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Abstract

In this thesis, a design method of the state-predictive servo system for the plant with
a pure delay is proposed and applied to the blood pressure control of living bodies

using a hypotensive drug. The state-predictive controller is one of the representative

controllers that takes the pure delay of the plant into account, and is effective in control

of the plant with comparatively long delay. The thesis consists of three parts.

In the first part, a design method of the state-predictive two-degree-of-freedom LQI

servo system is studied. First, a design method of the two-degree-of-freedom LQI servo

system in the delay-free case is extended to the case where the plant includes a pure

delay. This method enables the designer to determine the tracking characteristics for

step references and the feedback characteristics for step disturbances optimally with

respect to independent quadratic performance indices, respectively. Then, the prop

erties of the designed state-predictive two-degree-of-freedom servo system is clarified,

and the optimal observer that minimizes the deterioration of the maximally attainable

disturbance rejection ability is derived. This result about the optimal observer, in

combination with the two-degree-of-freedom design method derived at the beginning,

constitutes the complete solution to the optimal design problem of the state-predictive

two-degree-of-freedom LQI servo system for step references and step disturbances.

In the second part, a robust stability condition of the state-predictive control system

is derived under the assumption that the gain and the delay time of the plant model

include uncertainties. A method to calculate the stability margin is also established.

In the state-predictive controller, the present state of the lumped-parameter part of

the plant is predicted using a dynamical model of the plant. So, the performance of

the controller much depends upon the accuracy of the model. Hence, in the design

of state-predictive controllers, the robust stability analysis is essential. The robust

stability condition derived here gives. a practically complete solution to this problem

for the case of scalar plants in the sense that the controller is ready for the worst

case. Namely, the uncertainties of the plant model of scalar plants can be reduced to

the uncertainties in the gain and the phase, and the assumption that there exists the



uncertainty in the delay time corresponds to the case of the worst phase shift for a

given gain.

In the third part l the state-predictive servo controller is applied to the blood pres

sure control of living bodies using a hypotensive drug. The final purpose of the research

is to apply the obtained result to the blood pressure control of pa~ients under surgical

operation and to reduce blood loss, to reduce blood transfusion and to avoid the side"

effect of blood transfus~on. To attain these effects, the blood pressure must be kept

within a narrow range. Since the responses of the blood pressure of living bodies to a

hypotensive drug include a considerably large pure delay, the control system must be

designed by a method taking the dead time of the responses to the hypotensive drug

into accotintso that highly accurate control is performed. This circumstance motivated

the useof a state-predictive servo controller. The control system was applied to a dog

experimentally and proved to achieve satisfactorily accurate and robust performance

needed in the application to the surgical operations.
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Chapter 1

Introduction

Feedback control is a method in which the input is changed so as to make the error

between the reference input and the controlled output smaller, based on the observation

of the effect of the past input on the controlled output. When the plant includes a pure

delay, the effect of the input does not appear on the output immediately. This means

that sufficient information for determining the present input cannot be obtained, and

that the effect of the past input on the output cannot be evaluated accurately. For this

reason, the performances (i.e. the tracking characteristics, the feedback characteristics,

the stability, and so on) of the control system for the plant with a pure delay become

worse than those of the plant without a pure delay.

In order to avoid such performance deterioration of the control system for the plant

with a pure delay, several methods that the input is determined based on the predicted

value of the output obtained by an appropriate prediction mechanism were proposed

[42], [32], [22], [16].

The Smith controller [42] is the first and representative method that realized the

above idea. It has a transfer function model of the plant in itself and equivalently

realizes a closed-loop system with no delay by predicting the output of the lumped

parameter part of the plant (Le. the part of the plant obtained by removing the pure

delay) by the transfer function model. However, the Smith controller has the following

drawbacks.

1. The Smith controller cannot stabilize the closed-loop system when the plant is

unstable.

2. The Smith controller cannot suppress step disturbances when the plant has a pole

(or poles) at the origin. Furthermore, the effects of step disturbances remain for

a long time when the plant has a pole (or poles) near the origin.
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In order to cope with the second drawback, the Smith controller using an approximate

plant model [39], the Smith controller with a disturbance compensator [45] and a two

degree-of-freedom Smith controller [4] were proposed. However, the first drawback

was not removed in these modified versions; i.e. these controllers could not stabilize

the closed-loop system when the plant is unstable. This is because the first drawback

originates from the essential structure of the Smith controller.
On the other hand, the state-predictive controller [32], [22], [16] is a comparatively

new proposal. It has a state-space model of the plant in itself and equivalently realizes a

closed-loop system with delay-free state feedback by predicting the state of the lumped

parameter part of the plant by the state-space model. This controller can be derived

by applying the finite spectrum assignment technique [32] to the plant, and has the

following advantages in comparison with the Smith controller.

1. The state-predictive controller can stabilize the closed-loop system even when

the plant is unstable.

2. The state-predictive controller can suppress step disturbances completely at the

steady state even when the plant has a pole (or poles) at the origin. If the plant

model is accurate, the effects of step disturbances can be removed at arbitrarily

,specified speed even when the plant has a pole (or poles) near the origin.

The present thesis is devoted to establishing a systematic design method of the state

predictive controller.
As for the design of a one-degree-of-freedom state-predictive controller, design

methods for the plant with no delay can be used. Namely, after the control system

is constructed in accordance with the state-predictive control system structure [32],

[22], [16], the feedback gain and the observer gain can be determined by applying an

appropriate design method for plants with no delay (for example, the pole-assignment

method, the optimal design method with respect to a quadratic performance index,

and so on [16]) to the lumped-parameter part of the plant. However, as for the design

of the two-degree-of-freedom state-predictive control system, no systematic method

has been established. In [2], a two-degree-of-freedom state-predictive control system

was studied, but the controller was only for a single-input single-output plant and its

feedforward gain was determined by a trial-and-error method.

On the other hand, for the plant without a delay, a systematic two-degree-of

freedom optimal design method has been studied [11], [17], [19] assuming that the

state feedback is possible. These researches have made the following common contri

bution. Namely, they have clarified that, by taking an appropriate (two-stage design

2



procedure,' tracking characteristics and feedback characteristics can be adjusted sep

arately. To be precise, the tracking characteristics can be determined optimally in

the first stage, and the feedback characteristics can be improved in the second stage

by introducing an integral and proportional feedback, without affecting the track

ing characteristics determined in the first stage. In particular, under the setting of

state feedback, Hagiwara et al. [19] proposed a two-degree-of-freedom optimal design

method, in which the responses for step references can be determined optimally with

respect to a quadratic performance index, and at the same time, the responses for step

disturbances can be determined optimally with respect to another quadratic perfor

mance index. Moreover, they showed that the responses for step disturbances become

quicker as the 'state-weighting matrix' 5 of the performance index posed on the dis

turbance responses is made larger, and also gave the asymptotic disturbance responses

for 5 -+ 00. (Note that the responses for step references remain the same in this

process of improving the responses for step disturbances by adjusting 5, as mentioned

above.)

A two-degree-of-freedom design method in the output feedback case has been also

studied [12], [20]. In particular, Hagiwara et al. [20] focused upon the responses for

step disturbances and studied the optimal procedure of determining the feedback gains

of the robust servo system, assuming that we employ an arbitrary but fixed observer.

To be specific, it is proved that we may use the same feedback gains as those of the

state feedback case, whatever observer we may employ. Moreover, it is shown that

all the fundamental desirable features are inherited from the state feedback case [19].

In additioD, the asymptotic disturbance responses for 5 -+ 00 is given for the output

feedback case.

Based on the above background, we study a two-degree-of-freedom design method

of an LQI servo system for plant with a pure delay. To put it concretely, we extend the

results in the output feedback case [20] to the case where the plant has a pure delay, and

study the features of the state-predictive two-degree-of-freedom servo system designed

by that procedure. In order to give the complete solution to the optimal design problem

of the state-predictive two-degree-of-freedom LQI servo system for step references and

step disturbances, the optimal observer for the designed system is derived. Moreover,

since the robustness analysis is important in the design of control systems for plants

with delays, a robust stability test of the state-predictive control systems is proposed.

The test is effective for the Smith controller, too.

As the last step of research, we apply the state-predictive servo controller to the

blood pressure control ofliving bodies using a hypotensive drug. This research is aiming
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at the control of the blood pressure of patients under operation, but in this thesis the

preliminary studies using dogs are mainly reported. The responses of most functions

of living bodies to drugs include more or less a pure delay. When the ratio of the dead

time to the time-constant of the response is large, the dead time has a large effect

on the response of the overall control system, especially on stability. Blood pressure

control is a typical example of such a function. The purposes of our blood pressure

control are reducing blood loss in surgical operations, reducing blood transfusion and

avoiding the side-effect of blood transfusion. For these purposes, the effect of control

becomes more eminent as the blood pressure is kept lower. On the other hand, the

blood pressure must be kept at a level higher than the critical value that results in

irreversible changes to the body. In order to maintain the blood pressure within such

a narrow range bounded by the above two requirements, the control system must be

designed by the method taking the dead time of the responses to the hypotensive drug

into account. Many blood pressure control systems have been developed [40], [471, [3]'
[24], [44], [33], [14], [48} (see also [21]), but most of those systems did not take the

dead time of responses to drugs into account. Woodruff and Northrop [48] deve~oped

a blood pressure control system using the Smith controller, but their control system

has a good performance only if the parameters of the controller are fine-tuned. Under

such background, we developed a blood pressure control system.

The contents of this thesis are as follows.

In Chapter 2, we make a brief survey of usual state-predictive controllers [32]' [22]'

[16]. Furthermore, we review a two-degree-of-freedom state-predictive servo system

proposed by Araki and Watanabe [2].

In Chapter 3, we extend the results for the two-degree-of-freedom LQI servo system

in the output feedback case [20] to the case where the plant has a pure delay. It will
be proved that the resulting compensator is the same as that for the plant with the

delay removed, except the existence of a state prediction mechanism to cope with the

delay, and that all the fundamental desirable features are inherited from the delay

free case. Moreover, comparing the obtained asymptotic responses with those of the

state feedback case, the deterioration of disturbance rejection ability caused by the

introduction of an observer is quantitatively clarified. In addition, by evaluating this

performance deterioration, we study a design method of an observer. To be precise,

we give ~ design method of an optimal observer that minimizes the deterioration of

the maximally attainable disturbance rejection ability. The derived optimal observers

have a close connection with the technique of loop transfer recovery [9) l [43].

In state-predictive controllers, the present state of the lumped-parameter part of

4



the plant is predicted using dynamical models of the plant. Then , the performance of

the controllers much depends upon the accuracy of those models. This implies that

the control systems can become very sensitive to modeling errors, especially when the

response speed is raised excessively. Hence, in the design of state-predictive controllers,

the robustness analysis is crucially important. In Chapter 4, we study robust stabil

ity conditions in the case where the modeling errors (in the following, referred to as

mismatches) exist only in the estimates of the gain and the delay time, and we derive

a method to obtain the stability margin of state-predictive control systems. Although

the assumption of the modeling errors seems to be very restrictive, the results can be

practically useful because the assumed modeling errors cover general gain and phase

deviation which are practically plausible.

In Chapter 5, we apply the state-predictive servo controller to the blood pressure

control using a hypotensive drug. It is proved by experiments that the blood pressure

control system using the state-predictive controller exhibits satisfactorily accurate and

robust performances needed in the application to the surgical operations.

In the final chapter, Chapter 6, we summarize this thesis, and discuss the future

topics.
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Chapter 2

State-predictive control systems

As controllers for plants with a cascaded pure delay, the Smith controller [42] and

state-predictive controllers [32], [22]' [15], [16] are well~known. Both of them have

some prediction mechanisms. In the Smith controller, the effect of the manipulating

input on the controlled output is predicted. This controller has a defect that it cannot

suppress the offset if the plant has a pole at the origin. In order to solve this difficulty,

the Smith controller using an approximate plant model [39], the Smith controller with

a disturbance compensator [45] and a two-degree-of-freedom Smith controller [4] were

proposed. However, these controllers, nor the original Smith controller, cannot stabilize

the closed-loop system if the plant is unstable. On the other hand, in state-predictive

controllers, the present state of the lumped-parameter part of the plant is predicted,

and accordingly, they can stabilize the closed-loop system even for an unstable plant.

In this chapter, we make a brief survey of the usual state-predictive servo controller

[32]' [22]' [16].

2.1 State-predictive servo systems

Consider the plant with a cascaded pure delay TL on the output side, described by

(2.1)
(2.2)
(2.3)

- Ax(t) + Bu(t),

Cx(t),

YA(t - TL),

dx(t)
dt

YA(t) -

y(t) -

where u(t) is an m-dimensional input, y(t) is an m-dimensional output, YA(t) is an

m-dimensional delay-free output, and x(t) is an n-dimensional state, and (A, B) is

controllable and (C, A) is observable. We assume that the state x is not accessible and

only Y is available. (Even if the delay is on the input side, we can model the system in

6



the form of (2.1), (2.2) and (2.3). Therefore, the assumption that the delay lies on the

output side does not cause any loss of generality.) We refer to (2.1) and (2.2) as the

lumped-parameter part of the plant, and to (2.3) as the pure delay part. The structure

of the model is depicted in Fig. 2.1 where

G(s) := C(s1 - A)-l B (2.4)

is the transfer function of the lumped-parameter part.

Now, we derive a state-predictive servo system for this plant. The basic idea is as

follows. First, assuming that we can use the state and the delay-free output (i.e., the

output of the lumped-parameter part of the plant), we construct a fictitious system.

Then, we transform the fictitious system into a physically realizable system using an

observer and a prediction mechanism.

We first consider a fictitious augmented system of Fig. 2.2, which includes integral

compensation in order to attain the robust tracking ability. If we can use the values

of x(t) and YA(t), we can apply the state feedback law to the augmented system:

with

u(t) = [F1
F] [ xr(t) ]

2 xCi)
(2.5)

xr(t) := 11

{reT) - CX(T)}dT.

The feedback gain for the augmented system

(2.6)

(2.7)

should be determined so that the closed-loop system has appropriate properties. Thus,

we obtain the fictitious servo system of Fig. 2.3.

Now, we derive a physically realizable system from Fig. 2.3. For this purpose, we

first make an estimate of the state of the lumped-parameter part by using an observer.

Since the available data is the delayed output yet) = Cx(t - Td, we design an observer

to estimate the past value x(t - Td of the state:

dq(t)
dt

x(t - TL )

- Aq(t) + Bu(t - TL ) - Ky(t),

Dq(t) - Ly(t).
(2.8)

u(t) .\ G(s) IYA(t)·1 .-TL'

'--------

Fig. 2.1: A plant with a pure delay

7

yet)



J
u

G(s)

Fig. 2.2: Augmented system for designing the state-predictive servo system

Fig. 2.3: Fictitious servo system

Here, x(t - TL ) denotes the estimate of x(t - TL ), A is a stable matrix and A,B, K,
D and L satisfy

AM
B
I -

MA+KC,

MB ,
DM-LC

(2.9)

for a certain M [29]. Next, we predict the values of the state of the lumped-parameter

part and the integral error. For this purpose, we use the state transition equation of

the augmented system

[
. X1(t)] =

x(t)

(2.10)

with.

A. := [~ -:], B.:= [ ~ ] . (2.11)

Assuming that y(t) = 0 (0 ::; t < TL ), XI(t), the integral error of the available output

from the reference (this corresponds to the output of the integrator which can be

impleme.nted in the actual controller), is obtained by

r-TL
{r(T) _ Cx{-r)}dT + r r(T)dT

10 It-TL

XI(t - TL) + r r(T)dT.
It-TL

8
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Replacing x(t - TL ) in (2.10) by the estimate x(t - Td and substituting the equation

obtained by solving (2.12) for XI(t - TL) into (2.10), we obtain the predicted value

ia(t):= [ :::: iI(t) ] = eA•TL [~Xl(t) ] + r eA,,(t-T)Bau(T)dT. (2.13)
. x(t - Td x(t - TL ) Jt-TL

Here, iI, i are the predicted values of the integral error and the state of the lumped

parameter part. If this ia(t) is used in place of [xf(t) xT(t)JT in (2.5), the feedback
law becomes

(2.14)

As a result, we obtain a one-degree-of-freedom state-predictive servo system given in

Fig. 2.4. Here, F(Aa , Ba , Td is a finite interval integration operator defined by

(2.15)

and hand 1p are matrices defined by

(2.16)

where Ii is an i-dimensional unit matrix. If there exist no modeling errors, the responses

of this system for reference inputs coincide with those of Fig. 2.3. The parameters of

the system can be determined by pole assignment method, optimal design method with

respect to a quadratic performance index, and so on.

