-1 n
A\ = :
010 2.1 3.2 .  @ded a1 - (4.2)
: n—| n
o0 o o . { VD)

t
and A is a transpose matrix of A 5 A1l is the matrix with the first
column taken off A , and /\2 is the matrix with the first row taken
off Ny,

Multiplying o by the following determinant

E 8]
n
A* = = 1 (A-B)
~/\2 Em i
there results
- t t
A:A*A:-—’ En © “n /\2} En /\ t
A\, Ewll Ay Em , R AVAY

' (£.4)
soa= EOM AN = E0 ™G, g
Appendix II-2 Derivation of (4.28)
Let En(ﬂ) be the unit matrix E, in which the element (#,2) is
replaced by O and /\(u) be the matrix /\ in which the #th row is

replaced by the following row vector

(1, 0y Oyuueen, O ) (A.5)
then 2, can be expressed as folloes
(u+ 1) t
E N
S : b (A°6)
/\(/,H—I) Om+ 1 i

By the same procedure as mentioned above, a becomes

utl
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(1) 1 A
Enyy O En+1 AL ACa) D t (5.7)
PaN = - — 1 ,LH" - °
AL Ent1 N Om+1 ;"/\Exg/ll ) 4B\ v =M |
+1 +1
where —/\Egil)“"Em,H/\('a ) is the matrix whose elements are all zero

except the element (1, 1) which is unity.

Exchanging the g +1th column with the n+2th column, there results

t ’
E )
A= | M o ool == EAAD (4.8)
# 0o GAAD
where '(-—»/\/\t) ' is the matrix formed by replacing the first column

of */\/\t by the # +1th column of /\t , l.e.
O,1|M1ﬂ<ﬂ—1)"."'{mfl} (A.9)

As 811 the elements of the first row of ( ~AAY ) are zero except

the second element which is unity, we obtain

B = D ‘C;,q' (4.10)
Appendix II-%  Derivation of (4.30) :
t
E A
— +1 1 " .
fwi2 T = I-\AfT = EDPIC) ] (4.11)
i 1 m Q
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