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Preface

New discoveries on the determination of structures and on the machineries

of proteins in vivo have often been highly exciting and surprising events, since

the elucidated facts were sometimes quite far away from our imaginations.

Such pleasurable betrayals by the nature provide us sources of curiosity and

motivations of the studies. In the area of photosynthetic systems, many great

discoveries have been accomplished in the last decade. Molecular structures of

bacterial photosynthetic reaction centers were elucidated by Deisenhofer et aL

in 1984. In their study, the chromophores in the reaction center were shown

to have a symmetric alignment in the protein. Further studies revealed the

highly efficient property of electron transfers in the system, which transduce

the solar energy into the driving forces of the biochemical reactions in the

photosynthesis. Recently, McDermott et al. determined the structure of a

bacterial antenna protein which absorbs the solar energy and transfers it to the

reaction center. Twenty seven chromophores were found to align quite

symmetrically in a circle and their energy transfer ability achieves nearly 100

% yield. Our curiosities have been continuously stimulated by these mysteries

in the nature. Why such beautiful structures are required in these systems?

Why are the reactions so efficient? What can we learn from the nature?

In the present, methods of modem quantum chemistry have been developed

extensively and have achieved the chemical accuracy in molecular ground and

excited states. Recent years, to expand the applicability in large systems is one

of the topics in quantum chemistry. The applicability is said to be one of the

necessary conditions in order to be an useful theory. SAC/SAC-CI method

proposed by Nakatsuji in 1978 is one of the accurate theories describing

electron correlations in the ground and excited states. The method gives

reliable results for various chemical processes. In part I, the SAC/SAC-CI

method is applied to the ground, excited, and ionized states of biologically
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important porphyrin compounds, moderately large systems, which had been

thought to be unmanageable for modern accurate theories in a few years ago.

The computation program applicable to larger systems has developed and

attempts are made to free base porphin, Mg porphin, oxyheme, chlorin,

bacteriochlorin, pheophytin a, and chlorophyll a. The aims of the studies are

to make sure the accuracy of the method in such larger systems, to investigate

the electronic structures, to make reliable assignments for the excitation

spectra, and to understand effects on the excited states by metal coordinations

and substituents

The photosynthetic reaction center of Rhodopseudomonas viridis is one of

the systems which have stimulated strongly our scientific interests. The system

transduces the solar energy to driving forces of chemical reactions without any

loss of the yield. Although the reaction center has a pseudo-C2 sYII.lmetric

structure in which two electron transfer passways (L- and M-branches) are

composed by chromophores, only L-branch is selectively utilized for the

electron transfer. These issues have been studied extensively in the last decade.

However the assignment of the absorption spectrum and the reasons of the

high-efficiency and the unidirectionality have not been established yet. In Part

II, these problems are attempted to investigate from a quantum chemical view

point by using the SAC/SAC-CI method. The SAC/SAC-CI method is applied

to the excited states and electron transfers in the reaction center. The

theoretical excitation spectrum is compared with the absorption spectrum and

the SAC-CI wave functions are utilized to calculate electronic factors in the

rate constants so as to analyze the dynamics of the electron transfer reactions.

In Part III, applications of the SAC-CI method to an inner-valence

ionization spectrum and an excitation spectrum of a metal complex are shown.

The accurate descriptions of the inner-valence ionized states require to include

higher order excitation operators, since the states are characterized as multi­

electron processes. A serious problem is that the number of the operators
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increases rapidly with the excitation leveL However, the effective operators

should be limited and should be selected by any selection procedure. A

combined use of exponential generation algorithm proposed by Nakatsuji in

1987 and a perturbation technique is applied to the selection of linked

operators for higher-excitations in the SAC-CI wave functions. The

effectiveness is shown in the calculation on the inner-valence ionization

spectrum of ethylene.
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ABSTRACT

The SAC(symmetry adapted cluster)/SAC-CI method is applied to the

calculations of the ground, excited, and ionized states of the free base

porphin. The electronic spectrum of porphin is well reproduced and new

assignments for the B (Soret), N, L and M bands are proposed. The present

result shows that the four orbital model is strongly perturbed for the Band

N bands by the excitations from the lower 4blu MO and that the cr electron

correlations are important for the description of the excited states. The

absorption peaks in the ionization spectrum are assigned and the

reorganization effect is found to be large especially for the nand cr electron

ionizations.
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I. INTRODUCTION

Porphyrins play a key role in some biological reactions like

photosynthesis and oxygen absorption. 1 To clarify the electronic mechanisms

of these reactions, the electronic structures of porphyrins have been actively

investigated.2-19 The excited and ionized states of porphyrins observed in the

VUV spectra20 and the photoelectron spectra21 are also investigated by the

semi-empiricaI2-8 and ab initi09-13 methods. Among them, the CASPT2

study by Roos et al. 13 would be the best calculation so far made.

In the electronic spectrum of free base porphin, shown in the upper side

of Fig. 1, the peaks are named as Q, B (Soret), N, Land M bands from low­

energy peaks. The polarization studies22,23 showed that the two peaks of the

Q band are polarized perpendicular to each other, and the same is true for

the Band N bands.

Previous theoretical studies7-13 showed that the lower energy peak is

polarized parallel to the inner H-H axis (Qx) and the other one perpendicular

(Qy). Similar polarizations were also assumed for the B band: The lower and

higher energy regions of the peak have the same polarizations as the Qx and

Qy peaks, respectively. 12,13 However, some ambiguity still remains in these

studies, since in the past, porphin was a large molecule for accurate theories

of quantum chemistry.