2.2 Two-degree-of-freedom state-predictive servo
system for an SI80 plant

In the preceding section, we reviewed one-degree-of-freedom servo system based on

state-predictive control. In this section, we make a brief survey of a two-degree-of

freedom state-predictive servo control system proposed by Araki and Watanabe [2].

This system is for an SISO (single-input single-output) plant!. The structure of this

system is shown in Fig. 2.5. The term X, one of the inputs of the observer, works as a

feedforward from the reference input to the manipulated input, and K, is a parameter for

adjusting the tracking characteristics; In addition, K, gives no effect on the feedback

characteristics. Therefore, the system of Fig. 2.5 is a two-degree-of-freedom servo

system. However, we can adjust K, only by trial-and-error method and no effective

adjusting method of the parameter K, is given.

IThis system can be easily extended to the multivariable case.

9



Fig. 2.4: One-degree-of-freedom state-predictive servo system

y

q(t) = Aq(t) ...;. KX(t) + Bu(t - TL)
.x(t) = Dq(t) - Lx(t)

x

Fig. 2.5: Two-degree-of-freedom state-predictive servo system proposed by Araki and

Watanabe [2]
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Chapter 3

'Two-degree-of-freedom
state-predictive LQI servo systems

As mentioned in the preceding chapter, in designing state-predictive controllers, de

sign methods for plants with no delay have been used, that is, control systems are con

structed in accordance with state-predictive control system structures [32], [22], and the

feedback gain and the observer gain are determined, for example, by pole-assignment

method, optimal design method with respect to a quadratic performance index, and

so on [16]. On the other hand, no effective design method of two-degree-of-freedom

state-predictive control systems has been established. A two-degree-of-freedom state

predictive control system was studied in [2]' but its feedforward gain can be determined

only by a trial-and-error method.

As for the plants without a delay, an effective two-degree-of-freedom optimal design

method was proposed [1l], [17], [19], in which the responses for step references can be

determined optimally with respect to a quadratic performance index, and at the same

time, the responses for step disturbances can be determined optimally with respect to

another quadratic performance index. In addition, the extension of this method to the

output feedback case was studied [20L [12].

The purpose of this chapter is to extend one of these results [20] to the case in

which the plant has a pure delay. It will be proved that the resulting compensator is

the same as that for the plant with the delay removed, except the existence of a state

prediction mechanism to cope with the delay, and that all the fundamental desirable

features are inherited from the delay-free case. Moreover, the asymptotic disturbance

responses obtained improving the disturbance rejection ability of the system as much

as possible are given, and comparing the obtained asymptotic responses with those

of the state feedback case, the deterioration of disturbance rejection ability caused by

the introduction of an observer is quantitatively clarified. Furthermore, we study the

11



problem of designing the optimal observer that minimizes this deterioration under a

suitable measure.

3.1 Plant-variable-optimal state-predictive robust
servo system

In this section, we describe the basic ideas for the design of tw:o-degree-of-freedom

(abbreviated as 2DOF) robust servo systems for the plant with a pure delay. This is

done by an extension of the design method in the delay-free case [20]' by introducing a

prediction mechanism. The main problems of this chapter (determining the parameters

of the two-degree-of-freedom optimal robust servo systems for plants with a pure delay,

clarifying the performance deterioration caused by the introduction of an observer

and determining the parameters ofoptimal observers for the designed system) will be

studied in the subsequent sections, based on these preliminary results.

3.1.1 State-predictive LQ-obs servo system

As in the preceding chapter, consider the plant with a cascaded pure delay TL on

the output side, described by

dx(t)
dt

YA(t)

yet) -

Ax(t) + Bu(t),

Cx(t),

Cx(t - Td,
(3.1)

where u(t) is an m-dimensional input, yet) is an m-dimensional output, YA(t) is an

m-dimensional delay-free output, and x(t) is an n-dimensional state, and (A, B) is sta

bilizable and (e, A) is detectable. For this plant, we consider the problem of designing

a robust servo system in which the output yet) (t 2:: 0) tends to the step reference

ret) = r applied at t = 0 in an optimal fashion. In order for this problem to be

solvable, we assume [8]

det [~ ~] i 0 (3.2)

We further assume that the state x is not accessible and only Y is available. Under the

above condition, X oo and U lXl ' the steady-state values of x(t) and u(t) respectively that

achieve yet) =T,are uniquely determined by

(3.3)

12



The errors of x(t) and u(t) from these steady-state values defined by

x(t) .- x(t) - x oo ,

u(t) .- u(t) - u oo ,

satisfy the equation of the error system:

d-(t)
:t = Ax(t) + Bu(t).

(3.4)

(3.5)

Noting that yet) (0 ::; t < Td cannot be altered by u(t) (t 2:: 0), our purpose could

be restated as making the output y( t) (t 2:: Td tend to the step reference r) that is)

making the errors x(t) and u(t) for t 2:: a tend to zero as quickly as possible. Thus) as

in the delay-free case [20] (see also [36]), we pose the performance index

J = 10
00

(x(tfQx(t) + u(t)TRu(t)) dt,

Q 2:: 0, R> O.

Assuming that (Q1/2) A) is detectable, we obtain the optimal feedback

u(t) = Fox(t)

with

where P is the unique positive semidefinite solution of the Riccati equation

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

For this Fo) the matrix A+BFo becomes stable. From (3.3),(3.4) and (3.8), the optimal

plant input u is given by

where

u(t) - Fo(x(t) - xoo ) + u oo

- Fox(t) + Hor(t),

Ho := -[C(A + BFo)-lBtl.

(3.11)

(3.12)

The closed-loop system obtained by the control law (3.11) is called an LQ servo system

by state feedback (Fig. 3.1) [17L [19].

13



Ho

. Fig. 3.1: LQ servo system by state feedback

(3.13)
- Aq(t) + Bu(t - TL ) - Ky(t) ,

Dq(t) - Ly(t).

However, since the state x is not accessible by our assumption and since the output

yet) holds the information about x(t - Td rather than x(t), we introduce the following

observer that estimates the state x(t - Td as in Chapter 2 (see also [46]):

dq(t)
dt

x(t - TL ) -

Here, x(t - TL ) denotes the estimate of x(t - TL ), and we assume that there exists a

matrix M satisfying

AM 
1

B

MA+KC,

DM-LC,

ME,

(3.14)

(3.15)

and that A is stable [29]. Furthermore, we introduce i(rlt - TL), an estimate of the

state x(r) (t - TL ::; 7" ::; t) calculated from x(t - TL ) using the state transition rule,

given by
i(rlt - Td = eA(-T-t+TL)x(t - TL) +ir

eA(r-o-)Eu(a)dO'.
. t-TL .

Replacing the first term of the right hand side of (3.11) with Foi(7"lt - TdlT=t, the

control law is given by

u(t) = Foi(tlt - TL ) + Hor.

Here, i(tlt - Td is given from (3.15) by

i(tlt - TL ) = eATLx(t - TL ) + YJ(t) ,

where YJ(t) is the finite interval integration defined by

Yt(t) = .r(A, E, TL)u :=It
eA(t-o-) Eu(a)da,

t-TL

which can be formally described by the state equation

(3.16)

(3.17)

(3.18)

AxJ(t) + Bu(t),

xJ(t) - eATLxJ(t - TL );

(3.19)

14



Plant

Observer

r
Ho

y

Fig. 3.2: State-predictive LQ servo system incorporating an observer (State-predictive
LQ-obs servo system)

where x f is a state variable of finite interval integration.

The resulting closed-loop system is shown in Fig. 3.2. We call this system a state

predictive LQ servo system incorporating an observer, or simply a state-predictive LQ

obs servo system. Since the observer (3.13) and the state prediction mechanism (3.15)

do not affect the transfer characteristics from r to y, this servo system has the same

tracking ability for step references as the above LQ servo system by state feedback, and

attains the optimal transient responses to step references under the performance index

(3.6) (this optimality is called plant-variable-optimality (PV-optimality) [17], [19], since

(3.6) includes only the plant variables). However, it does not possess robust tracking

ability against step disturbances and the modeling errors of the plant.

3.1.2 Introduction of integral compensation

In this subsection, according to internal model principle [10], an integral com

pensator is added in order to endow the state-predictive LQ-obs servo system of the

preceding subsection with robust tracking ability. To this end, we introduce the aug

mented state-predictive LQ-obs servo system of Fig. 3.3. As shown in the figure, it

includes the state-predictive LQ-obs servo system and the integral compensator

where

e(t) := r(t) - y(t) (= r(t) - Cx(t - TL ))

(3.20)

(3.21)

is the tracking error of the output y(t) and Wo is the initial value of w(t). While the

above integral w(t) includes the information up to time tabout the reference r, it

15



includes only the information up to time t - TL about the state x. For this rea5on,

we equip the augmented state-predictive LQ-obs servo system with another prediction

mechanism for the integral compensation, which yields an estimate .w(t) ofthe integral

of the 'delay-free error' ret) - Cx(t) given by

.fu(t) := wet) -it ci(Tit - TL)dT,
t-TL

(3.22)

where i(Tlt - TL) is given by (3.15). Defining the estimation error E(t) of the observer

and the prediction error EI(t) of the plant state associated with the finite interval

integration by

q(t) - Mx(t - TL ),

YJ(t) - x(t) + eATLx(t - Td,
(3.23)

(3.24)

the closed-loop system is described from (3.1), (3.20), (3.13) and (3.19) by

. x(i) A+BFo 0 BFoeATLD BFo x(t)
-fu(t) -C 0 -C fOTL eMdCfDA -C .w(t)
e(t) 0 0 A 0 E(t)

E:f(t) 0 0 0 A EJ(t)

B BHo
0

vet) + I
ret), (3.25)+

0 0

0 0

where vet) is a new input (see Fig. 3.3), and ((t) is anew output defined by

(t) := ri(tlt - TL ) + {D(t)

. with

By introducing a feedback gain G such that

vet) = G(t)

(3.26)

(3.27)

(3.28)

(see Fig. 3.4), we can verify the following (in completely the same manner a5 in [11]

and [20]). That is, in the nominal setting, the output .w(t) of the 'predictive integral

16



r

r

State-Predictive LQ-obs Servo System

I
'-- --J :

l
I

I ,
L~ ~ J

Fig. 3.3: Augmented state-predictive LQ-obs servo system

y

y

Fig. 3.4: State-predictive plant-variable-optimal LQI-obs servo system (State-

predictive 2DOF-LQI-obs servo system)
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compensator' (3.22) is canceled by the feedback ri(tlt - TL ) (Le., we have ( == 0)1,
and, by (3.28), the plant input given by

u(t) = Fo~(tlt - TL ) + Hor(t) + vet) (3.29)

coincides with that of the state-predictive LQ-obs servo system given by (3.16), and

so the performance index (3.6) is minimized. On the other hand, if there exist step

disturbances and/or modeling errors, they would make v and ( nonzero, in general.

In such a case, the predictive integral compensator (3.22) will make the tracking error

tend to zero provided that the closed-loop system is stable. In view of these properties,

we call the closed-loop system of Fig. 3.4 a state-predictive PV-optimal LQI-obs servo

system.

3.2 Optimal G for disturbance rejection

In the preceding section, we introduced a feedback gain G. This gain can be chosen

arbitrarily as long as it stabilizes the closed-loop system, and the nominal responses

for step references remain the same regardless of the choice of G. In this section, we

regard G as the feedback gain which adjusts disturbance rejection characteristics, and

study how to determine G in order to obtain the optimal disturbance responses. This

leads us to a two-degree-of-freedom optimal design of state-predictive servo systems.

3.2.1 Disturbances and the disturbance compensation input

We consider the case where the plant (3.1) is subject to the step disturbances dx

and dy as
dx(t)

dt
yet)

- Ax(t) + Bu(t) + dx(t),

Cx(t - TL ) + dy(t - TL ).

(3.30)

Note that the step disturbance dy is added not to the plant output directly but to the

output of the lumped parameter part of the plant. In the following, we consider only

the case of T = 0 in view of linearity of the system. Then, since the observer (3.13)
produces the estimate x(t - TL) given by

(3.31)

1Here, we assumed that the initial values of x, w, q, xf and the initial function of the pure delay
are all zero for simplicity. If this is not the case. the above argument is subject to some modification
[llJ, [12], but this point is not crucial since we deal with transfer characteristics in this chapter.
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under the presence of the above disturbances, the part of the state-predictive LQ-obs

servo system in Fig. 3.3 is described by

dx(t)
dt

yet)
de(t)

defft)
dt

- (A + BFo)x(t) + BFoeATL Dc(t) + BFoc f(t)

+Bv(t) + dz(t) - BFoeATLLdy(t - TL )

Cx(t - TL ) + dy(t - TL )

Ac(t) - M d:c(t - Td - K dy(t - TL )

- ACf(t) - dx(t) + eATLd:c(t - TL ).

(3.32)

Let Vd: be the (constant) value of v that achieves y :::::: r (= 0) under the above

disturbances, and let Xdocll CdcX> and C Ideo be the steady-state values of X, c and cI,

respectively, for the input v :::::: Vd: (the superscript 'obsl stands for the value for the

system incorporating an observer, by which we make distinction from the value for the

system with state feedback to be discussed in Section 3.4, and the subscript 1/ stands

for the value under the presence of the step disturbances d:c and dy). We call Vd: the

steady-state disturbance compensation input. The values of Vd:' Xdoo, Cdeo and C fdoo

can be obtained from (3.32) as2

x

-1
A+BFo B BFoeATLD BFa

COO a
o 0 A a
o a 0 A

-{d:c - BFoeATLLdy}
-dy

Md:c + Kdy
(I - eATL )d:c

-(A + BFo)-l{(I + BHoF)d:c - BRody}

[{HoT + FoJoTL eMdu - FoeATLDA-lM}d:c
-(FoeATLDA-l K - FoeATLL + Ho)dyJ

A-1(Aldx + K dy)

(3.33)

2Nansingularity of A is assumed in (3.33) for simplicity. Even if A is singular, our key result (3.47)
below can be justified by similar arguments, and so the results of this chapter remain true.
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The state equation of the predictive integral compensator (3.22) is described by

d:Jj(t) rTl, ~
dt - -Cx(t) - CJo eMdcrDAc(t) - CcJ(t)

+C faTL eMdaLCdx(t - Td

-{f - 0 faTL eMdcrDK}dy(t - TL ). (3.34)

Therefore, from (3.32) and (3.34), the state equation for the whole system of Fig. 3.3

with disturbances is given by

x(t) A+BFo 0 BFoeATLD BFo x(t)
d :Jj(t) -C a -0JJ'L eMdcrDA -0 . :Jj(t)
-

Adt c(t) a a a c(t)
CJ(t) . a 0 0 A cJ(t)

B

a
vet)+

0

a
dx(t) - BFoeATLLdy(t - TL)

[0Jg'L eAqdcrLOdx(t - TL)

+ -{I - 0 JJL eAqdcrDK}dy(t - TdJ (3.35)

-Mdx(t - TL ) - Kdy(t - Td

-dx(t) + eATl,dx(t -' Td

From (3.17), (3.24) and (3.31), we have

~(tlt - TL ) = x(t) + eATl, Dc(t) + cJ(t) - eATL Ldy(t - Td. (3.36)

In view of this and (3.26), we apply the transformation

x(t) I 0 0 0 x(t) a
(t) r I reATLD r iV(t) reATLLdy(t - TL )

e(t) - (3.37)
0 0 I a c(t) 0

cf(t) 0 0 0 I cJ(t) a
to the system (3.35). Then, we obtain

x(t) A+BFo a BFoeATLD BFo x(t) B
(t) 0 a JlTL a (t) IJ.i

.s(t)
-

A + vet)
0 0 0 c(t) 0

.sJ(t) 0 a a A cf(t) a
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where

+

d:r;(t) - BFoeATL Ldy(t - Td
[{-reATL + Cfl'L eArTd(J}LCdx(t - Td

+{ -If/FoeAhL - 1+ Cfoh eArTd(JDK

-reATLDK}dy(t - Tt}J
-Md:r;(t - Td - Kdy(t - Td

-dx(t) + eATLdx(t - TL )

(3.38)

(3.39)

(3.40)

3.2.2 Evaluation of disturbance responses via the error sys
tem for disturbances

In the following, we assume that the closed-loop system had reached the steady state

for the step disturbances d~ and d~ by t = -0, and that the disturbances changed into

dx and dy at t = O. Since the effect of the disturbances dx and dy can be observed from

yet) only after t = TL, the control action for these disturbances can be taken only after

t = TL . This implies that the behavior of the system for 0 S; t < TL is completely the

same as that of the state-predictive LQ-obs servo system with v :=: VdP~, where VdP~

is defined as vd: with dx , dy given by (3.33) replaced by d~, d~ (i.e., the behavior for

o S; t < TL is independent of the gain G). Hence, we consider only t ~ TLI and we

regard the initial time as t = TL .