We study here the ground, excited, and ionized states of porphin, based

on the SAC (symmetry adapted cluster) theory for the ground state24 and the

SAC-CI theory for the excited, ionized and electron attached states.25 We use

here the accelerated version26 of the SAC85 program.27 The SAC/SAC-CI

method has been shown to be quite accurate and useful for studying

molecular spectroscopy and (catalytic) surface reactions. 28 It has been

applied successfully, for example, to five-membered ring compounds,29

benzene,30 pyridine,31 naphthalene,32 many metal complexes like tetra-oxo
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complexes 33 -36 and halogen complexes,37-39 and the models of surface

reactions like PdnH2 (n=1-3),40 Ag402,41 etc. A review was published in

Ref. 28. Recently, some accelerations of the program were done for the

integral evaluation and diagonalization parts.26 Preliminary results of the

present calculations were presented at the Workshop held in Braunlage in the

summer of 1994.42

II. COMPUTATIONAL DETAILS

Free base porphin C2oN4HI4 is assumed to have D2h symmetry with D4h

skeleton. The atomic coordinate is taken from Sekino and Kobayashi'?

The basis set is of double-S quality for the valence 2p orbitals. We used

Huzinaga's (63/5)/[2s2p] set43 for carbon and nitrogen and (4)/[lslset44 for

hydrogen. The total number of contracted GTO's is 206. The Hartree-Fock

SCF orbitals, calculated by the HONDO program,45 consists of 81 occupied

and 125 unoccupied MO's.

In the SAC/SAC-CI calculations, the higher 42 occupied orbitals and the

lower 114 unoccupied orbitals are included in the active space. The total

number of active orbitals is 156. The active space includes all the n-type

orbitals, 13 occupied 7(- and 35 unoccupied 1t*-orbitals, and a large number

of a orbitals are included. The frozen cores consist of 1sAO's and some

lower combinations of 2s AO's of carbon and nitrogen and their antibonding

counterparts at the top of the unoccupied space. From the previous

calculations on benzene etc.,5,12,13,30 the reorganization of the a-electron

space due to the 1t-1t* excitation is important especially for the V states.

All single excitations and the selected double excitations are included in

the linked term. The selection scheme in the SAC-CI calculation is modified

slightly from the original one46 by adding the SE-CI coefficient C; of the
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reference configuration 'f'/' to the second-order perturbation energy

expreSSIOn as

In this scheme, the weight of the reference configuration is reflected in the

selection scheme.

For the ground state, the energy thresholds of Ix 10-5 and 2x 10-5 hartree

are used for the n-11:* and the other excitations, respectively. For the singlet

excited states, two calculations with different sets of energy thresholds are

carried out. In calculation A, the energy threshold is Ix 10-6 hartree. In

calculation B, doubly excited configurations having coefficients larger than

0.05 in calculation A are added to the reference configurations for the

selection and the energy threshold for the n-n* excitations is improved to

5xlO-7 hartree. For the ionized states, the thresholds, lxl0-5 and 2xlO-5

hartree are used for the ionizations from the n and the other orbitals,

respectively. The numbers of the reference states and of the resultant linked

configurations are summarized in Table I. The unlinked terms of the SAC

and SAC-CI calculations represent the higher-order effects and the

transferable correlations, respectively. They are included by the standard

procedure. 28,46 Table II shows the timing data of the SAC/SAC-CI

calculations of porphin.

III. RESULTS AND DISCUSSIONS

A. GROUND STATE

The energIes and the natures of some higher occupied and lower

unoccupied MOs are shown in Table III. The n-type orbitals gather in the
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HOMO, LUMO regions. In particular, the HOMO(2au), next-HOMO(Sb I u),

the LUMO(4b2g), next-LUMO(4b3g), called "four orbitals", are well

separated from the other orbitals, implying the validity of the four orbital

model of Gouterman. I Two lone pair orbitals on the nitrogens, 7b2u and 8ag

Mas, lie in the deeper side of the occupied TC orbitals. The a-type orbitals

are below of most occupied 1t orbitals.

In Fig. 2, the orbital shapes of the four orbitals and the lower occupied

4b Iu and 7b2u (lone pair) Mas are shown. These orbitals are TC-type except

for the 7b2u MO. The 5bIu (n-HOMO) and 2au (HOMO) MOs have 20­

membered rc-conjugation with 8 nodes and the 4b3g (n-LUMO) and 4b2g

(LUMO) MOs have I8-membered 1t-conjugation with 10 nodes. The energy

separations within these two pairs of MOs depend on whether the TC­

conjugation involves the nitrogen atoms, since the lower D2h s,ymmetry

exists only around these atoms.

The 4blu MO will be shown important later for it strongly perturbs the

four orbital model, and the 7b2u nitrogen lone pair MO gives the lowest n­

n* excitation. The MO shapes of Fig. 2 are useful when we investigate the

substituent effects on the UV and ionization spectra.

The SAC correlation energy for the ground state is 10.0 eV. This is a

reasonable value for our valence 2p double-S basis, since it is comparable

with the correlation energy of 12.6 eV obtained by the MRSDCI calculation

using split valence basis. 12 However, it is small in comparison with those

obtained by the CASPT2 13 and MP2 14 calculations because of the smallness

of the active space and the basis set used.

In the eigenvector for the ground state, the Hartree-Fock configuration is

dominant. Though the four orbitals lie close to each other, the coefficients of

the excited configurations involving these orbitals are less than 0.05. Then

the single reference theory can describe the ground state of the free base

porphin with a sufficient accuracy.
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B. EXCITED STATES

Ab initio calculations of the excited states of porphin have appeared in

recent years. lO- 13 Fig. 3 shows the results together with the present ones

(calculation B). The dotted lines show the assignments of the experimental

peaks by each method. Only the lower four levels were calculated in the

previous calculations.

Nagashima et a1. 10 performed MRSDrcCI using the minimal basis set. The

results were not satisfactory because of the crudeness of the basis set and the

limitation of the active space within rc-orbitals. Foresman et al. 11 reported

CIS calculations using 6-31 G+ basis. Though the energies for the Q band

were much improved, those for the Soret band were not improved: Higher

excited configurations are necessarily included for an improvement.

Yamamoto et a1. carried out MRSDarcCI 12 using split valence basis and

much improved the previous rc-CI results 10. The peaks Qx and Qy for the Q

band and the B band were calculated in good agreement with the experiment,

though the polarizations of the two peaks corresponding to the B band may

contradict with the experimental result.22,23 The CASPT2 result reported by

Roos et a1. 13 showed a good agreement with experiment, though it tends to

underestimate the excitation energy.

Our present result is also shown in Fig. 3. Different from the previous ab

initio calculations, our SAC-CI calculation gives the excitation energies for

all the states observed in the VUV spectrum. Our method is general and

effective so that we can calculate all the excited states lying in the observed

energy range. In Fig. 1, the SAC-CI theoretical spectrum is compared with

the experimental one in a vapor phase measured by Edwards and his co­

workers. 20 Table IV summarizes the details of the SAC-CI results not only

for the optically allowed states, but also for the optically forbidden singlet
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states. The optically allowed eight n-n* and one n-n* excited states and the

dipole-forbidden six n-n* and three n-n* states are calculated in the present

SAC-CI study. Main configurations, natures, excitation energies and

oscillator strengths are given together with the experimental and other ab

initio theoretical results.

Referring to Figs. 1 and 3, we see that the present SAC-CI results

reproduce well the experimental spectrum in both excitation energy and

oscillator strength. The average discrepancy from the observed peaks are

0.13 and 0.14 eV by the present calculations A and B, respectively. We

discuss each band subsequently below.

The Q band is composed of the two weak peaks Qx and Qy at 1.98 and

2.42 eV, respectively, and Qy has a larger intensity than Qx. By the SAC-CI

calculations, Qx and Qy are assigned to the IlB3u and 11B2u states calculated

at 1.8 and 2.2 - 2.3 eV, respectively. No other excited states including

forbidden states are found in this area. The error in the excitation energy is

within 0.2 eV. The present calculations reproduce the energy separation

between Qx and Qy and the order of the oscillator strength in the

experimental spectrum. Since the I 1B3u and IlB2u states polarize in x and y

directions, respectively, the present result is consistent with the experiment.

The main configurations shown in Table IV are composed of the excitations

within 114-orbitals l1
: two configurations mix strongly and cause a quasi­

degenerate nature of these states.

A strong absorption band that consists of a sharp peak and a shoulder in

the higher energy side is observed in the 310 - 400 nm region of the

spectrum. The sharp peak and the shoulder are called B (Soret) and N bands,

respectively. The 18 membered cyclic polyene· mode147 ,48 of porphin

explained that the B band consists of the two degenerate states. In some

previous theoretical studies including the ab initio ones 10-13 and the semi­

empirical ones,7,8 the B band was assigned to the two nearly degenerate
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2 1B3u and 21B2u states, following the Gouterman's four orbital model, and

the N band to another electronic state.

The present SAC/SAC-CI results indicate different assignment. The

excitation energies of the 2' B3u and 21B2u states are calculated to be 3.59 and

3.79 eV, respectively, in the calculation A and 3.56 and 3.75 eV,

respectively, in the calculation B and no other peaks are calculated in the 3 ­

4 eV region. Then, we assign the 21B 3u and 21B2u states to the Band N

bands, respectively. In other words, the N band which is the shoulder of the

B band in the experimental spectrum shown in Fig. 1 is actually By and the B

band is Bx. The excitation energies for these states are overestimated by 0.26

and 0.14 eV, respectively, in the calculation A and 0.23 and 0.10 eV in the

calculation B. The energy splitting between the Band N bands, which is 0.32

eV, is calculated to be 0.20 eV. If the conventional assignment is adopted in

our present result, no assignment is possible for the N band. Namely, the

present proposal for the Band N bands are based not only on the calculated

excitation energies for the 2B2u and 2B3u states, but also on the comparison

of the present results, as a whole, with the peaks in the experimental

spectrum.

The polarization studies for the free base tetraphenylporphin22,23 showed

that the sharp B band and the shoulder are polarized perpendicular to each

other and that the B band and its shoulder have the same polarization as the

Qx and Qy peaks, respectively. This is consistent with our assignment.