Now, we assume that the value of ( in the steady state y _ 0 is Cd:. Defining the

errors of x, (, v, e and ef from their steady-state values under the disturbances as

Xd(t) x(t) - xdoc,

(d(t) ((t) - Ci:,
Vd(t) vet) - vobs

doc'

£d(t) - e(t) - edOCI

£fd(t) e f (t) - e fdoc, (3.41)

they satisfy

Xd(t) A+BFo a BFoeATLD BFo Xd(t)
d (d(t) 0 a [tTL 0 (d(t)
-

Adt €d(t) a a 0 £d(t)
€fd(t) 0 0 0 A €fd(t)
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+

B

rJt
o
o

(3.42)

from (3.33) and (3.38).
Here, we consider the behavior of £fd(t). From (3.33) with dx replaced by d~,

Since the transition equation of C I during 0 ~ t < TL is described by

dCf(t) = Ac: _ d + eATLd/
dt I x Xl

we have

(3.43)

(3.44)

C/(TL) _ eATLc/(O) + faTL eA(TL--r) (-dx + eATLd~)dT

_ A-l(I-eATL)dz' (3.45)

From (3.33) and (3.45), the value of £ld(Td becomes

(3.46)

Since the transition of €fd after t =TL is described by

d€fd(t) A- ()
dt = C/d t ,

€Id(t) = 0 is always sa'tisfied after t = TL . This justifies our employing the state

equation (3.42) with £Id omitted:

Here,

(3.48)

is stabilizable from stability of A + BFo and A and from nonsingularity of W.

In order to suppress the effect of the disturbances as quickly as possible, it seems

reasonable to apply an optimal feedback to the above system. Recalling that the
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purpose of this design step is to obtain the feedback gain G from ( to v, we pose the

performance index of the restricted form

with

[ ~ ~ ]I"""'t ~ "=12
.:: > 0, =T = 2:: 0, 6J > 0,

...... 12 ...... 22

so that such a feedback follows as the optimal solution3 .

From'= > 0,

(3.49)

(3.50)

([~
o

=T
~12

: ] 1/2 [A + BFo
'-'12 , 0

2 22 0
(3.51)

is detectable, and therefore, the Riccati equation associated with the optimal control

problem for the above performance index has a unique positive semidefinite solution.

3.2.3 Optimal G

Assuming that the solution is given by

(3.52)

the Riccati equation can be written as

[

A+BFo
+ a

a

3 As will be clear later, in the design step we do not have to introduce this performance index
actually; the purpose of the 'design procedure' here is in fact to show that the optimal G in the state
feedback case is still optimal in the output feedback case. Thus, although the form of (3.49) may look
restrictive, it is enough for this purpose.
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-[~
0 1, ][~ ]e-

l

[ ~rl~ 0 1, ]II II
0 0

+ [~
0 i,] =0...... (3.53)

-=T
......12 ......22

This is equivalent to the following three equations:

- lllJfe-1JjFTJI + 5 - OJ (3.54)

IInTL + 2 12 - 0, (3.55)
~ AT

O. (3.56)II22 A + A ll22 + 2 22 -

Assuming that 11 is the unique positive definite solution of the Riccati equation (3.54),
(3.55) is satisfied if the weighting matrix 5'12 is chosen as

2 12 = -[JflTL ·

If, in addition, S22 is chosen so that

3 22 :2: fl~LHJeHoflTL'

(3.57)

(3.58)

the positive semidefiniteness condition of (3.50) is satisfied, and 1122 :2: 0 is obtained

as the solution of the Lyapunov equation (3.56). Therefore, by employing theweight

ing matrices satisfying (3.57) and (3.58), the optimal control law that minimizes the

performance index (3.49) (and, at the same time, stabilizes the closed-loop system) is

given by

with

Vd(t) _ _e-1 [ ; ] T [~~ ~ ] [ ti:i ]
o 0 0 II22 fd(t)

- _e-11]tTII(d(t)

G(d(t) (3.59)

(3.60)

where II is the unique positive definite solution of the Riccati equation (3.54). Note

that the above Gis nonsingular and its value is independent of (3"~; From (3.41), the
. .

optimal v is given by

vet) = G((t) + Vext,

·24

(3.61)



where

V . - V obs Globs
ext·- doo - "doo' (3.62)

Here, since C is nonsingular, the steady-state value G: has a one-to-one correspon

dence with Vext, and is conversely determined from Vext as

robs C-1 ( obs )
"doo = V doo ~ Vext . (3.63)

In other words, whatever Vexl one may choose, the control law (3.61) will be optimal

under the performance index (3.49) among all the control laws that achieve the same

steady-state value of ( as that given by (3.63). Furthermore, robust tracking is ensured

for any value of Vexl' Therefore, any constant value may be assigned to Vext, but, for

simplicity, we assume Vext = 0 in the following'!. Then, the optimal v is given by

v(t) = C((t) (3.64)

and thus we obtain the state-predictive PV-optimal LQI-obs servo system of the struc

ture shown in Fig. 3.4. In this case, G: is given from (3.63) as

( obS = G-1vobs
doo doo' (3.65)

Note that the resulting C of (3.60) coincides with the optimal gain in the delay-free,

state feedback case [19] (and the delay-free, output feedback case [20]). This implies

that the optimal gain G (from the viewpoint of disturbance rejection) for the plant

with no delay in state feedback case is also optimal for the plant with a pure delay

incorporating an observer and a state prediction mechanism; the performance index

(3.49) need not be introduced actually in the design procedure, and we may design the

gains Fo, Ho and G as the delay-free, state feedback case [19]. This fact itself is not

surprising, but the argument given in this section is very important when we study an

asymptotic property of disturbance responses in the following section.

We now summarize the features of the state-predictive PV-optimal LQI-obs servo

system obtained in this section. Namely, in its design procedure, tracking character

istics for step references can be determined optimally by Fa and Ho, and feedback

characteristics for step disturbances (and modeling errors) can be determined also op

timally by G without changing tracking characteristics. From this reason, it is called a

state-predictive two-degree-of-freedom LQI servo system incorporating an observer, or

simply a state-predictive 2DOF-LQI-obs servo system. Note that the structure of this

system is nothing but the 2DOF-LQI-obs servo system in the delay-free, state feedback

case [19] plus an observer and a prediction mechanism.

4The optimal value of Cd: (and therefore the optimal value of vexd depends on the disturbances
d", and d". If no information about the disturbances is available, a suboptimal choice is Vcxt = O. See
[19J for details. .
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(3.67)

(3.66)

3.3 Structure of the state-predictive two-degree
of-freedom LQI servo system

Next, we show that the state-predictive 2DOF-LQI-obs servo system studied in the

preceding section can be transformed into the state-predictive 2DOF servo system of

Fig: 3.5. To show this, using (3.17), (3.28), (3.26), (3.15) and (3.22), we rewrite u(t)

of Fig. 3.4 given by (3.29) as

u(t) - (Fo+ GF)~(tlt - TL) +G-iiJ(t) + Hor(t)

_ (Fo+GrHeATLx(t-Td+ rt eA(t-r)Bu(r)dr}
Jt-TL

+G{w(t) -it C£(rlt - TL)dr} + Hor(t)
t-TL

(Fo+GF){eATLx(t-TL ) + rt eA(t-r)Bu(r)dr}
Jt-TL

+G[w(t) -it C{eA(T-t+TL)x(t - TL )
t-TL

+ iT eA(r-u) Bu(o-)do- }drJ + Hor(t)
t-TL

_ . [G Fo+ GT] { [~ - J.'-TL ~~A::-t+TL)dT ] [ :t(tw~t~L) ]

[
. - fLTL C fLTL eA(r-u)Bu(o-)drJdr ] } R ()+ t () + OT t .ft-TLeA t-r Bu(r)dr

As shown in Section 3.7, this equation can be further rewritten as

u(t) = Fn{eA<1TL [ ~ ~(t) ] + r eA<1(t-q)BaU(rJ)da} + Hor(t)
x(t - TL) Jt-TL

with

Aa - [0 -c]
o A '

B a [~ ], (3.68)

Fa [G Fo+ Gr ].
This implies that the state-predictive 2DOF-LQI-obs servo system of Fig. 3.4 is equiv

alent to the state-predictive servo system of Fig. 3.5 where·
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,...---------------+1 Ho r---------,

T + y

Fig. 3.5: Equivalent state-predictive servo system

(3.69)

Note that the system of Fig. 3.5 with the feedforward path removed is nothing but the

state-predictive servo system given in Chapter 2 (Fig. 2.4) with a particular form of Fa.
This equivalent form might be easier to implement. Furthermore, in this equivalent

form, we can directly apply the robust stability analysis method for state-predictive

control systems, which will be given in Chapter 4, to analyze robust stability of our

2DOF-LQI-obs servo systems if the plant is an 8180 system.

3.4 Relationship between the weighting matrices
and disturbance rejection

It is shown in [19] and [20] that, in the delay-free case, disturbance rejection becomes

quicker as the weighting matrix E becomes larger (if e is fixed). In this section,

we show that this is also the case in state-predictive 2DOF-LQI-obs servo systems,

and, what is more important, that the asymptotic disturbance response for := -+ 00

coincides with the response of the system shown in Fig. 3.6 for t ;::: TL . Note that

the system of Fig. 3.6 is similar to the corresponding system in the delay-free, output

feedback case [20] plus a prediction mechanism, but is actually slightly different. Also,

recall that the response for 0 ::; t < TL is independent of G, and thus is independent

of E. The latter fact is related to the optimal design of an observer discussed in the

next section.
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Fig. 3.6: State-predictive LQ-obs servo system with disturbance compensation input

3.4.1 Candidate· for the asymptotic disturbance response
and a fundamental relation

Now, as in (3.30), we consider the case where the plant is subject to the step

disturbances d:r; and dy . Again, we assume that the closed-loop system had reached the

steady state for the step disturbances d~ and d~ by t = -O,and that the disturbances

changed to d:r; and dy at t = O. Furthermore, by the reason stated in the preceding

section, we regard .the initial time as t = TL and consider the behavior of the system

only after t = TL. (Note that the beha~ior for 0 ::; t < TL is affected neither by the

observer parameters nor the' gain G, and is the same as the state feedback case (with

a delay) [13].) Then, for t ~ TL1 the state-predictive 2DOF-LQI-obs servo system
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YLQI(t) =

satisfies
dXLQI(t)

dt
d((t)

dt

dc:(t)

de fet)
dt

ULQI(t)

AXLQI(t) + BULQI(t) + dx(t)

r dXLQI(t) , r AT Ddc:(t) rdc: f(t)-----"--....:..-:., e L --+ --
dt dt dt

-CXLQI(t) - CJ;{L eAudClDAc:(t)

-Cc:J(t) + C J;{L eM dClLCdx(t - TL )

-{I - CJ;{L eMdClDK}dy(t - Td
Ae: (t) - {Mdx (t - Td + I< ely (t - TL)}

- AE:f(t) - dx(t) + eATLd:r;(t - TL)

FOXLQI(t) + FoeATL De:(t) + FoE: f(t)
+G((t) - FoeATL Ldy(t - TL)

CXLQI(t - Td + dy(t - TL ),

(3.70)

where the initial conditions are

XLQI,TL Xd'oo + e: fd'oo - e:fdocJ>

cTL cd'oo ,

cJ,TL £fdoo, (3.71)

(TL
(obs- d'oo'

Here, Xd'oo, £d'oo, £Jd'oo and (~~ are respectively the steady-state values of x, £, £f and

( for d~ and d~ (defined as Xdoo, E:doo, £ fdoo and (d: of (3.33) and (3.65), respectively,

with dx , dy replaced by d~, d~).

Remark 3.1 In general, from (3.26), (3.17) and (3.31), (is discontinuous at t = TL ,

and we have (TL = (d'~ - reATLL(dy - d~). For full-order observers, however, L = a
is true and we have (TL = (d,~. Furthermore, assuming that an observer with L =I- a
is employed only when dlJ = d~ is always true (i.e., the disturbance added to the

plant output does not change at all), we again have (TL = (d~ and thus ( becomes

continuous at t = TL . Disturbances are suppressed basically with high gain feedback ,

and therefore, the plant input U would exhibit an extremely large undesirable jump

if ( is discontinuous. In view of this fact, the above-mentioned assumption can be

validated from practical point of view.

Extracting the part of the state-predictive LQ-obs servo system from this system

. (recall Fig. 3.3), and letting v be the sum of the constant value Vd: (= Gcf~) given by

(3.33) and HOnTLld (ld is defined by (3.41)), we obtain the following fictitious system
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(see Fig. 3.6):

YLQ(t) =

(3.72)

AXLQ(t) + BULQ(t) + dx(t)

- Ae(t) - {Mdx(t - TL ) + K dy(t - TL )}

- Aef(t) - dx(t) +eATLdx(t - TL )

FOXLQ(t) + Foe ATL De(t) + Foe f(t) + G(d:
-FoeATLLdy(t - TL ) + Hof2TL £d(t)

CXLQ(t - Td + dy(t - TL ).

dXLQ(t)
dt
dc:(t)

d£1{t)
dt

uLdt) -

Here, in accordance with the assumptions that the system of Fig. 3.4 had reached the

steady state by t = -0 and the fact that the change of the disturbances cannot be

observed before t = TLI we assume that the disturbance compensation input v = v~P~

had been applied for t < TL. By this assumption, ULQI(t) and ULQ(t) coincide for

o ::; t < TL, and the initial condition for (3.72) is given by

(3.73)

Ef,TL - Efdoo'

Basically, what we show in this section is that, as the weighting matrix S becomes

larger, the disturbance responses of our state-predictive 2DOF-LQI-obs servo system

monotonically tend to the responses of the (3.72). We call this system the state

predictive LQ-obs servo system with disturbance compensation input, whose implication

is explained below.

First, observe that HOrltL£d vanishes eventually. The remaining constant term

of V, Le. v:I:, is the input to cancel the disturbances dx and dy for t ~ 0 in the

steady state. For quick disturbance rejection, it would be desirable if v tends to v:I:
instantaneously (and hence ( tends to a constant value instantaneously, too). In the

output feedback case, however, this cannot occur, in general, because of the estimation

delay of an observer. Actually, as implied by the arguments of [11], linevitable transient

terms' reflecting the estimation delay arise in v and ( (regardless of G) for almost all

disturbances dx and dy , unless the observer is such that f2TL = 05 . As seen from this,

SIn the delay-free case, Fujisaki and Ikeda [lll studied only a full-order observer, but their argu
ments can be extended readily to the general observer (3.13), and to the case with a delay. Based on
this consideration, they proposed to employ an observer such that SlTL = 0, if it exists. However, this
is not such a choice that minimizes the performance deterioration compared with the state feedback
case, because the total effect of the observer is not taken into account. See Subsection 3.4.4 for details.
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the term HoDTLEd represents the inevitable transient term in v caused by an observer.

Combining the above considerations, we can see that the state-predictive LQ-obs servo

system with disturbance compensation input (3.72) represents the system that gives

the best possible disturbance responses under output feedback.

From the above equations and from (3.27), (3.33), (3.39) and (3.28), the signals

Xd(t) 0- XLQI(t) -XLQ(t),

(~cmp(t) ((t) - G:, (3.74)

Ud(t) 0- ULQI(t) - ULQ(t),

Yd(t) .- YLQI(t) - YLQ(t)

satisfy the following equations (here, the symbol l-l stands for the difference between

the two corresponding signals in the systems (3.70) and (3.72)):

(3.76)

(3.75)

B

lJf

o
o

+

~ A 000
d (~emp -!IiFo 0 0 0

-
dt cd 0 0 A 0

Cfd a a 0 A

Yd(t) - eXd(t),

Ud(t) = Foxd(t) + G(~emp(t) - HoDTL€d(t).