The symmetry lowering from D4h metal porphyrins to its D2h free base

ones often cause a spectral broadening on the B band.20 This is consistent

with the present assignment, since the 21B2u and 2 IB3u states of the present

molecule (D2h) become degenerated in the D4h symmetry. In the followings,

we use the traditional notations Band N, though they are actually Bx and By,

respectively, for the free base porphin.
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The main configurations of the 2 1B3u and 2 1B2u states include not only

the excitations within the 4-orbitals, but also the excitations from the lower

4b 1u orbital (see Table III and Fig. 2). As shown in Table IV, the two

transitions from the 4blu MO to the 4b2g and 4b3g MOs strongly mix into the

configurations within the 4 orbital model in the calculated 2 IB3u and 2 1B2u

states, respectively. Furthermore, the extent of mixing is quite different

between the 2 1B 3u and 2 IB 2u states, so that these states are no longer

degenerate. The natures of the B (2 IB3u) and N (2 IB2u) bands are different in

this point from that of the Q band. In the CASPT2F calculation, the 4blu MO

was not included in the active space of CASSCF, though as shown here it

strongly perturbs the picture of the four orbital model of the B band.

Referring to Fig. 1 and Table IV, we see that the calculated intensity is

larger for the 2' B 2u (N) states than for the 2'B 3u (B) states. This may

contradict with the observed spectrum shown in Fig. 1. However, we may

interpret the observed spectrum as follows. The N band is a broad band, the

B band is sharp, and the B band lies on the right-hand side top of the broad

N band, so that the N band looks like a shoulder of the B band.

The effects of the (j electron-correlation were found to be important for

the description of the 1t-1t* excitations of the 1t conjugated systems. This is

now a well-known fact verified by the SAC-Cr,28-32 CASPT2,13,49-52 and

other calculations53-56 in particular for larger 1t-electron molecules. In

Table V, the number of the configurations whose CI coefficients are larger

than 0.0 I is shown for several states. The (J-(j* excitations mix with the 1t-1t*

excitations especially in the 2'B3u (B) and 2 1B2u (N) states. The difference of

these states from the Q band is clear also from this point.

For the Land M bands, no ab initio calculations have been reported

except for the semi-empirical treatments,?,8 The L bands at 4.25 and 4.67

eV are assigned to the 31B3u and 3' B2u states, respectively, since these two

states have relatively large intensities (for the 11 B lu state, see later). The
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errors of the SAC/SAC-CI excitation energIes from the experiment are

within 0.2 eV. Since the intensity of the 31B3u state is larger than that of the

3 1B2u state, the shape of the L band is unsymmetric with higher intensity in

the lower energy side. The main configurations of the 31B3u and 31B2u states

are the transitions from the 4blu MO to the 4b2g and 4b3g MOs, respectively.

These are the mixing configurations to the four orbital model in the Band N

states. The 0'-0'* effect is relatively large in the 3 1B3u states as shown in

Table V.

It is interesting to note that we have obtained several n-1t * type

transitions for the porphin as shown in Table IV. Among these, the optically

allowed one is the IiB 1u state calculated at 4.51 eV, but the calculated

intensity is very small and is similar to those of the Qx and Qy peaks. In the

experimental spectrum shown in Fig. 1, this peak may be concealed by the L

band. Since the 7b2u MO is the lone pair orbital on nitrogen, it will be

blocked by forming metal porphyrins, so that this peak will disappear. We

have obtained several other n-n* states, I 1B2g state at 4.05 eV, 11 Au state at

4.18 eV and I 1B3g state at 4.37 eV, though they are all optically forbidden at

the DZh symmetry. In the semi-empirical calculation of Baker and Zerner8, a

n-n* excitation was calculated at 4.91 eV with the oscillator strength of

0.019.

In the absorption band lying in the energy region 4.0 ~ 4.7 eV, which is

called L band in the spectrum shown in Fig. 1, it became clear that at least

three optically allowed transitions exist, 3 i B3u, l i Blu (n-n*), and 31B2u

states, and their polarization are all different, x, z, and y directions,

respectively, though the intensity of the 11 B I u (n-TC *) state is small.

Therefore, a detailed polarization study for the peaks in this energy region is

very interesting and waited. We note that for free base tetraphenylporphin,

three peaks, L, 1, and 2 were reported in the energy region of the L band of

the free base porphin.20
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The M band at around 5.5 eV in the experimental spectrum is composed

of the two 1t-1t* transitions due to the 4 1B2u and 4 1B3u states. They are the

transitions from the 3b1u MO to the 4b3g and 4b2g MOs, respectively. In

comparison with the L band, the starting MO is lower but the ending MOs

are the same. Note that the order of the polarizations is different: x and y in

the increasing energy for the L band and y and x for the M band.

Experimental examination of such polarization property is also interesting.

In the present SAC-CI calculations, two different thresholds are used in

the perturbation selection procedure for examining the accuracy of the

present result. In the calculation B, the better thresholds are used for the 1t­

1t* excitations and some doubly excited configurations, which might be

important in the excited states, are used as reference configurations in the

perturbation selection step. The calculation B is therefore more aCCl1rate than

the calculation A. Comparing two sets of the results shown in Table IV, we

find the two calculations to be quite similar: no special differences are

observed between the calculations A and B. The calculation B gives about

0.03 eV lower energy than the calculation A. This result indicates that the

principal correlations necessary for describing the excited states of porphin

are already included in the calculation A, and that the present result should

be already approximation invariant.