From (3.71) and (3.73), the initial conditions are

Xd,TL 0,

Ed,TL - Cd/oo - Cdoo,

Cfd,TL 0, (3.77)
(temp Cbs _ (obs

d,TL dloe> doo'

It should be noted here that in the argument of disturbance rejection, we may assume

that the matrix Fo has already been determined. Therefore, (3.75) represents a fixed

system I which, together with the 'control law' (3.76) describes the fundamental relation

that Xd, (~emp, fdl f fd, Ud and Yd satisfy.

From E.fd,TL = 0 in (3.77),

(3.78)

(3.79)

is always satisfied after t = TL as in the preceding section. This also justifies our

employing the state equation (3.75) with ffd(t) omitted:

;t [C;~P ]= [ -~FO ~ ~][ (~~P ]+ [ :J Ud(t).
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3.4.2 Evaluation of the difference of the signals via an inter
pretation of the fundamental relation

As shown in Section 3.7) we can interpret the 'control law' (3.76) as the optimal

controlinput for the 'plant' (3.75) with respect to the performance index

where 5~2 and 5~2 are the weighting matrices given by (3.168) and (3.175) in Sub

section 3.7.2. (Here, we assumed e --:- R for the sake of simplicity in the description.

The following discussIon can be extended to t4e case of e ~ R as in [19].) The posi

tive semidefinite stabilizing solution of the Riccati equation associated with the above

optimal control problem is given by

(3.81)

(3.82)

J

where fI~2 is the positive semidefinite solution of the Lyapunov equation (3.172) in

Subsection 3.7.2. Therefore) the optimal value of the performance index (3.80) is given

from (3.77) and (3.81) as

[(~:pru~ -G-+OilTLr[f ~ LJ
x [~. ~ -G-1~OQTL J [ (r~~p J

o 0 I £dO

{((~,~ - (~:) - G-IHoQTL(Ed'oo~- Edoo)}T

xII{(G,~ - Cd:) - G-1HoQTL(Ed1oo - Edoo)}

(
T -,+ £d'oo - cdoo) IIn(Ed'oo - cdoo)'
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From (3.33), (3.39), (3.60) and (3.65), we have

~dl= - ~doo = A-l{M(d~ - dx ) + K(d~ - dy )},

( obs (obs O-lH n ( ) 17-1 I:
d'oo - d= - OJtTL ~d'oo - ~doo = UTL'

where

6TL .- H~e[-Ho(reATL- ClTL
eMdO")LC(d~ - dx )

-{HocreATL - C1TL
eAO'dO")DI< + Ho - FoeATLL}(d~ - dy)]'

(3.83)

(3.84)

is independent of the weighting matrices 5, 5b 5~2' and therefore, the optimal value
of the performance index (3.80) is given by

J = o~Ln-18TL + (~d'oo - ~dooffI~2(~d'oo - £doo). (3.85)

Note that (3.85) is the sum of a term proportional to II-I and a term proportional to

fI~2'

From the above arguments, we can conclude that the responses of the systems

(3.70) and (3.72) are closer if the value of (3.85) is smaller. This is the key in the

arguments of the following subsection.

3.4.3 Role of the weighting matrix E

In this subsection, we show that the response of the state-predictive 2DOF-LQI-obs

servo system tends to'that of the state-predictive LQ-obs servo system with disturbance

compensation input as E becomes larger. To this end, suppose that one designs the

state-predictive 2DOF-LQI-obs servo systems using two different weighting matrices

satisfying Eo. < Sb, while e is fixed. From (3.54), the solutions for the corresponding

Riccati equations satisfy flo. < IIb [31]. Assuming S~2 is fixed, fI~2 is also fixed (see

(3.172) in Subsection 3.7.26
). From these inequalities, we obtain the following relations

(the inequality sign between (3.87) and (3.88) comes from (3.80), (3.85) and IIo. < Ih,
and the inequality signs between (3.86) and (3.87), and between (3.88) and (3.89) come

from Eb > Ea ).

(3.86)

6The condition (3.175) for E~2 is dependent on S, but if this condition is satisfied for == Sa,
then this is also satisfied for == =b. Therefore, it is assumed that S~2 is fixed to a matrix which
satisfies the condition (3.175) for == =0.'
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f([t r[~
0

o ][ x~ ] )> '-'a ;~2 (!a + UIaBUda dt (3.87)
;:;1 T
'-'12 '-'22 . cd

( Tf [~:] [~
0

o ][ Xdb ] )> '::'b ~~2 (!b + il!bBudb dt (3.88)
;:;1 T
'-'12 '-'22 cd

( T>f [~:] [~
0

o ][ Xdb ] )~

~~2 ~db + u1Budb dt (3.89)'-'a
;;'IT
'-'12 '-'22 cd

In the above, :EOO, (dal Uda, Xdb, (db, Udbl respectively, denote Xd, (d, which is defined by

'

-temp C-1H n -
d - OJI,TLCd

( - (LQ ((LQ:= (;;: + G-1HOnTLed) , (3.90)

and Ud for the case whe~e So. and Sb are employed in the design procedure (note

that the behavior of ed is independent of the weighting matrices 50. and Sb)' The

.implication of the (LQ in the above equation would be clear if we lookat Fig. 3.6.

It follows from (3.86) and (3.88), or from (3.87) and (3.89), that the quadratic

integral of Xd, (d, ed and Ud becomes smaller under the same performance index· (and

so disturbance rejection becomes quicker) as := becomes larger. As a special case, let us

consider the case where the solutions oftbe Riccati equations satisfy Ih = O!.IIa. (O!. > 1).

The corresponding weighting matrices Sa and Sb are related by

" (3.91)

and therefore (3.86)-(3.89) are satisfied. This means that if we deterinine II" as the

solution of the Riccati equation (3.54) for some 5' and then multiply it by a scalar

O!. (> 1) and determine G from (3.60) (this is equivalent to simply multiplying the

original gain G by a), disturbance rejection becomes quicker. Moreover, by letting

a tend to infinity, the first term of the right hand side of (3.85) tends to 0 with the

order of a-I. On the other hand, .we can choose S~2' which was fixed in the above

argument, proportionallyto a-2 (see (3.175) in Subsection 3.7.2). Therefore, it follows

that i1~2 caube made small proportionally to a-2 (see (3.172) in Subsection 3.7.2).

Since edO= Cd'oo - cdoois independent of the weighting matrix 5, the second term of

the right hand side ofC3.85) also tends to 0 with the order of a-2 by letting a tend to

infinity.
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The above arguments can be summarized as follows. Regardless of the observer

parameters, disturbance rejection of the state-predictive 2DOF-LQI-obs servo system

becomes quicker as the weighting matrix 2 becomes larger, and the responses of xLQI,

(, ULQI and YLQI tend to the responses of XLQ' (LQ (this signal in turn tends to the
step signal (~: because G becomes larger as S becomes larger), ULQ and YLQ of the
state-predictive LQ-obs servo system with the disturbance compensation input. The

scalar Ct' retains the function as a tuning parameter as in the delay-free, state feedback

case [19].

3.4.4 Performance deterioration by an observer

Now, let us consider the implication of the state-predictive LQ-obs servo system

with disturbance compensation input (Fig. 3.6). In view of (3.33), (3.31), (3.40) and

(3.41), it can be transformed into the system of Fig. 3.7, where

l
TL

vstate = (H r - F. eMd(J)d - H ddoo 0 0 x 0 y
o

(3.92)

is the disturbance compensation input for the state-predictive LQ servo system with

state feedback. In the state feedback case, the asymptotic response of the state

predictive 2DOF-LQI servo system for :5 ---t 00 tends to the response of the system of

Fig. 3.7 with the signal Ho(reATL - C J;rL eMd(J)DAfd removed, as in the delay-free,

output feedback case [20]. Therefore, we can conclude that the deterioration of distur

bance rejection ability caused by the introduction of an observer is represented by the

arising of the additional signal Ho(reATL - CJ[L eMd(J)DAfd. Based on this interpre

tation, the problem of designing the optimal observer that minimizes this deterioration

under a suitable measure is studied in the next section.

3.5 Optimal observer for state-predictive two
degree-of-freedom LQI servo systems

3.5.1 Problem formulation

From the interpretations given at the end of the preceding section, we can conclude

the following (see Subsection 3.7.3 for details). Namely, if we evaluate the response of

the system of Fig. 3.6 under the performance index (3.6), the evaluation is larger than

its optimal value (which is attained by the system of Fig. 3.7, as mentioned above) by

I1J = [00 1](tfR1](t) dt,
lTL
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Fig. 3.7: Equivalent system to state-predictive LQ-obs servo system with disturbance

compensation input

where
T rTL. A ~

1}(t) := Ho(reA
L._ CJo e u dO")DA£d(t) (3.94)

In other words, the performance deterioration under the performance index (3.6) due

to the introduction of an observer and the existence of step disturbances is given by

this tJ.J, where 77 is given by (3.94). Clearly, the value of tJ.J is dependent on the

observer parameters. In this section, assuming that statistical properties of the step

disturbances d;c and ely are known, we derive an optimal observer that minimizes the

expectation of the performance deterioration tJ.J.

To formulate our problem, let us define

O;c := dx - d~, Oy:= dy - d~.

Then, from (3.38) and (3.94), we can rewrite (3.93) as

L1J = ((Ho(TeATL
- Cf eMdu)DeA'(Mo. + KOy))'

xR (Ho(TeAtL - C f.T
L

eMdiT)DeAt(M O. + K Oy)) dt

- (M0;;; + K Oy? roo eAr tV eAt dt (M O;c + K 8y), .
}TL

(3.95)

(3.96)

(3.97)
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Therefore, letting X be the solution to the Lyapunov equation

XA+ATX + V = 0)

we obtain

M = [ ~:r[M KrX [M K] [ ~: ] .
Thus, the expectation of L1J is given by

E[LlJ] = trace (X [M K] W [M K r)
where W is given by

We assume in this section that

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

is known7
• Thus, our problem is to design an optimal observer that minimizes (3.100)

for given W.

Note that (3.100) could be rewritten from (3.96) in a different form as

(3.103)

3.5.2 Optimal full-order observer

For simplicity, we first consider the case of full-order observers. In this case, without

loss of generality) we may assume

A = A+KC,

7Assuming that [d~ d~V and [d~T d~TV are independent and have the identical statistical prop~

erty, W is given by
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13 B,

D - I, (3.104)

L - 0,

M - I.

Therefore, our problem reduces to the following.

Problem 3.1 . Given W, minimize

Jobs = trace (X [I K]W[I Kt) (3.105)

with respect to K subject to the stability constraint of A = A + KG, where X is the

solution of the Lyapunov equation

with

X(A +KC) + (A + KG?X + V = a (3.106)

(3.107)v = (TeAT. - CJ.T. eAudurH~RHo (TeAT. - CJ.T. eAudu) .

This problem can be solved by a technique similar to that of [28] and [25] using the

matrix minimum principle [5] in the following way.

We first introduce the Lagrange function

¢(K,X,Y) = trace (X [I K] W [I Kr
+yT{X(A+KC) + (A+ KC?X +V})

- trace (X{Wxx +KW~ + WXyKT + KWyyKT
}

+yT{X(A + KG) + (A + KC)TX+ V})

(3.108)

where Y E R nxn is the Lagrange multiplier. Therefore, using the formulas given in
[5]' we obtain

(3.109)

a¢
ax W xx + WXyKT +KW~ + KWyyKT

+Y(A+KCl + (A + KC)Y,
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· ;: = X(A + KG) + (A + KGfx + V.

Therefore, we obtain the necessary conditions

X(2Wxy + 2KWyy + YCT + yTCT) = 0,

W xx + WXyKT + KW~ + KWyyKT + Y(A + Kcf + (A + KC)Y = 0,

X(A + KC) + (A + KC)TX + V = O.

(Naturally, (3.114) is nothing but (3.106).)

Now, we can derive the following theorem.

(3.111)

(3.112)

(3.113)

(3.114)

Theorem 3.1 Suppose that W yy > 0

(Wxx - W xyWy-;.l W~)1/2) is stabilizable. Define K o by

and

(3.115)

where Y is the unique positive semidefinite solution of the Riccati equation

Then,

(a) K o is an optimal observer gain.

(3.116)

(b) If (Vl/2,A + KoC) is observable, then K o is the unique optimal observer gain.

(c) The optimal value of Jobs is given by

Jobs,o = trace(VY). (3.117)

Remark 3.2 Needless to say, the resulting optimal observer is a Kalman filter.

Proof. Since (3.113) is a Lyapunov equation and since W xx + WXyKT +KW~ +
KWyyKT is symmetric, we have Y = y T . Therefore, (3.112) reduces to

(3.118)

Here, assuming det X -# O,we can solve the above equation for K uniquely as

(3.119)
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Substituting this into (3.113), we obtain the lliccati equation (3.116). By the assump

tion of the theorem, this equation has a unique stabilizing solution, which is given as

the unique positive semidefinite solution. Substituting this Y into (3.119), we obtain

the observer gain (3.115). Let us denote by X o the solution of the Lyapunov equation

(3.114) with f{ replaced by K o:

Xo(A + KoG) + (A + KoclX o+ V = O. (3.120)

Note that A +KoC is stable by the assumptions of the theorem, and hence the'solution

X o is unique.

To show (a) (i.e., to show that K o is optimal), let K be any observer gain such that

A + KG is stable, and let

f1f{ := K - K o. (3.121)

(3.122)

(3.126)

A positive semidefinite solution X of the Lyapunov equation (3.106) corresponds to

this K. Letting

f1X := X - X o,

dX is symmetric and the Lyapunov equation (3.106) can be rewritten as

(Xo+ LlX){A + (I<o + dl{)C} + {A + (Ko+ LlK)C}T(Xo+ dX) + V = O. (3.123)

Subtracting the Lyapunov equation (3.120) from the above Lyapunov equation, we

obtain

dXLlKG + CTLlKTLlX

-{dX(A +1<0C) + XoLlKC + (A + KocfdX + CTdf{TX o}.

(3.124)

In a similar fashion, we can derive

Jobs - Jobs,o = trace (Xo{ -YCTdKT
- LlKCY + LlKWyydKT}

;+-dX{Wx:J; + KovV~ - YCTKl}

-Y{dXLlKC + c TdKTdX}

+fj,Xfj,KWyyfj,]{T) , (3.125)

where Jobs and Jobs,o respectively denote the values of (3.105) for K and K o.

Substituting (3.124) into the above equation and rearranging the result using a

property of a matrix trace and (3.116), we have

JOb5 -Jobs,o trace(X fj,KWyyf1KT)

trace ((X1
/

2 fj,J()Wyy (X 1/ 2fj,Kl)

> o.
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This completes the proof of (a).

Next, let us prove (b). Suppose Jobs = Jobs,o, Then, from (3.126), we have

XI1K = o.

Substituting this into (3.123), we readily obtain

X(A + KoG) + (A + KoGfX + V = O.

(3.127)

(3.128)

Hence we have X = X o by (3.120), so that X ot1K = 0 by (3.127). Now, if (V 1/ 2 , A +
KoG) is observable, then Xo > 0 from (3.120). Thus, oK = 0 follows. This completes
the proof of (b).

To prove (c) I note that

y AT + AY + [I Ko ] W [I Kor= 0 (.4 = A + KoG)

is true from (3.115) and (3.116). This implies

and hence we obtain (3.117) from (3.103).

(3.129)

(3.130)

Q.E.D.

From the above theorem, the optimal observer gain Ko is determined only by the

plant (A and G) and the statistical property of disturbances (Wx:z:, W:z: y and W yy ), and

is independent of V. This means that K o is independent of the feedback gain Fa. In

other words, it is independent of the weighting matrices Q and R that determine the

nominal responses for step references, even though we formulated our problem as that

of minimizing the deviations of the responses under the presence of disturbances from

this nominal responses. Thus, separation property holds in our two-degree-of-freedom

servo problem, as well as in the one-degree-of-freedom regulator problems such as the

stochastic LQG problem [34] and the deterministic regulator problems [35]' [30].

As for the one-degree-of-freedom deterministic problems dealt with in [35], [30]

(i.e., the problems of designing full-order/reduced-order observers that are optimal

with respect to the distribution of the initial state of the plant), one might wonder if

the problem studied in this section were equivalent to their problems. However, this is

not the case, because no optimal solution exists as a Kalman filter for their problems

[30], which is in sharp contrast with our problem. Some more comments will be given

about this point also in the following subsection.
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3.5.3 Optimal reduced-order observer

In this subsection, we consider the case ofreduced-order observers. Since L::j:. 0, in

general I for reduced-order observers, we assume the disturbances satisfy Oy = dy- d~ =

o in this subsection for the reason mentioned .in Remark 3.1 in Subsection 3.4.1. Note

that

W:z: y = 0, Wyy = 0 (3.131)

(3.133)

in this case.

. For simplicity, let us consider the case of minimal-order observers. Also, without

loss of generality, assume that

A = [All A12], B = [ B 1
] , C = [0 1m ]. (3.132)

A2l An B 2

Note that (A21 , All) is detectable by the assumption that (0, A) is detectable. Now,

by the canonical form of observers [30]' minimal-order observers can be parameterized

as

A = All + NA21 , 13 = B1 +NB2 ,

K = -(A12 + NA22 ) + (Au + NA21 )N,

D = [ In~= ], L = [ ~~], M = [In- m N],

where N E R(n-m)xm is an arbitrary matrix such that A becomes stable. Thus, by

(3.131), our problem reduces as follows.

Problem 3.2 Given WXX1 minimize

(3.134)

with respect to N subject to the stability constraint of A = All + NA21 , whereXis

the solution of the Lyapunov equation

X(All + NA2d + (All + NA21fx + V = 0

. with V given by (3.97).

(3.135)

(3.136)

Now, let us partition Wxx in a compatible form with (3.132) as

[
Wll W12]_. xx xx

Wxx -. W12T W22 .
xx xx

Then, in view of the form of M in (3.133), the following theorem follows readily frol7l

Theorem 3.1 by inspection of (3.105), (3.106) and (3.134), (3.135).
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Theorem 3.2 Suppose that l'V;; > 0 and (Au
(Wll W12 (W22)-1 W I2T ) 1/2) . . .

xx - :ex xx xx IS stab1lizable. Define No by

n = - (YAT +W12 ) (W 22 )-1o 21 xx xx

W 12 (W22)-1 A
- xx xx 21,

(3.137)

where Y is the unique positive semidefinite solution of the Riccati equation

YAT +A Y- (YAT +W12) (W 22)-I(A Y+W 12T)+Wl1 =011 11 21 xx x:e 21 xx xx'

Then,

(3.138)

(a) No is an optimal solution.

(b) If (VI /2, Au + NoA 21 ) is observable, then No is the unique optimal solution.

(c) The optimal value of Jobs is given by

Jobs,o = trace(VY). (3.139)

The above theorem shows the design method of a minimal-order observer that is

optimal with respect to disturbance rejection, under the assumption that the step

disturbance ely does not change at all (i.e., dy = d~). Comparing this design method

with that of the optimal minimal-order observer with respect to the distribution of the

initial state of the plant [35], [30], we can see that our design method is nothing but

theirs with the covariance matrix of the initial state of the plant set to W:l:X = E[oxo;].
One might intuitively regard this as a natural consequence from the fact that step

disturbances could be dealt with as deviations of the initial state of the plant (by

shifting the equilibrium point of the plant in accordance with the step disturbances).

However, the situation is not that simple. The following facts demonstrate the intrinsic

difference between our problem and theirs.

(a) The covariance matrix associated with the equivalent initial state of the plant

that corresponds to the step disturbance dx does not coincide with E[dxct;].

(b) In the optimal observer with respect to the distribution of the initial state of the

plant, the initial state q(TL ) of the observer can be set to an arbitrary value, and

is actually a design parameter. However, in our optimal observer design with

respect to disturbance rejection, q(TL ) depends on the observer parameters to be

determined, and cannot be adjusted. (ef. (3.38).)

43



As explained above, our problem is essentially different from the problems studied

in [35], [30], but a similar argument to that of [30] can be applied to show that the

optimal value (3.139) is actually the optimal value that is attainable by a full-order/

reduced-order observer (rather than merely by a minimal-order observer), and that the

optimal value (3.117) for the full-order observer case tends to (3.139) as W yy -* o.

3.5.4 Loop transfer recovery and perfect suppression of dis
turbances

In this subsection, we consider the special case where the step disturbances satisfy

the matching condition dx , d~ E Im(B), dy = d~ = 0, and show that the optimal

observers of this case have a close connection with the technique of loop transfer

recovery [9], [43]. Also, we discuss the possibility of perfect suppression of such step

disturbances. Note that the matching condition implies

(3.140)

where Wx is a positive semidefinite matrix. In the following, we assume Wx > 0 for

simplicity.

Full-order observer case In the full-order observer case, we assumed W yy > 0 in

Subsection 3.5.2. However, (3.140) does not satisfy this requirement. To avoid this

difficulty, instead of (3.140), we employ

(3.141)

where Wy is an arbitrary positive definite matrix and p (> 0) isa scalar. By letting

p --t 00, we can recover (3.140). When the plant is a minimum phase 'system, letting

'p --t 00 has been studied in [1] in a different context, and from their results, we can

conclude that our optimal observer achieves loop transfer recovery asymptotically as

p --t 00 at the plant input u. At the same time, the limiting observer for p --t 00

enables us to achieve perfect suppression of the step disturbances by letting S --t 00

(which results G --t 00). This can be shown as follows. '

Under (3.141), the Riccati equation (3.116) reduces to

(3.142)

From the well-know result about cheap control [27], [23], Y --t 0 as p --t 00 if and

only if the plant (0, A, B) is a minimum phase system. By (3.117), Jobs,o --t 0 follows
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from Y ~ 0, which implies that the deterioration of disturbance rejection ability can

be made arbitrarily small by making p large enough. Since perfect suppression of step

disturbances is achieved in the state feedback case by letting := --+ 00 if the matching

condition is satisfied [19L we can conclude that perfect suppression of step disturbances

(in the sense of expectation) is possible also in the output feedback case if and only if

the plant is a minimum phase system.

Minimal-order observer case In the minimal-order observer case, Wxx can be

expressed as

(3.143)

(3.144)W ll _ W lZ (W22) -1 WlZT = 0
xx xx xx xx .

We assume det Bz i 0 so that the assumption W;; > 0 is satisfied. Then, we can

easily verify

(3.145)W 12 (W Z2 )-1 = B B-1
xx xx 1 2

From this, it is easy to see that the Riccati equation (3.138) has a solution Y = o.
In order for this to be a stabilizing solution, Au - w~; (W;;)-1 A ZI should be stable.

This happens to be the case if and only if the plant is a minimum phase system. To

show this, note that

from (3.143). Therefore, we have

det (s1 - (An - W;; (W;;)-l A:21 )) i 0 (Re(s) ~ 0) (3.146)

if and only if
(3.147)

if and only if

(3.148)

No

Now, when Y = 0 is a stabilizing solution, the optimal No is given by

_W12 (W22)-l
xx xx

- -BI B;l. (3.149)
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This implies that the optimal minimal-order observer has the parameter

13=0, (3.150)

or in other words, the optimal minimal-order observer is an unknown-input observer

!26]. Therefore, by a well-known property of unknown-input observers, it achieves loop

transfer recovery at the plant input completely (rather than asymptotically). At the

same time, since Y = 0, we have Jobs,o = 0 from (3.139). This means that perfect

suppression of step disturbances (in the sense of expectation) is possible by letting

S ~ co if and only if the plant is a minimum phase system with det B2 =P O. Note

that the condition det B2 #- 0 is equivalent to the condition that the plant has the

maximum number of zeros (Le., n - m zeros) [7].

3.6 Example

In this section, we give a numerical example to illustrate the results of this chapter.

All the simulations in this section were done under zero initial conditions of state

variables.

Example 3.1 We consid,er the unstable plant given by

For this plant, we design a state-predictive 2DOF-LQI-obs servo system with a full

order observer using the weighting matrices

Q = diag (0,1), R = 0.3,

for the response for step references, and

E=15a:?, 8=R,

where Q(~ 1) is a scalar, whose nominal value is 1, for the response for step distur
bances.

We consider the case with the step disturbances.

d. = [ ~:~ ], d, =0.1.
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We choose the following observer gain:

K is determined to set the poles of the observer at -3, -3.5 so that the real part of

the observer poles are smaller than the real part of the poles of the closed-loop system
with state feedback (-1, -2.61, -2.71).

The response for the step reference of the state-predictive 2DOF-LQI-obs servo

system is as shown in Fig. 3.8. (Note that the response for the step reference does

not depend on either the feedback gain G (or a) nor the parameters of the observer.)

The disturbance response of the state-predictive 2DOF-LQI-obs servo system for the

nominal value of a is as shown in Fig. 3.9(a) with a solid line, while a dashed line

shows the response of the state-predictive LQ-obs servo system with disturbance com

pensation input. In this case, by making the tuning parameter a larger, disturbance

responses become quicker as shown in Fig. 3.9(b) and (c), and the disturbance response

of our state-predictive 2DOF-LQI-obs servo system tends to that of the state-predictive

LQ-obs servo system with disturbance compensation input.

Example 3.2 Next, we consider the stable, minimum phase plant given by

For this plant, we design a state-predictive 2DOF-LQI-obs servo system with a minimal

order observer using the weighting matrices

Q = diag (0,1), R = 0.3,

for the response for step references, and

:5 = 15a2
, e = R,

where a(2: 1) is a scalar, whose nominal value is 1, for the response for step distur

bances.

We consider the case with the step disturbances

[
0.6 ]
0.5 I
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Note that these disturbances satisfy the matching condition. We choose the following

two observers:

Observer 1:

.41 = -1.2, 131 = 0, K 1 = -0.16

D, = [ ~ ], L , = [ In
and

Observer 2:

.42 = -3, H2 = -1.8, K 2 = 2

D2=[~]' L2=[~]
The parameters of Observer 1 are determined by the design method described in Sec

tion 3.5, i.e., Observer 1 is an optimal minimal-order observer for the above distur

bances, and the parameters of Observer 2 are determined to set the pole of the observer

at s = -3, so that the real part of the observer pole is smaller than the real part of

the poles of the closed-loop system with state feedback (-1.11, -2.66, -2.86).

The response for the step reference of the state-predictive 2DOF-LQI-obs servo

system is as shown in Fig. 3.10. The disturbance response of the state-predictive 2DOF

LQlservo system incorporating Observer 1 for the nominal value of 0: is as shown in

Fig. 3.11 with a solid line, while the disturbance response of the state-predictive 2DOF

LQI servo system incorporating Observer 2 for the nominal value of 0: is as shown in

Fig. 3.11 with a dashed line. Comparing the disturbance response for Observer 1 with

that for Observer 2, the peak of the output y and the settling time" are not different

very much, but the maximum of the input u of the system incorporating Observer 1

is suppressed down to about two thirds as large as that of the system incorporating

Observer 2.

Furthermore, the disturbance response of our system with Observer 1 coincides

with that of 2DOF-LQI servo system with state feedback shown in Fig. 3.12, namely,

it achieves loop transfer recovery at the plant input as mentioned in Section 3.5.

3.7 Details of derivations

3.7.1 Derivation of (3.67)

In this subsection, (3.67) will be derived from (3.66).
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Interchanging the order of the integrals, we obtain

-c It .r eA(r-u)Bu(a)dCldT
t-TL }t-TL

= -c rt rt eA(r-u)dTBu(a)dCl
}t-TL }u

I t fot-u
= -C eMdTBU(Cl)da.

. t-TL 0

Then, the second term in ~he braces of (3.66) can be rewritten as

where A a and En are given by (2.11).
Furthermore, by simple calculation, we obtain

and therefore, (3.66) can be rewritten as (3.67).

3.7.2 Interpretation of (3.76)

(3.151)

(3.152)

In this subsection, we show that the Riccati equation associated with the optimal

control problem for the 'plant' (3.75) under the performance index (3.80) has a unique

positive semidefinite stabilizing solution (3.81), and that the optimal 'control law' is

given by (3.76).

To show this, we first interpret the control law (3.76) as consisting of two feedback

controllawsj this control law is equivalent to applying the control law
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to the system

(3.154)

which is obtained by applying the control law

(3.155)

to the system (3.75), where Vd is a new external input. Here) noting that Fa is the

optimal gain determined by (3.9) from the positive semidefinite solution P of the

Riccati equation (3.10), it is easy to see that the Riccati equation

has a positive semidefinite solution

(3.156)

o 0]a 0
a 0

(3.157)

and that F1 given by (3.155) can be expressed as

As shown later, F2 in (3.153) can be expressed as

(3.158)

~12] .
JI22

(3.159)
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where P2 given by

P2 = [~ ~ ~12] (3.160)
a III2 Il22

is the unique positive semidefinite solution of the Riccati equation associated with the

optimal control problem for the system (3.154) under the performance index

(3.161)

where

and 522 is an arbitrary positive semidefinite matrix satisfying

5 22 2: xrJt~LHreHoIl-1HreHoIl-1H6eHoJtTLA

-ATn~LHreHoII-1HleHOJtTL

-nKHleHoJI-1Hl8Ho[2TLA

+[2~LHleHoStrL·

(3.162)

(3.163)

Under (3.162) and (3.163), we have

,.::,
~z .- [~ ~ i']o ~12 ~22

2: o.

From the above facts (and (3.166) and (3.167) below) and from Theorem 1 in [18L
we can interpret the control law (3.76) as the optimal control law for the system (3.75)

under the performance index (3.80) (we assumed e = R for simplicity, but similar

results can be obtained even for e 2: R [19]). Furthermore, the same theorem shows

that the positive semidefinite stabilizing solution of the Riccati equation associated

with this optimal control problem is given by (3.81).

Now, what remains is to show that F2 in (3.153) satisfies (3.159). We can show

this as follows. The Riccati equation associated with the optimal control problem for

the system (3.154) under the performance index (3.161) is given by

[

A+BFo 0

P2 a a
a a
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a
(3.164)

It is easy to see that the Riccati equation (3.164) has a unique positive semidefinite

solution. Multiplying the Riccati equation (3.164) by

p~ [f o 0 r [1 0

G-'~DnTL ]I G-1 HoJlTL P2 0 I (3.166)

o I a 0

[~
0

o ],... '='1
'-' ~12

=:-' T ""1
...... 12 '::22

U
0

o r [1
0

G-
,
ZDllrL ]'- J G-

1~OJlTL· 5;; ~ J

0 0 . J
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(3.167)

(3.168)

(3.169)

Assuming that the unique positive semidefinite solution is given by

[
0 0 0]

p~ = 0 II 0 I

o 0 n~2

the Riccati equation (3.165) is equivalent to the following two equations:

-II1fre-1IjJTII + S = 0,
-, ~ AT - I ;:::."

IInA + A II22 + e 22 = O.

(3.170)

(3.171)

(3.172)

Since (3.171) coincides with (3.54), (3.171) is satisfied. On the other hand, since

E~2 ;::: 0 from (3.167), the Lyapunov equation (3.172) has a unique positive semidefinite

solution iTb. From the above, it follows that the Riccati equation (3.165) has a unique

positive semidefinite solution of the form (3.170) (here, II is the solution of (3.54) and

n~2 is the solution of (3.172)). From (3.166), the Riccati equation (3.164) has a unique

positive semidefinite solution P2 of the form (3.160). Therefore, the optimal gain for

this optimal control problem is given by

o
n

iTT
12

(3.173)

and, by simple calculation, it can be rewritten as

(3.174)

This means that F2 defined by (3.153) satisfies (3.159). This completes the proof of

our assertion~

Note that from (3.162),(3.163) and (3.169), the positive semidefiniteness of (3.167)

is equivalent to

5~2 > A!n~LHfeHon-1HJeHon-1H'leHonTLA

(= Kn~LHJeHo2-1HJeHonTLA)..
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3.7.3 Derivation of (3.93)

In this subsection, we derive (3.93).

The system of Fig. 3.7 is described by

dx(t)
dt Ax(t) +Bu(t) + dx !

u(t) Fo{eATLx(t - TL) + rt
eA(t-;-r)Bu(r)dr}

Jt-TL

+Hor(t) + vd~tc + ry(t)

- Fox(t) + Hor(t) + vd~tc +l7(t).

By the definition (3.4), we can easily derive

(3.176)

diet)
dt
u(t) -

Ax(t) + Bu(t),

Fox(t) + l7(t). (3.177)

Now, the integrand of (3.6) can be arranged as

xTQx + uTRil

- 1;TQx + (Fox + ry)T R(Foi + 17)

= xT(Q +FJRFo)x + xTF{Rry + ryT RFox + l7T Rry.

Here, from (3.9) and (3.10), we have

Q+FiRFo = - P(A + BFa) - (A +B Fol P.