c. IONIZED STATES

The photoelectron spectrum of the free base porphin in a vapor phase

was observed by Dupuis et al. 21 and is shown in Fig. 4. It is very

characteristic that the first ionization potential of the free base porphin is as

low as 6.9 eV. This low IP is believed to have some relation with the

photosynthesis.
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The SAC-CI ionization spectrum is compared with the Dupuis'

experimental spectrum in Fig. 4. The dotted lines denote the correspondence

between the SAC-CI result and the Koopmans result. The reorganization

effect is larger as the IP level is deeper. The observed spectrum can be

assigned by the SAC-CI spectrum. Some of the lower ionized states

calculated by the SAC-CI method are summarized in Table VI. For the first

and second ionizations, both the Koopmans and SAC-ClIP's underestimate

the observed values. The peaks at 6.9 and 7.2 eV are assigned to the

ionizations from HOMO (5blu) and next HOMO (2au), respectively. Since

our present basis set is 2p double-s quality and does not include polarization

functions, the ionization potentials due to the HOMO and the next HOMO are

not properly reproduced.

In the region deeper than 8 eV, the Koopmans method is not appropriate

for the assignment. From the SAC-CI result shown in Fig. 4, the absorption

band in 8.0 - 9.5 eV is found to be composed of the eight ionized states (six

'IT ionized states and two cr ionized states). Two ionizations from the 2b3g and

lau MOs are assigned to the peaks in the region 9.5 - 11.0 eV. The observed

broad peak in 11 - 16.0 eV region involves the ionizations from the a-type

MOs. We also found many shake-up ionization peaks in this region.

However, since the present SAC-CI calculations include only singles and

doubles in the linked term, it is difficult to reproduce the shake-up

ionizations with enough accuracy. The SAC-CI (general-R) methodS? can

give more accurate descriptions of the shake-up processes.

In Table VI, !1 shows the difference between the Koopmans IP and the

SAC-ClIP. It represents the reorganization and electron correlation effects.

We see that the !1 values are grouped into four. The !1 values for the IP's

from HOMO and next HOMO are about 0.4 eV, those for the n-type MOs

are 1.1 - 1.4 eV, those for the a-type MOs are about 2 eV, and those for the

n-type MOs are 2.6 eV. This clearly shows the relative importance of the
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reorganization and correlation effects in each type of the ionized states.

Similar tendency was also found previously for the 7t-conjugated molecules

like benzene30 and pyridine31 .

As shown in Fig. 4, the Koopmans ionization spectrum is much improved

by using the SAC-CI method, since the electron correlation and the

reorganization effects are important.

Alm16f performed in 1974 the ilSCF calculations for the 7t- and n- type

ionization potentials of the free base porphin. 15 Table VI also shows his

result. The difference between the ilSCF IP and the orbital energy

corresponds to the orbital reorganization energy after ionization. This

reorganization energy is 0.3 - 0.6 eV for the rc-type MOs and 0.9 - 1.5 eV

for the n-type orbitals. In comparison with the present t.t. values discussed

above, these Alm16fs values are much smaller. This is because the. present t.t.

values include not only the orbital reorganization, but also the electron

correlation effects. It is interesting to note that for the first two IP's (1 2B 1u

and 12Au), the present difference value is so close to that of AlmlOf.

Table VI gives the information on the main configurations. In most states

the Koopmans configuration is the main configuration, but for the 12B2g and

22B2g states, the ionizations from the 3b2g and 2b2g MOs mix strongly.

IV. CONCLUSION

The SAC/SAC-CI method is applied to the calculations of the ground,

excited and ionized states of the free base porphin. The theoretical result for

the excitation energy and the oscillator strength reproduce well the

experimental spectrum. New assignments for the B, N, Land M bands are

proposed.

The Band N bands in the experimental spectrum shown in Fig. 1 are

assigned to the 2 1B3u and 2 1B2u states, respectively, so that they are actually

1 6



Bx and By states, respectively. This assignment does not contradict with the

polarization experiments, the spectral intensity, and the spectral differences

between the D2h and D4h porphyrins. Further examinations of this proposal

are now in progress. The assignments of the Qx and Qy peaks are the same as

the previous ones.

Though the Gouterman's four orbital model holds well for the Q band, it

breaks down for the B (and N) bands because the excitations from the lower

4blu orbital mix strongly to these bands. Further, the mixing is different for

the Band N bands.

Since the SAC-CI method is general and effective, we need not to restrict

our subject to the lower four levels. The L band lying in the 4.2 - 4.7 eV

region is assigned to be composed of the 3 1B3u, 11Blu and 3 1B2u states. Their

polarizations are x, z, and y, respectively and the intensity of the n-rc*
transition due to the IIB I u state should be very small. The M band is assigned

to the 4 1B2u and 4 1B3u states whose transitions have the polarizations in y

and x directions, respectively.

We have also calculated several symmetry forbidden states as shown in

Table IV. They involve n-n* and n-rc* transitions.

The mixing of the cr-cr* excitations to the 1t-rc* excitations is shown

important particularly in the 2 lB3u (B), 2 1B2u (N) and 31B3u (L) states.

The average discrepancies of the present SAC-CI results from the

experimental peaks are 0.13 and 0.14 eV for the calculations A and B,

respectively. Two calculations differ only about 0.01 eV, showing that the

present result is already approximation invariant within the present basis set

and the framework of the theory.