(3.178)

(3.179)

Substituting this equation into (3.178) and arranging the result using (3.9) and (3.177)]

we obtain

xT Qx + iJ.T Ru

- _XTPHA + BFo)x + Bl7} - {(A + BFo)x + B7]}TPx + 1lR1]
d- d- T

= _xTp..!:. - ~ Pi +1]TR1]. (3.180)
dt dt

Integrating the above equation over [TL,oo) noting i(oo) = 0, we have

(3.181)

Since the first term ofthe right hand side is the optimal value that is attained by state

feedback, (3.93) follows.
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3.8 Concluding remarks

In this chapter, we studied a two-degree-of-freedom (2DOF) design method of ro

bust servo systems for step references and disturbances, for the plant with a cascaded

pure delay. Furthermore, we studied a design method of optimal observers to be used

for this 2DOF servo systems.

The results obtained about a 2DOF design method of robust servo systems can be

summarized as follows.

1. The tracking characteristics for step references and the feedback characteristics

for step disturbances (and modeling errors) can be determined optimally using

independent quadratic-integral performance indices. To attain such 2DOF opti

mality, we have only to introduce a state prediction mechanism into the 2DOF

LQI-obs servo system of the delay-free case [20]; the optimal feedback gains for

the plant with a pure delay are the same as those for the plant with the delay

removed.

2. An equivalent configuration of the above state-predictive servo system is given

(Fig. 3.5), and a relationship between our design method and the existing design

method [2], [16] is clarified.

3. As the weighting matrix S becomes larger in the performance index for distur

bance responses, disturbance rejection becomes quicker.

4. As := tends to infinity uniformly, the response for a step disturbance tends to

that of the state-predictive LQ-obs servo system with disturbance compensation

input shown in Fig. 3.6.

5. Comparing the above response with the limiting response of the state feedback

case, the deterioration of disturbance rejection ability caused by an observer is

clarified quantitatively.

These results can be interpreted as theoretically proving our expectation that the

fundamental characteristics of 2DOF-LQI-obs servo systems in the delay-free case are

inherited to the state-predictive 2DOF-LQI-obs servo systems for plants with a delay.

In addition, we gave a design method of an optimal observer to be used for the state

predictive two-degree-of-freedom (2DOF) LQI servo system under output feedback.

Specifically, we considered the presence of the step disturbances added to the plant, and

gave the optimal full-order and minimal-order observers with respect to disturbance
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rejection ability, assuming that the statistical properties of the disturbances are known.
The obtained results can be summarized as follows.

6. Separation property holds also in the two-degree-of-freedom robust servo prob
lem.

7. The optimal observers have a close connection with the technique oHoop transfer
recovery.

8. The optimal observers achieve perfect suppression of the step disturbances satis
fying the matching condition if and only if the plant is a minimum phase system

(and, in addition, has a maximum number of zeros, in the case of the optimal
minimal-order observer).

Although our optimization argument was made under the limiting case of := --t 00

(or G --t (0), it is easy to show that the optimal observers obtained by this limiting

argument are optimal (in an appropriate sense) even with finite := (or G). This is a

direct consequence from the following facts (details are omitted):

(a) The 2DOF-LQI servo system (in the state feedback case) [19] is such that it

minimizes a quadratic-integral performance index.

(b) The optimal observer obtained by the limiting argument does not depend on the

matrix V.

From the above results, we obtained the complete solution to the optimal design

problem of state-predictive two-degree-of.;.freedom LQI servo systems for step references

and step disturbances.
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Chapter 4

Robust stability analysis of
state-predictive control systems

As described in Chapters 2 and 3, the present state of the lumped-parameter part

of the plant is predicted in state-predictive controllers. As a matter of course, such

prediction becomes possible only upon the knowledge of the plant dynamics. Actu

ally, these controllers include dynamical models of the plant in themselves, and their

performance much depends upon those models. This implies that the control systems

can become very sensitive to modeling errors, especially when the response speed is

raised excessively. Hence, in the design of these controllers, the robustness analysis is

crucially important. The most important factor for the robust stability of the control

systems with a pure delay is the mismatch of the delay time TL . Actually, the error

of TL causes the error of the phase angle which increases in proportion to the angular

frequency w. Thus, the mismatch of the delay time produces a frequency-dependent

error of the transfer function and even a small mismatch of the delay time produces a

large effect on the transfer function in the high frequency range.

As for robust stability of the system with pure delay, Palmar [37] derived a basic

result about the robust stability of the Smith controller. In [6], Baa and Araki deepened

his idea and derived a graphical method to obtain the stability region on the gain

delay plane, which is applicable to the state-predictive controllers, too, and include

Palmor's result as a special case. Their simulation suggested that their' result is sharp

for the cases with positive errors in the gain but is rather conservative for the cases

with negative errors in the gain.

In this chapter, we study the robust stability of the state-predictive servo systems.

To put it concretely, we consider the case where the plant has modeling errors in the

delay time and in the gain, and we try to improve Bao-Araki's result and derive a

robust stability criterion for the state-predictive and Smith control systems, which
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gives necessary and sufficient boundaries. Throughout this chapter, we consider the

case where m = 1, and assume that the control systems are all designed to be stable
when there are no modeling errors.

4.1 Characteristic function of state-predictive
servo systems with an observer

Consider the plant with a cascaded pure delay TL on the output side, described by

dx(t)
dt

YA(t)

yet)

- Ax(t) + Eu(t),

Cx(t),

YA(t - Td,

(4.1)

(4.2)

(4.3)

where u(t) is a scalar input, yet) is a scalar output, YA(t) is a scalar delay-free output,

and x(t) is an n-dimensional state, and (A, E) is controllable and (C, A) is observable.

In this chapter, we deal with a state-predictive servo system of Fig. 4.1 designed for

this plant. Here, the observer is given by

dq(t)
dt

x(t - TL ) -

Aq(t) + Suet - TL ) - Ky(t),

Dq(t) - Ly(t).
(4.4)

where A is a stable matrix and A, 13, K, D and L satisfy

AM 
13
I

MA+KC,

ME,
DM-LC

(4.5)

(4.6)

for a certain M [29], F(Aa , Ba , TL ) is a finite interval integration operator defined by

F(Aa, Ea,TL)u := 1° eAaT Bau(t + r)dr,
-TL

II and IF are matrices defined by

(4.7)

where Ii is an i-dimensional unit matrix, and the feedback gain Fn and the observer

parameters are determined appropriately. In this chapter, since we consider only the

feedback characteristics, we assume that r = O.
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Fig. 4.1: State-predictive servo system

In our robust stability analysis, we only consider the parameter mismatches. Namely,

we assume that the real plant is described by the following equations which have the

same form with the plant model (4.1), (4.2) and (4.3), but the different parameters:

(4.8)

(4.9)

(4.10)

- Arx(t) + Bru(t),

Crx(t),

YA(t - TLr )·

dx(t)
dt

YA(t)

y(t) -

Now, we derive the characteristic function of the state-predictive servo system with

an observer. The control law is given by

(4.11)

with

A. - [~--~],

B. ~ [~],

and Fa is the feedback gain such that the closed-loop coefficient matrix Aa + BaFa

is stable (note that Fa = [G Gr] in the state-predictive two-degree-of-freedom LQI

servo system dealt in the preceding chapter), and the integral compensator is given by

w(t) = fat e(T)dT+WQ (4.12)
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If we apply Laplace transformation to (4.8), (4.4) and (4.11) under the initial condi
tions:

x(e) xo(O),

u(O) - uo(O),

qeD) - qo,

w(D) - Wo,

and rearrange the terms, we obtain

- max(TL , TLr ) :S 0 :S 0,

- max(TL , TLr ) :S B ::; 0,

(4.13)

(4.14)

(4.15)

(4.16)

(sf - Ar)x(s) - Bru(s) xo(O), (4.17)

-KCre-TLrSx(s) + (sf - A)q(s) - Be-TLSu(s) qo + J1(s) + J2(s),

(4.18)

xes) - Dq(s) + LCre-TLrSx(s) - h(s), (4.19)

-F.eA.TL [ ;i:; ]+ {I - F.I1(s)}u(s) - J4 (s), (4.20)

sw(s) + Cre-TLrSx(s) - Wo + J5(s). (4.21)

Here, xes), u(s), q(s), xes) and w(s) are Laplace transformations of x(t), u(t), get), x(t)
and wet), respectively, {3(s) is Laplace transformation of the finite interval integration

operator :F in (4.11) given by

(4.22)

and J1(s), J2(s); J3(s), J4.(s) and J5(s) are regular functions of s determined by the

initial conditions as

J1 (s) KCre-TLrS 1° xo«()e-S8 dB, (4.23)
-TLr .

J2 (s) - _Be-TLS i:
L

uo(B)e-S8 dB, (4.24)

J3 (s) - .LCre-TLrS10
xo«()e- S9 d(), . (4.25)

-TLr

J4.(s) - Fa 10
e-A

o.
8BaeS9 fo° Uo(-r)e- ST d-rdB, (4.26)

-TL 0

J5 (s) Cre-TLrS 10
xo(B)e- s9dB. (4.27)

-TLr

From (4.17)-(4.21), the characteristic function of the state-predictive servo system is
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obtained by

1(8) = det o
C e-TLrS

r

LCre-TLrS

o
s1 -A

o
o

-D

1-Fa f3(s)
o
o

o 0
o 0

·~F~~A~·T~··

s1 0

o 1

(4.28)

4.2 Robust stability for gain and delay time mis
matches

In the following, we consider the case where the modeling errors exist only in the

estimates of the gain and the delay time. Namely, we assume

(1 + ,,/)C, (4.29)

where 'Y(:?: -1) and 5(~ -TL ) gives the relative error of the gain and the absolute error

of the delay time, respectively. Formally speaking, the assumption on the modeling

error made up to this point is very restrictive in the seDse that the form of the equation

is largely fixed; to be more specific, the structure that the lumped parameter part and

the pure delay are cascaded is fixed, no parasitic dynamics for the lumped parameter

part is introduced, and the parameters Ar and Br are fixed to the nominal values.

However, these formal restrictiveness does "never" mean that the treated problem is

special and that the results are practically useless. In practical situation, the errors of

the plant model are often recognized as the errors in the gain and the phase shift and,

for instance, the parasitic dynamics is nothing but a "model of the modeling error."

Hence, even though the assumption in the modeling errors is formally restrictive, the

results can be practically useful if the assumed modeling errors cover general gain and

phase deviation which are practically plausible. In our study, simultaneous variation of

the gain and the delay-time are going to be considered. The variation of the delay-time

usually causes severest effects on the phase shift. Thus, the modeling errors considered

here cover the worst case in terms of the gain and phase shifts, and, hence, our method

is expected to give safe enough results. On the other hand, the controllers studied

here are supposed to be applied to plants with a pure delay, and, so, existence of
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the modeling error in the delay-time is surely plausible. In this sense, our method is

expected not to give too much conservative results. As a result, it could be claimed

that our method gives "practically necessary-and-sufficient" result for robust stability

which can be obtained within the range of "linear theory."

Under the assumption (4.29), f(8) becomes

f(s) = det[sI - Aa - BaFa] . det[sI -.4] . [1 + P(s)Q(s)J, (4.30)

where

pes) - e-TLSCa(sI - Aa - BaFa)-lBa
xFaeAaTL{Da(sI - AatlKa - La}, (4.31)

Q(s) (1 + i)e-OS - 1, (4.32)

with

Ca - [0 C] J (4.33)

Aa - [~ ~], (4.34)

Da [~ ~], (4.35)

Ka - [~ ], (4.36)

La - [~ ] (4.37)

The first two factors of (4.30) are the characteristic function of the state feedback
system consisting of (4.1) and (4.11) and that of the observer (4.4), respectively, which

are designed to be stable. Therefore, the stability of the control system under the

parameter errors given by (4.29) is determined by the roots of

1 + P(s)Q(s) = O. (4.38)

From (4.32), we can easily assure that Q(s) represents the relative error of the transfer

function ofthe plant l . We can also assure that -pes) is the complementary sensitivity

lThis implies that Q(s) becomes 0 and, consequently,j(s) becomes det[sI -Aa -BIlPa] det[sI-A)
if there are no modeling errors. This proves that the state-predictive servo controUer stabilizes an
unstable plant [32], [16J.
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function of the system of Fig. 2.4; i.e., the closed-loop transfer function of the nominal

control system. Hence, (4.38) is nothing but the closed-loop characteristic equation of

the positive feedback loop consisting of the relative error Q(s) and the nominal control

system -P(s)Z.
Since the poles of pes) are all stable, since Q(s) is regular, and since

P(s)Q(s) -t 0 as lsi -t 00, Re s ~ 0, (4.39)

we can apply the Nyquist method to judge the stability of the roots of (4.38) and

obtain the next stability criterion [6].

Theorem 4.1 The system of Fig. 2.4 remains stable for the parameter errors given

by (4.29) if and only if the Nyquist locus of P(s)Q(s) does not encircle nor pass the

point -1.

..

4.3 Delay margin of the state-predictive control
system

In this and the next sections, the stability limit of the state-predictive control

system is. studied where the case of no gain mismatch is treated in this section in

detail, and the general case in the next section.

At the stability limit, the characteristic equation (4.38) should have a root (or

roots) on the imaginary axisj namely

1 + PUw)Q(jw) = 0

must hold at some frequency w. Rewrite the equation as

PUw) = -l/QUw)

(4.40)

(4.41)

and consider the locus of P(jw) for w = 0 f'.J 00 (which will be referred to as P-locus),
and the locus

(4.42)

for a = -27f ('oJ 21f (which will be referred to as Rb]-locus). Satisfaction of (4.41) is

equivalent to

2The fact that the robust stability is deduced from the stability of this positive feedback loop is the
standard result used in recent researches about robust stability. Here, we derived this result based ~n
the characteristic equation, because the expression (4.31) is much more convenient for our purpose,
because the effect of the pure delays can be seen more clearly including the initial value problem; and
because the stability of the nominal system can be assured at the same time.
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1. the P-Iocus and the Rb]-locus cross, and

2. the values of wand 0: at the crossing point satisfy 0: = ow.
In the above, note that 1 is the relative error of the gain and 0 is the absolute error of

the delay-time (see (4.29)).

Now, consider the case of no gain mismatch (i.e., 1 = 0). The R[O]-locus is the

straight line parallel to the imaginary axis passing the point 1/2 on the real axis (shown

in Fig. 4.2), where

1m [R(jo:, 0)] --+ -00

1m [R(jo:, 0)] = 0
1m [R(jo:, 0)] --+ +00

for a --+ +0

for a = 11"

for a --+ 211" - 0

and a --+ -21f + 0,

and 0: = -7l",

and 0: --+ -0.

Note that, when a changes from -211" to 2?r, the point RUa, 0) covers the whole straight

line twice; that is to say, each point of the line corresponds to two values of a (one

is positive and the other negative). From (4.31), we can know that the P-locus has

the usual characteristics of the Nyquist locus of the finite-dimensional strictly proper

stable linear system cascaded with a pure delay; i.e.) the locus starts from a point on

(usually the positive side of) the real axis) encircles the origin infinitely many times,

and converges to the origin.

If we carefully analyze the relation of the behavior of the point P(jw)Q(jw) to the

location of the P-Iocus and the R[O]-locus, we can derive the next result [6].

Theorem 4.2 (The case of no gain mismatch: 1 = 0.)

Consider the system of Fig. 2.4 with the parameter errors given by (4.29) with

1=0.

(a) If the P-locus and the R[O]-locus do not cross, the system remains stable for any

b.

(b) Assume that P(O) > 0 and that the P-Iocus and the R[O]-locus cross at one

point AI, at which w = WI on the P-Iocus and a = ale> 0) and o:~« 0) on the

R[O]-locus. Let

The system is stable for

and is unstable otherwise.

8(0) - aI/wI,

Q(O) max(O!.~/Wl) -TL ).

Q(O) < 6 < 8(0))
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Fig, 4.2: Rb]-loci

(c) Assume that P(O) > 0, and thatthe P-locus and the R[O]-locus cross at m points

A}) .. ·,Am ) andthat, at the i-th point Ai, W = Wi on the P-locus and a = ai(> 0)
and a~(< 0) on the R[O]-locus. Let

5(0)

Q(O) -

min(adwl" ", arn/wm ),

max(a~/wl"" I a'm/wrn , -TL).

(4.45)

(4.46)

The system is stable for
Q(O) < 8 < 5(0). (4.47)

In the case (c), it is not said that the system is unstable outside the interval (4.47).

This means that there can be another interval (e.g., 8(0) < 61 < 8 < 82 ) in which the

system becomes stable. But, the system is evidently unstable (to be exact oscillatory)

at 6 = 8(0) and 6 = Q(O). Hence, 5(0) and Q(O) are actually the delay margins for

'Y = O.

4.4 Robust stability condition for 'Y =I- 0

In this section, we consider the case where both gain and delay time mismatches

exist.
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When, > 0 or , < 0, the Rb]-loci become circles as shown in Fig. 4.2. These

circles are the mirror images of the equi-M lines of the Hall diagram. To state the

robust stability condition for general values of " we need one more definition; i.e., the

locus of P(jw) for w = -00 tV 00 is referred to as the complete P-locus. We focus

upon the cases which correspond to (b) and (c) of Theorem 4.2. For this case, Baa

and Araki derived the following theorem [6] (for simplicity, we show their theorem for
,> 0).

Theorem 4.3 (The mismatch of gain is positive b> 0).)

Consider the system of Fig. 2.4 with the parameter errors given by (4.29). Assume

that P(O) > 0, arg P(jw) decreases monotonously and that the P-locus does not

encircle nor intersect the point -1(y. Assume that the P-locus and the Rb]-locus

cross at m points AI," ·,Am , and that, at the point Ai, w = Wi (WI < Wz < '" < wm )

on the P-locus and a = ai(> 0) and a~(< 0) on the Rb]-locus. Let S(,) and ~(T) be

defined by

8b) - min(ajwm ),

MI) - max(aUwm , -7r/wm , -Td·

Then, the system is stable for

~(T) < 8 < S(T).

(4.48)

(4.49)

(4.50)

This theorem gives necessary and sufficient boundaries only for the caSe in which the

Y·locus and R[I]-locus cross at one point. Furthermore, their theorem for, < a does

not always give necessary and sufficient boundaries even for such a case.

On the other hand, we can derive the following theorem.

Theorem 4.4 Consider the system of Fig. 2.4 with the parameter errors given by

(4.29). Assume that P(O) > a and that the complete P-locus does not encircle nor

intersect the point -1/1 when, -# o. Assume that the P-locus and the R[I]-locus

cross at m points AI,' . ·,Am , and that, at the point Ail W = Wi on the P-locus and

a = ai(> 0) and a~(< 0) on the R[,]-locus. Let 8(,) and ~(,) be defined by

8({)

~(I) -

Then, the system is stable for

min(aJ/Wl' ... I am/Wm),

max(a~/w1J"" a'rrJwm , -Td.

~b) < 0 < S(T).
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Proof. When fj = 0,
P(jw)Q(jw) = ,P(jw). (4.54)

Therefore, by the first assumption and by Theorem 4.1, the system is stable when

o = 0. Now, increase or decrease 0 from O. Since the Nyquist locus of P(s)Q(s)

continuously depends on 15, it does not encircle the point -1 until (4.40) is satisfied

for the first time. Satisfaction of (4.40) is equivalent to the condition--that the P

locus and t~e Rh.J-locus cross and,. at the same time) the Val~~ an~ ~ at .the
crossing pomt satIsfy ex. = ow. Therefore, t.he system reachrs st~bIht~ limIts (I.e.. ,

the Nyquist locus of P(s)Q(s) passes the pomt -1) for the/first tIme If and only If

8 = min (ex.l/WI 1 "', Ctm/wm) or 0 = max(ex.~/wI)···) o:.:n/wm). Noting that b ~ -TL'
we can conclude that the system is stable for 0 satisfying (4.53).

Q.E.D.

In parallel to the case of Theorem 4.2, we can assure that 6C!) and~C!) are the delay

margins at J. The above condition gives a sharper result than Theorems 5 and 6 in

[6].

4.5 Example

Here, we discuss the robustness of the state-predictive 2DOF-LQI-obs servo system

of Example 3.2 in Section 3.6.

First) we give an example to show the procedure to obtain the stability region of the

state-predictive 2DOF-LQI-obs servo system using a minimal-order optimal observer

of Example 3.2 by Theorem 4.4. The P-locus of the system for 0:.
2 = 1 and Rb]-locus

for 'Y = 0.2 are shown in Fig. 4.3. In this case, the P-locus and the R[0.2]-locus cross

at three points, and the values of w, ex. and 0/ at the crossing points are

WI = 0.56,

W2 = 2.59,

W3 = 4.17)

(X.I = 0.929,

(X.2 = 5.24,

0:.3 = 1.31,

o:.~ = -5.35
a~· -1.04

a~ = -4.98

Therefore, when I = 0.2, the control systems remain stable for -0.401 < 15 < 0.313.

For the state-predictive 2DOF-LQI-obs servo systems with the optimal minimal

order observer for 0:.
2 = 1 and 0:.

2 = 1000) we calculated the delay margins at several

values of "( and drew the stability regions around the -origin on the "(-8 plane. The

stability regions obtained by Theorem 4.4 for these systems are shown in Fig. 4.4.
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From these regions, we can find that the state-predictive 2DOF-LQI-obs servo system

for ci = 1 is more robust than the system for a? = 1000. The gains of the sensitivity

function 5(s) and the complementary sensitivity function T(s) at the plant input for

our state-predictive 2DOF-LQI-obs servo system are shown in Fig. 4.5, where solid

lines are for a 2 = 1, and dashed lines are for a 2 = 1000. This figure shows that

the complementary function for a 2 = 1000 is larger than that for a 2 = 1 in the high

frequency range. This agrees with the result of the stability regions for a 2 = 1 and

a 2 = 1000.

Next, we compare the stability regions obtained by the condition derived by Baa

and Araki [6] and by Theorems 4.2 and 4.3. The stability region obtained by Bao

Araki's condition is shown in Fig. 4.6 by the dotted line, while the stability region

obtained by Theorem 4.4 by the solid line. This confirms that the stability region on

the 1-6 plain obtained by Theorem 4.4 is larger than that by Bao-Araki's condition.

4.6 Concluding remarks

In this chapter, we studied robust stability of state-predictive servo systems for

plants with a pure delay. We derived a robust stability condition in general case

that the stability of the control system is determined by the roots of the characteristic

equation (4.38) for the robust stability. In particular, in the case in which the modeling

errors exist only in the estimates of the gain and the delay time, we gave a new robust

stability criterion to obtain the stability region graphically. Using this criterion, we can

test robust stability of the system by means of the Nyquist plots of the complementary

sensitivity function and the error function, and obtain the "necessary and sufficient"

stability region on the relative gain mismatch-delay time mismatch plane from the

relation between the Nyquist plots.

In parallel to Sections 4.3 and 4.4, we can derive robust stability conditions for

state-predictive regulators and the Smith control systems. Namely, if we replace the

definition of P(s) by those given in the following, Theorems 4.1, 4.2 and 4.4 hold for

those control systems. The definitions of the matrices and transfer functions will be

summarized below.

State-predictive regulator with an observer (Fig. 4.7):

(4.55)
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Smith controller (Fig. 4.8):

(4.56)

A, B, C and TL are the parameters of the plant model (4.1), (4.2) and (4.3). F is the

feedback gain such that the closed-loop coefficient matrix A + BF has appropriate

properties including stability. In (4.56), Gc(s) is a controller designed for the lumped

parameter part of the plant.
We could derive more general results from the viewpoint of complementary sensi

tivity function if the stability of the nominal system is guaranteed beforehand. Namely,

assume that the modeling error of the transfer function of the plant is in the form

Real Plant = {I + Q(s)}e-TLSG(s)

where Q(8) is a general transfer function giving the relative error. Then, the stability

of the control system can still be judged by the roots of the characteristic equation

(4.38) for the robust stability. This can be proved from the consideration stated just

above the equation (4.39).
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Chapter 5

Blood pressure control in surgical
operations -An application of
state-predictive controllers-

Maintenance of blood pressure at a substantially low level has several advantages in

surgery. It reduces intraoperative bleeding and clearly reveals detailed anatomical

structures in the operative field which otherwise might be obscured by blood, thus

facilitating a more accurate and speedy operation. Also, it may spare blood transfusion

and prevent the side-effects such as increased risk of sepsis and organ failure. Despite

these advantages, deliberate hypotension has not gained as widespread popularity as it

deserves because it is difficult to manipulate the infusion rate of a hypotensive solution

to keep the blood pressure at a sufficiently low level, while still above the critical limit.

Since the late 1970's, blood pressure control systems have been developed. The

early researches chiefly aimed at cardiovascular surgery postoperative blood pressure

management. Sheppard [40] used a modified PID controller, but this controller could

not cope with individual differences of the respo"nse to hypotensive drugs. Adaptive

control was applied by Widrow [47] and Arnsparger et al. [3], but these did not work

well when disturbances existed. Koivo [24] developed a blood pressure control system

based on optimal control which kept the blood pressure at a low level but the blood

pressure range which could be set as the reference value was narrow. All of these were

concerned with restoration of abnormal blood pressure to normal.

Researches were started recently to try to keep blood pressure at an abnormal level

with the intention of facilitating surgical operations or medical treatments. Masuzawa

and Fukui [33] applied optimal control using an impulse identification method, and

developed a blood pressure control system to keep blood pressure at a low level, but the

controlling time of each experiment was shorter than 70 minutes. Fukui and Masuzawa
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[14] applied fuzzy logic to blood pressure control to keep blood pressure at a high level as

a medical treatment for cancer, but oscillations could easily arise because the existence

of the dead time in the response was not considered at the design stage.

Considering the above results of the former researches, we must take the dead time

existing in the responses to drugs into account in developing a blood pressure control

system. Then, we applied the state-predictive servo controller, which we dealt with

in preceding chapters, to the blood pressure control, and developed a blood pressure

control system which can cope with the dead time in the responses to drugs. This

system monitors conditions (i.e., blood pressure, heart rate and blood loss) during

surgical operations and keeps low blood pressure by changing the infusion rate of the

hypotensive drug. In order to evaluate the accuracy and reliability of this system,we

experimented on dogs.

In Section 5.1, the mean arterial pressure response of dogs to a hypotensive drug

is modeled from the dose responses for the constant drug infusion. In Section 5.2, we

design the blood pressure control system using the state-predictive servo controller for

the model obtained in Section 5.1, and show the simulation results of the designed

system with the modeling errors. In Section 5.3, we apply the controller designed in

Section 5.2 to dogs, and show the results of the experiments on dogs.

5.1 Modeling of blood pressure response to hy
potensive drug

The purpose of our study is to control the blood pressure by a hypotensive drug;

namely, the controlled variable y is the mean arterial pressure (in the following, abbre

viated to MAP) and the manipulating variable u is the infusion rate ofthe hypotensive

drug. We made the dynamical model describing the relation of y to u based on the

dose responses for the constant drug infusion. As the hypotensive drug, we used the

trimethaphan camsilate. In this section, we report the modeling process.

The MAPs of two dogs infused with the hypotensive drug with constant rates were

measured. The infusion rates for each dogs were set to 10.0, 20.0, 40.0 J.LgJkgJmin and

40.0, 80.0, 160 J.Lg/kgJmin, respectively. Typical response curves are shown in Fig. 5.l.

From those data, it was estimated that the system includes

(i) a pure delay,
"

(ii) some nonlinearity (or nonlineq,rities) of the saturating type, and
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(iii) the dynamics in the non-saturating domain can be approximated by a first order

delay.

The first estimation is made from the fact that every response is accompanied with a

dead time at the beginning of infusion. The second estimation is made from the facts

that the data can be classified into two groups depending upon whether the infusion

rate exceeds a certain level, and that the responses corresponding to small infusion

rates reach steady states which depend upon the infusion rates, while the responses

corresponding to large infusion rates reach a steady state which does not depend on

the infusion rate: The third estimation was made from the shapes of the response

.curves. Based on the first and third estimations we assumed the next dynamics for the

non-saturating domain:

{

dx(t) = -~x(t) + f{mu(t)
dt T T'
y(t) = x(t- TL ),

(5.1)

for x(t) 2:: c

- -~x(t) + ~m{u(t) - wm(t)},

x(t) - c,

x(t - TL ),

where x(t) is a state variable, which corresponds to the MAP at t +TL in this case, T
is a time-constant, K m is a gain and TL is a dead time.

From the second estimation, we assumed the next dynamics with a feedback with

a dead zone for large infusion rates:

dx(t)
dt .

dWmlt)
dt
y(t)

(5.4)

(5.3)

when MAP is decreasing,

when MAP is increasing.

where wm(t) is a state of an integrator in the feedback loop, c is the width of the dead

zone, which corresponds to the steady state value of MAP for large infusion rates.

These dynamics can be regarded as a simplified model of the renin-angiotensin system

which is activated when the arterial blood pressure falls below a threshold level [41}.

It should be noted that the value of the integrator in the feedback loop must be reset

when the MAP becomes higher than the steady state value of MAP for large infusion

rates. Therefore, we added the element for resetting the integrator

dW;(t) = -kwm(t), for x(t) < c,
t .

where k is a sufficiently large positive real number.

As we can find from the response curves of Fig. 5.1, the time-constant in decrease

of MAP is different from the one in increase of MAP. So, we set

T = { TI ,
T2 ,
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Table 5.1: The ranges of model parameters obtained from dose responses

K rn (mmHg·kg·min/J.Lg)

c (mmHg)

90 rv 200

270 rv 500

30 rv 40

2.0 rv 4.5

52 rv 57

Since the model (5.1) can be included by the model (5.2), we obtained the following

system:
dx(t) -~x(t) + ~m {u(t) - wm(t)}-

dt
dwm(t) { x(t) - c, for x(t) ~ C (5.5)

dt
-

-kwm(t), for x(t) < c

yet) - x(t - TL ).

Now, we determined the parameters ofthe model (i.e., the time-constant in decrease

TIl the time-constant in increase T2 , the dead time TL , the gain of the first order delay

K m and the width of the dead zone c) from the responses of the MAP of two dogs

by a curve fitting method. Our curve fitting method is as follows. For the non

saturating responses, the parameters of the response were determined by the least

squares method. On the other hand, for the saturating responses, the time-constant in

decrease was determined first so that the time of the overshoot of the response coincides

with that of the model, then the other parameters were determined. Since the effect of

the hypotensive drug differs with the conditions of dogs (depth of anesthesia, tolerance

against the hypotensive drug, and so on), we calculated the parameters of the plant

model for each set of data. The ranges of the parameters calculated are shown in

Table 5.l.

Since the differences of the parameters are very large, we chose the parameters

of the model so that we could design the controller on the safe side or to lessen the

infusion rate,Le., we chose the larger gain, the smaller time-constant and the larger

dead time in the range of the parameters calculated. As for the width of the dead

zone, we chose the medium value. The result is as shown in Table 5.2.

From the dose responses of this model, we found that the overshoots of the responses

were larger than the real responses. So, we added a nonlinear function f to the model

so that the overshoots matched the real responses. As a result,we obtained the model
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Table 5.2: The determined values of model parameters

T1 (5) 90

Tz (s) 270

TL (5) 40

K m (mmHg·kg.min/l-lg) 4.5

c (mmHg) 54.5

shown in Fig. 5.2:

(5.6)

- ~x(t) + ~m {u(t) - wm(t)}

{
x(t) - c, for x(t) ~ c

-kwm(t), for x(t) < c

- f(x(t - TL )),yet)

dx(t) _
dt

dwm(t)
dt

where

x~c

x>c
(5.7)

with p = 4.

5.2 State-predictive blood pressure control sys
tem and simulation results

In this section, we design the blood pressure control system using the state-predictive

servo controller (Fig. 2.4) for the model of the responses of dogs identified in Section 5.1 ,

and show the simulation results of this system including the case where mismatches of

the plant parameters exist.

We design a state-predictive servo system for the plant model without the feedback

in Fig. 5.2 but with the dead zone (i.e., the model that consists of the first order delay

with a nonlinear function f as shown in Fig. 5.3). Then, the infusion rate determined

by the state-predictive servo controller is obtained by substituting

1 K .
" A = - T

1
' B = T~ 1 C = 1 (5.8)

into (4.11). Note that no observer is needed because the output of the plant is the

state variable of the plant.
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The specifications of the control system are as follows.

settling time Ts:

overshoot Ao:

the steady state value of MAP y=:

300 ~ Ts ~ 1200 s

A o ~ 0.2r

O.9r ~ Yoo ::; l.lr

Here, r is the reference value for MAP.

We set the poles of the control system at -0.01 and -0.02 for the first order delay

model, and simulated the step responses of this blood pressure control system.