The SAC-CI ionization spectrum compares reasonably well with the

Dupuis' photoelectron spectrum. The reorganization and electron correlation

effects are large for the ionizations from the nand cr orbitals. The first two

ionization potentials are calculated at 6.09 and 6.35 eV, which are smaller

1 7



than! the., experimental values,~6.9, arid"7.Z: eV. This', is probably due 'to ,the

J4ck'ofith~ fl~xibility in the, ,valence· region 'and the pbla.tiza.tidIifi.IhCtion, in

purba~is:'~.et.,

18



REFERENCES

1 M.Gouterman, The porphyrins, edited by D.Dolphin, (Academic,

NewYork, 1977), Vol. 3.

2 C.Weiss, H.Kobayashi, and M.Gouterman, J. Mol. Spectrosc. 16, 415

(1965).

3 M.Sundbom, Acta Chim. Scand. 22, 1317 (1968).

4 A.J.McHugh, M.Gouterman, and C.Weiss, Theoret. Chirn. Acta. 24, 346

(1972).

5 H.Sekino and H.Kobayashi, J. Chern. Phys. 86,5045 (1987)

6 W.D.Edwards, B.Weiner, and M.C.Zerner. J. Am. Chern. Soc. 108,2196

(1986).

7 H.Sekino and H.Kobayashi, J. Chern. Phys. 75, 3477 (1981).

8 J.D.Baker and M.C.Zemer, Chern. Phys. Lett. 175, 192 (1990).

9 J.D.Petke, G.M.Maggiora, L.L.Shiprnan, and R.E.Christoffersen, J. Mol.

Spectrosc. 71, 64 (1978).

10 U.Nagashirna, T.Takada, and K.Ohno, J. Chern. Phys. 85, 4524. (1986)

11 J.B.Foresman, M.Head-Gordon, J.A.Pople, and M. 1. Frisch, J. Phys.

Chern. 96, 135 (1992).

12 Y.Yamarnoto, T.Noro, and K.Ohno, lnt. J. Quantum Chern. 42, 1563

(1992).

13 M.Merchan, E.Ortf, and B.O.Roos, Chern. Phys. Lett. 226, 27 (1994).

14 J.Alrnlof, T. H. Fischer, P. G. Gassman, A. Ghosh, and M. Haser, J. Phys.

Chern. 97, 1993, (10964).

15 J.AlmlOf, lnt. 1. Quantum Chern. 3, 915 (1974).

16 S.F.Suntum, D.A.Case, and M.Karplus, J. Chern. Phys. 79, 7881 (1983).

17 M.Merchan, E.Ortf, and B.O.Roos, Chern. Phys. Lett. 221, 136 (1994).

18 S.Yamamoto, and H.Kashiwagi, Chern. Phys. Lett. 205, 306 (1993).

1 9



19 S.Yarnarnoto, J.Teraoka, and H.Kashiwagi, J. Chern. Phys. 88, 303

(1988).

20 L.Edwards and D.H.Dolphin, J. Mol. Spectrosc. 38, 16 (1971).

21 P.Dupuis, R.Roberge, and C.Sandorfy, Chern. Phys. Lett. 75,434 (1980).

22 J.W.Weigl, J. Mol. Spectrosc. 1, 133 (1953).

23 B.G.Anex and R.S.Urnans, J. Am. Chern. Soc. 86,5026 (1964).

24 H.Nakatsuji, K.Hirao, 1. Chern. Phys. 68, 2035 (1978).

25 H.Nakatsuji, Chern. Phys. Lett. 59,362 (1978); 67, 329, 334 (1979)

26 H.Nakatsuji, M.Hada, H.Nakai, and J.Hasegawa, the accelerated version of

SAC85, to be published.

27 H.Nakatsuji, Program System for SAC and SAC-CI calculations,

Program.Library No. 146(Y4/SAC), Data Processing Center of Kyoto

University,1985; Program Library SAC85, No.1396, Computer Center of

the Institute for Molecular Science,Okazaki, 1981.

28 H.Nakatsuji, Acta. Chirn. Hung. 129,719 (1992).

29 H.Nakatsuji, O.Kitao, and T.Yonezawa, J. Chern. Phys.83, 723 (1985).

30 O.Kitaoand H.Nakatsuji, J. Chern. Phys. 87, 1169 (1987).

31 O.Kitao and H.Nakatsuji, J. Chern. Phys. 88, 4913 (1988).

32 H.Nakatsuji, M.Komori, and O.Kitao Chern. Phys. Lett. 142, 446 (1987).

33 H.Nakatsuji and S.Saito, J. Chern. Phys. 93, 1865 (1990).

34 H.Nakatsuji and S.Saito, Intern. J. Quantum Chern. 39,93 (1991).

35 H.Nakai, Y.Ohmori, and H.Nakatsuji, J. Chern. Phys. 95, 8287 (1991).

36 S. Jitsuhiro, H.Nakai, M.Hada, and H.Nakatsuji, 1. Chern. Phys.,lOl ,1029

(1994) .

37 H.Nakatsuji, M.Ehara, M.H.Palrner, and M.F.Guest, J. Chern. Phys. 87,

2561 (1992).

38 K.Yasuda and H.Nakatsuji, J. Chern. Phys. 99, 1945 (1993).

39 H.Nakatsuji and M.Ehara, J. Chern. Phys. 101, 7658 (l994).

20



40 H.Nakatsuji, M.Hada, and T.Yonezawa, J. Am. Chern. Soc. 109, 1902

(1987).