The step response of the blood pressure control system without the modeling error

(i.e., with no mismatches of the model) is shown in Fig. 5.4. From Fig. 5.4, we can

find that the response settles to the reference by about 600 s with no overshoot and

no steady state error. Next, we consider the case where the model has the parameter

mismatches. Parameter mismatches are chosen in the ranges obtained in Section 5.1,

i.e., between 2.0 and 4.5 mmHg·kg·min/J.Lg for the gain K m , between 90 and 200 s for

the time-constant TIl and between 30 and 40 s for the dead time TL .

Case 1 (Km has a modeling error)

The responses for K m = 2.0 and K m = 3.0 mmHg·kg·min/J.Lg are shown in

Fig. 5.5(a). Fig. 5.5(a) shows that as the mismatch becomes larger, the settling

time becomes longer, but the system remains stable and satisfies the specifica

tions.

Case 2 (T1 has a modeling error)

The responses for T1 = 120 and 200 s are shown in Fig. 5.5(b). Fig. 5.5(b) shows

that as the mismatch becomes larger, the settling time becomes longer, and the

responses turn to have small overshoots. But the system remains stable and

satisfies the specifications.

Case 3 (TL has a modeling error)

The response for TL = 30 s is shown in Fig. 5.5(c). Fig. 5.5(c) shows that this

mismatch has little effect on the settling time, the overshoot and the stability.

Case 4 (All parameters have the largest modeling errors in the ranges obtained in

Section 5.1)

The response for K m = 2.0 mmHg·kg·min/ tLg, T1 = 120 sand TL = 30 s is shown

in Fig. 5.5(d). The settling time is longer and the overshoot is larger than other

cases, but the system remains stable and satisfies the specifications.
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Furthermore, the stability region of this control system in the gain-delay plane

obtained using the robust stability criterion derived in Chapter 4 is shown in Fig. 5.6.

This figure shows that the control system has enough stability margin.

From the above consideration, we concluded that the blood pressure control sys
tem satisfies the specifications even if the model has the mismatches in the range of
Table 5.2, and has enough stability.

5.3 Experiments

In this section, we report the implementation of the blood pressure control system

designed in Section 5.2 and the results of the experiments of blood pressure control on

dogs.

5.3.1 Structure of blood pressure control system

The structure of the blood pressure control system is shown in Fig. 5.7. The system

measures the three values: MAP, heart rate and blood loss. MAP is measured by a

blood pressure amplifier (Nihon Koden AP-641G) with a pressure/voltage transducer

connected with a cannula inserted into the artery of dogs. The heart rate is measured

by an instantaneous heart rate measuring instrument (Nihon Koden AT-601G) and

a strain pressure wave amplifier (Nihon Kaden AP-601G) from the blood pressure

values measured by AP-641G. The blood loss is measured by a balance (Chyo Balance

MF6000). The values of MAP, heart rate and blood loss are transferred as analogue

signals to an A/D converter (Micro Science DAS-I098), and converted to digital signals.

Then, they are transferred to a personal computer (NEC PC-H98 model 70). Harvard

Pump 22 is used as an infusion pump for the hypotensive drug, and IVAC 560 is

used as an intravenous fluid pump. The infusion pump and the intravenous fluid

pump are connected with personal computer by RS-232C cables, and controlled by

communication.

In experiments, the condition of dogs are analyzed from the values of MAP, heart

rate and blood loss, and the infusion rate of hypotensive drug is determined and sent

out to the pump every 1 second. The infusion rate of intravenous fluid is determined

every 10 seconds.

MAP, heart rate, total blood loss, blood loss per hour, the infusion rate of hypoten

sive drug and the infusion rate of intravenous fluid are displayed on the computer dis

play, and the changes of MAP, heart rate and total blood loss are shown on the display

graphically.
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5.3.2 Risk preventing system

During surgical operations, it is possible that the dog is placed in danger because

of various causes (e.g., too much blood loss), and that the blood pressure of the dog

does not decrease enough because of the tolerance against the hypotensive drug and

individual difference of dogs. In order to cope with these situations, we use the following

method.

The system always analyzes the condition of the dogs, and if the dog is found to be

in danger (this condition is referred to as an emergent condition), it starts a procedure

to save the dogs out of danger (back to a normal condition). This is accomplished as

follows. The ranges of MAP, heart rate and blood loss in which we are sure that the

dog is not in danger are

• MAP: 40,....,200 mmHg

• heart rate: 50",300 times/min

• blood loss: 0,....,200 ml

If any values are out of these ranges, we regard the condition of the dogs as the emergent

condition, and otherwise as the normal condition. In the normal condition, hypotensive

drug is infused by the rate determined by the state-predictive servo controller. In the

emergent condition, the system sounds the alarm to inform that the dog is in danger l

and shows what is happening on the display. In addition, if the dog is in a very

dangerous condition, i.e., the MAP is very low or blood loss is too much, then the
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infusion of hypotensive drug is stopped and the infusion rate of intravenous fluid is

increased, and the system waits until the MAP is in the safe range. The infusion rate

of intravenous fluid is changed as follows.

• If the MAP is lower than r - 10 mmHg (r is the reference MAP), the infusion
rate of intravenous fluid is increased to 1.5 times the current rate every 100 s.

• If the MAP is lower than 40 mmHg, the infusion rate of intravenous fluid is set

to the maximal rate (999 ml/h).

• If the MAP becomes higher than r, the infusion rate is set to the initial rate.

Furthermore, in the case that the MAP becomes too low, the infusion rate of hypoten

sive drug is decreased as follows.

• If the MAP is lower than r -10 mmHg, then the gain of the controller is divided
by 1.2 in every 60 s. If the MAP is between r - 10 and r - 5 mmHg, then the

gain of the controller is divided by 1.1 in every 60 s.

• lithe MAP is lower than 50 mmHg, then the infusion rate of hypotensive drug

is set to the half of the value determined by the state-predictive servo controller.

For the case that MAP does not decrease enough because of the tolerance against

the hypotensive drug or individual differences of dogs, the infusion rate of hypotensive

drug is increased as follows.

• If the MAP does not become lower than r + 15 mmHg within five minutes, then
the gain of the controller is multiplied by 1.2.

• After five minutes, if the MAP is not lower than r + 10 mmHg, then the gain of

the controller is multiplied by 1.2 in every 100 s. If the MAP is between r + 10

and r + 7 mmHg, then the gain of the controller is multiplied by 1.1 in every 100

s.

We dealt with the difference of the preinfusion MAP between the model and the

dogs for experiments as follows, with consideration of safety of the dogs. If the prein

fusion MAP is lower than 130 mmHg, the controller for the model whose equilibrium

point is shifted by the difference of the preinfusion MAP is used, and otherwise the

controller for the model whose equilibrium point is shifted and whose parameters with

relation to blood pressure are scaled up is used.
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5.3.3 Experiments on dogs

We made blood pressure control experiments on dogs using the system described

above. In these experiments, we did not do any surgical operations except the one

necessary for measurements, and so, the blood loss is so little as not to need to be

measured. We used the anesthesia with GOF under controlled respiration to maintain

a constant depth of anesthesia and lactated Ringer as an intravenous fluid.

Experiment 1 Four adult mongrel dogs were used, and their MAP was controlled

seven times by the above blood pressure control system. The reference MAP was

set to 60 mmHg and the MAP was controlled for three hours after settling at the

reference leveL The initial infusion rate of intravenous fluid is set to be 100 mljh in

all experiments.

The behaviors of MAPs and the infusion rates of hypotensive drug in representative

cases are shown in Fig. 5.8. Numerical results of experiments are shown in Table 5.3.

Settling time is the time that the MAP reaches in the range of reference MAP±10%,

A-MAP is the averaged MAP from the settling time to the end of control, S. D. is the

standard deviation of MAP from A-MAP, C-time is the time of controlling MAP and

Duration is the duration of error from the reference MAP±10%. The MAP reached

at the reference level in 5.8 to 26.5 minutes (16.0 ± 6.8 minutes), and the duration of

error from the reference MAP±10% waS 2.3 ± 3.9 minutes per hour.

5.4 Discussion

Until now, various controllers have been applied to blood pressure control [40], [47],

[3], [24), [44], [33], [14], [21]. Most of these controllers (e.g. PID controllers, adaptive

controllers, optimal controllers, rule-based controllers, and so on) did not take the

dead time of the blood pressure response for drugs into account, and determined the

infusion rate of drugs from the current blood pressure. However, in the case where

the drugs to which the blood pressure response has a small time-constant (e.g. sodium

nitroprusside, trimethaphan camsilate, and so on) were used, the dead time has a great

effect on the stability and the transient response. For this reasoD, we should take the

dead time into account.

- As controllers for systems with a dead time, the Smith controller [42] and state

predictive controllers [32), [16) are well-known. Woodruff and Northrop [48] used a

Smith controller for blood pressure control. We choose a state-predictive servo con-
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Table 5.3: Results of Experiment 1

Initial MAP T, A o A-MAP S,D. C-time Duration

(mmHg) (min) (mmHg) (mmHg) (mmHg) (min) (min/h)

1 111.0 16.2 26.5 63.8 0.51 194.6 3.1

2 82.5 9.7 3.2 61.7 0.20 194.1 0.0

3 83.0 5.8 0.5 63.6 1.24 199.3 0.1

4 85.0 24.1 10.2 59.9 0.51 185.9 0.2

5 108.5 13.8 17.5 64.9 0.62 200.8 11.5

6 95.0 26.5 11.5 61.9 0.41 193.3 0.2

7 87.0 16.1 12.8 62.1 0.62 202.9 0.8

T,: Settling time

Ao: Overshoot

A-MAP: Averaged MAP from the settling time to the end of control

S.D.: Standard deviation of MAP from A-MAP

C-time: Time of controlling MAP

Duration: Duration of error from the reference MAP±10%

troller because the response speed of the system can be determined using a pole

assignment method or optimal method with respect to a quadratic performance index.

Comparing our results with other results [24], [33], times of controlling MAP of our

results are much longer than the results of Koivo [24] and Masuzawa et al. [33], and

S. D. of the MAP of ours are much less than theirs. Therefore, we can conclude that

our system has much better stability than theirs, although the reference MAP was set

to a lower level.

We tried to use nicardipine and PGE1 as hypotensive drugs. In these cases) the

MAP could be maintained at 60 mmHg for more than three hours only by changing

the parameters of state-predictive servo controllers. The result of an exr>eriment using

nicardipine is shown in Fig. 5.9.

However, the settling times and the overshoots of a few responses did not satisfy the

specifications. From the results of these experiments, we found the following problems,

which should be solved before applying our system to the clinical use.

• Overshoot caused by the initial mechanical error of the infusion pump:

In some experiments) about 10mmHg overshoots happened. These are caused by

the mechanical error of the infusion pump and the elasticity of the rubber part

of syringe, namely, the real infusion rate does not coincide with the infusion rate
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determined by the state-predictive servo controller. This problem could be solved

by reducing the density of hypotensive drug, but, for this, we need to change the

structure of the control system and the rule for infusion rate of intravenous fluid.

• Insufficiency of the condition analysis:

Dogs are not always safe even when MAP, heart rate and blood loss are in

the safe ranges given in Subsection 5.3.2, respectively. It is necessary to make

more analysis based on data covering enough kinds of situations. Further, we

should add the infusion of a hypertensive drug and blood transfusion to the risk

preventing system.

• Increase of the drug infusion rate:

Since trimethaphan camsilate is a drug which dogs (and men) easily become

tachyphylaxis, a very large infusion rate may sometimes be necessary to keep the

MAP at a constant level for three hours. In fact, the changes of infusion rates can

be classified into two types, namely, the type that the rates are almost constant

regardless of time (Fig. 5.8(a)) and the type that the rates increase with time

(Fig. 5.8(b)). In the case where the infusion rate increases with time, the total

infusion volume becomes very large. This is not good from the safety point of

view. We must find a method to keep low blood pressure by the drug infusion of

a constant rate.

5.5 Concluding remarks

In order to maintain substantially low blood pressure, we developed a blood pressure

control system using a state-predictive servo controller. First, we modeled the blood

pressure response to hypotensive drug as a l(pure delay plus a first order delay" system

with a nonlinear feedback which is activated when the blood pressure is lower than a

certain value. In order to cope with the dead time existing in the responses, we designed

a state-predictive servo control system for this modeL After simulation studies, we

applied the system to dogs and assured that the control system can safely keep the

blood pressure at a low level.

To increase the reliability of the system, we have to consider the following future

topics.

1. eliminating the effect of mechanical error

2. coping with the tachyphylaxis
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Chapter 6

Conclusion

The results presented in this thesis are summarized in this chapter. In Chapter 2, we

made a survey of the basic idea of the state-predictive control; Le. we looked at the

structures of the usual state-predictive servo system for the plant with a pure delay

and the two-degree-of-freedom state-predictive servo system proposed by Araki and

Watanabe [2]. We pointed out that the feedforward gain of the two-degree-of-freedom

state-predictive servo system has been determined only by a trial-and-error method,

and that the systematic design method has not been proposed.

In Chapter 3, we extended the two-degree-of-freedom design method of LQI servo

systems [20] to the case in which the plant has a pure delay, based on the basic idea

of state-predictive controL Moreover, we studied the property of the designed two

degree-of-freedom state-predictive LQI servo system incorporating an observer. The

results can be summarized as follows.

• The feedback gain Po and feedforward gain Ho, which correspond to the tracking

characteristics, and the feedback gain G, which corresponds to the feedback char

acteristics, can be determined independently. Furthermore, these gains can be

determined optimally using independent quadratic-integral performance indices.

• As the state-weighting matrix of the performance index posed on the responses

for step disturbances is made larger, the responses for step disturbances become

quicker.

Furthermore, we studied the effect of the observer on disturbance responses and derived

the optimal observer for state-predictive two-degree-of-freedom LQI servo system. The

results can be summarized as follows.

• Comparing the asymptotic responses with those of the state feedback case, the

103



deterioration of disturbance rejection ability caused by the introduction of an

observer is quantitatively clarified.

• The design method of the optimal observer that minimizes the deterioration of

disturbance rejection ability caused by the introduction of an observer is estab

lished.

From the above result~, we can obtain the optimal feedback an~ feedforward gains

for responses for step references, the optimal feedback gain from the integrator for

responses for step disturbances, and the optimal observer parameters for disturbance

responses. This means that we obtained the complete solution for the optimal design

problem of the state-predictive two-degree-of-freedom servo system.

In Chapter 4, we studied the robust stability of the state-predictive control system

and the Smith control system. To put it concretely, we derived a theorem which

gives a graphical method to obtain the stability margins in. the case where the plant

has modeling errors in the gain and in the delay. While the theorem derived by Bao

and Araki [6J becomes conservative when 'Y, the relative error of the gain, is negative

or when P-locus and Rb]-locus cross at more than one points, this theorem gives a

"practically necessary and sufficient" stability region around the nominal values on the

gain-delay plane. By this theorem, we can take the robust stability into account in

designing the state-predictive control system.

The design procedure of the state-predictive two-degree-of-freedom LQI servo sys

tem incorporating an observer developed in the above chapters can be summarized as

follows.

1. Determine the feedback gain Fo and the feedforward gain Ho, which determine

tracking characteristics for step references, to minimize a quadratic-integral per

formance index.

2. Determine the parameters of an observer considering the feature of disturbances.

3. Construct a prediction mechanism.

4. Introduce an integrator and determine the feedback gain G from the integrator

considering the tradeoff between the robust stability and the disturbance rejection
ability.

In Chapter 5, we studied the blood pressure control system using a state-predictive

. controller. The response of the blood pressure to the infusion of a hypotensive drug

can be considered as a typical plant with a pure delay. We developed a blood pressure
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control system for keeping blood pressure at a low level using a state-predictive servo

controller in order to spare blood transfusion and prevent the side-effects of blood

transfusion. The response of the blood pressure to the infusion of a hypotensive drug

can be modeled as a first order delay with a nonlinear feedback plus a pure delay.

For this model, we designed a state~predictive servo system, and made blood pressure

control experiments on dogs. Comparing our results with other former results, we can

conclude that our system has much better stability and accuracy.

We have the following future topics. In Chapter 4, a method of robust stability

analysis of state-predictive control systems and the Smith systems was given. However,

this method is for the case where the plant model has the modeling error only in the

gain and delay. The results in Chapter 4 can be extended to the case of general

modeling errors.

The state-predictive servo controller to keep the blood pressure at a low level de

veloped in Chapter 5 was actually used for surgical operations and performed a satis

factory function [38]. It is expected to develop similar systems which can be applied

.to the control of other physiological regulatory systems as medical treatments, e.g.,

artificial pancreas to keep the blood glucose of the subjects of diabetes at a normal

level, an anesthesia control system during surgical operations, and so on.
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