41 H.Nakatsuji and H.Nakai, J. Chern. Phys. 98,2423 (1992).

42 H.Nakatsuji, International workshop on electronic structure methods for

truly large systems: moving the frontiers in quantum chemistry, Braunlage,

Gennany, August 1-7,1994.

43 S.Huzinaga, J.Andzelrn, M.Klobukowski, E.Radzio-Andzelm, Y.Sakai,

and H.Tatewaki, Gaussian basis set for Molecular Calculations (Elsevier,

New York, 1984).

44 S.Huzinaga, J.Chem.Phys. 42, 1293 (1965).

45 M.Dupuis and A.Farazdel, MOTECC-91 (Center for Scientific and

Engineering Computations, IBM Corporation, 1991).

46 H.Nakatsuji, Chern. Phys. 75,425 (1983).

47 H.Kuhn, J. Chern. Phys. 17, 1198 (1949).

48 W.T.Simpson, J. Chern. Phys. 17, 1218 (1949).

49 B.O.Roos, M.Fiilscher, P. Malmqvist, M. Merchan and L.Serrano-Andes,

Theoretical Studies of the Electronic Spectra of Organic Molecules, p78.

50 B. O. Roos, K. Andersson, and M. P. Hilscher, Chern. Phys. Lett. 192, 5

(1992).

51 L. Serrano-Andres, M. Merchan, L Nebot-Gil, B. O. Roos, and M. P.

Fiilscher, J. Am. Chern. Soc. 115,6184 (1993).

52 M. P. Fi.ilscher, K. Andersson, and B. O. Roos, J. Phys. Chern. 96, 9204

(1992).

53 R. J. Cave, and E. R. Davidson, J. Phys. Chern. 91, 4481 (1987).

54 J. M. O. Matos, B. O. Roos, and P. Malmqvist, J. Chern. Phys. 86, 1458

(1987).

55 M. H. Palmer, and 1. C. Walker, Chern. Phys. 133, 113 (1989).

56 Y. Yamamoto, T. Noro, and K. Ohno, Intern. J. Quantum Chern. 51,27

(1994).

2 1



22



TABLE 1. Dimensions of the SAClSAC-CI calculations for the singlet and ionized states.

singlet state ionized state

state Calc. A Calc. B

N
w

before before N(l)a after

selection N(l)a after selection N(I)a N(2)a after selection selection selection

SAC
Ag 1362631 1 10879

SAC-CI
Ag 1362631 3 42176 3 9 46199 25560 8 6939
BIg 1360246 3 51051 3 12 54848 25523 7 5985
B2g 1308922 1 20723 1 2 21230 22979 3 3082
B3g 1308922 1 20882 1 2 21441 22979 3 2809
Au 1308888 1 20145 1 2 20688 22962 2 1755
Blu 1308958 1 20280 1 2 20855 22993 5 4215
B2u 1360282 4 49836 4 1153515 25543 7 6301
B3u 1360282 4 45905 4 9 49391 25543 7 6478

a N(n) denotes the number of the n electron excited configurations used as the reference configurations in the
configuration selection scheme.



TABLE II. Timing data for the SAC/SAC-CI calculations of
porphin.a

Step

scp· .
Integral transformation
SAC (for ground state)
SAC-CI(per state)

.Singlet excited state
Ionized state

Timing'

17 min.
93 min.
84 min.

·80 min.
2 min.

a Computations are performed by the NECSX-3 computer at
the Computer Center of the Institute for Molecular ,Science.
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TABLE m. HF orbital energy and orbital nature of porphin.

MO orbital energy (eV) character

Higher occupied orbitals

7ag -14.661 cr
6b2u -14.646 cr
7b3u -14.480 cr
7bIg -14.355 cr
lau -12.216 1t

7b2u -11.415 n
8ag -11.263 n

3bIu -10.679 1t

2b2g -10.632 7t

2b3g -10.590 n:

3b2g -10.321 n:

4bIu -9.327 1t

3b3g -9.122 1t

5bIu -6.686 1t

2au -6.521 1t

Lower unoccupied orbitals

4b2g -0.069 1t

4b3g 0.141 1t

3au 2.842 7t

6bIu 5.064 1t

5b2g 5.698 1t

5b3g 5.702 1t

4au 6.177 1t

8b3u 6.852 cr
8lnu 7.437 ()

8blg 8.046 ()

2S





TABLE V. The number of configurations that have CI coefficients larger than 0.01.

state IB2u 2B2u 3B2u 4B2u 1B3u 2B3u 3B3u· 4B3u

1t - 1t* 15 22 15 20 18 19 15 18

nature cr - 1t* a a a 0 0 a a 0

o-cr* 0 8 1 1 a 4 3 0
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TABLE VI. Ionized states of free base porphin.

present (eV) A1mlofb (eV)

state main configuration exptl.a

(C > 0.3) (eV) SAC-CI Koopmans t!.C t!.SCF orbital orbital
'IF IP IP energy reorganization

energy

I2B1u -0.97 (5b 1u) :1t 6.9 6.09 6.52 0.43 8.00 8.42 0.42

PAu 0.98 (2au) :1t 7.2sh 6.35 6.69 0.34 8.39 8.78 0.39

PB3g -0.97 (3b3g) :1t 8.4 7.98 9.12 1.14 10.41 11.02 0.61

N 22B1u 0.97 (4blJ :1t 8.21 9.33 1.12 11.08 11.41 0.33
00

I2A -0.96 (8ag) 8.8sh 8.65 11.26 2.61g :n 11.82 12.76 0.94

12B2u -0.96 (7b2u) :n 8.79 11,42 2.63 11.24 12.76 1.52

12B2g -0.69 (3b2g) :1t 9.11 9.10 10.32 1.22 12.16 12.74 0.58
-0.68 (2ing)

32Blu 0.96 (3blJ :1t 9.34 10.68 1.34 12.44 12.75 0.31

22B2 0.69 (2~g) :1t 9.42 10.70 1.28 12.35 12.58 0.28. g
-0.68 (3~g)

22B3g -0.97 (2b3g) :1t 9.54 10.63 1.09 12.62 12.89 0.27

22Au -0.97 (lau) :1t 10.85 12.22 1.37

PBlg -0.97 (7b 1g) :cr 12.40 14.36 1.96

12B3u 0.95 (7b3u) :cr 12.43 14.48 2.05

22Blg -0.94 (6b1g) :cr 12.67 14.63 1.96

a Ref. 21. b Ref 15. C t!. is the difference between the Koopmans.Ii> and the SAC-CI lP.
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FIG. 1. Electronic spectrum of free base porphin. (a) Gas-phase

experimental spectrum due to Edwards et al. (Ref. 20) and (b) SAC-CI

theoretical spectrum. The optically forbidden states are indicated by open

circles.
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2au
(HOMO)

Sblu
(n-HOMO)

FIG. 2. Illustration of the orbitals for (a) the occupied MOs (7b2u, 4bl u,

Sbiu and 2au) and (b) the unoccupied MOs (4b2g and 4b3g) .
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FIG. 4. .Ionization spectrum of free base porphin. (a) Photoelectron

spectrum (Ref. 21). (b) SAC-CI and (c) Koopman~ioi1ization potentials. The

dotted, lines show the correspondences between the Koopmans IP's and the

SAC-Clones.
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Abstract

The SAC(symmetry adapted cluster)/SAC-CI method is applied to the

ground and excited states of magnesium porphin (MgP). The n interaction

between the Mg atom and the porphin ring is small and therefore the essential

difference between MgP and free base porphin (FBP) lies in symmetry; the

former is D4h and the latter D2h. The degenerate excited states in MgP. split into

two in FBP. The SAC-CI results for the excitation energy and the oscillator

strength compare reasonably well with the experimental spectra for Mg

etioporphyrin (MgEtio) and Mg tetraphenylporphin (MgTPP) and the natures

of the excited states are clarified. Gouterman's four-orbital model holds well

for the Q band, but the excitations from the 2a2u MO below the four orbitals

mix in the B band, as was found previously for FBP. The natures of the N

bands are different between MgP and FEP.
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1. Introduction

Photosynthesis is one of the most important biological reactions. In the X­

ray crystallographical structure of the reaction center of Rhodopseudomonus

(Rps.) viridis [1], Mg porphyrin takes a central part as a special pair and its

important role in the photosynthesis is more and more revealed by many

studies. It is said that the excitations of the special pair initiates the charge

separation in the photosynthesis, so that it is significant to study the electronic

structures of the ground and excited states of Mg porphyrins.

Gouterman proposed that the lower excited states of porphyrins are well

understood by the four-orbital model [2]. Many calculations on the excited

states of porphyrins were reported using semi-empirical methods [2-5] and ab

initio methods [2,6-13]. For free-base porphin (FBP), accurate and reliable

calculations for the ground and excited states were reported by Roos et al. with

the CASPT2 method [10] and by Nakatsuji et al. with the SAC-CI method [11].

They revealed some important aspects of the electronic structures of FBP.

More recently, we have also studied the ground and low-lying excited states of

oxyheme [12] and tetrazaporphin [13] by the SAC-CI method.

We study here the ground and excited states of Mg-porphin (MgP) using the

SAC[14]/SAC-CI[15] method [16,17]. We use here the modified version [18] of

the SAC85 program [19]. We have to note that the EOM-CC method [20,21]

published from Bartlett's group is essentially the same as our SAC-CI method

published much earlier. The SAC-CI theory is a wide and essentially exact

concept [15,16] and includes not only excitations but also ionizations and

electron attachments and, therefore, the SAC-CI method also involves the IP­

EOMCC [22] and EA-EOMCC [23] method: such ideas have been published

many years ago [16] and used for many years in various applications [17,24-
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26]. Our SAC-CI program can deal with the ground and excited states having

spin multiplicities from singlet to septet [27].

2. Computational details

MgP, MgC2oN4HI2 has D4h symmetry and is considered as the complex of

the Mg2+ ion coordinated at the center of the dianion porphin ring. For the

nuclear coordinates of the porphin skeleton, those of the FBP by Sekino and

Kobayashi [3] are adopted and the Mg atom is located at the inversion center of

the D4h symmetry.

The basis set is of double-s quality for the valence 2p orbitals of carbon and

nitrogen. We used (63/5)/[63/41] set of Huzinaga [28] for carbon and nitrogen,

and Huzinaga's (4)/[4] set [29] for hydrogen. For Mg atom, we used two

different basis sets. In calculation (A) we used Huzinaga's (533/5)/[53111/41]

set [28] plus two p-type polarization functions (a= 0.045, 0.143), and in

calculation (B) we used (533/5)/[53111/311] set plus the same p-type functions

and the d-type polarization functions (a= 1.01). The total number of the

contracted GTO's is 221 for calculation (A) and 230 for calculation (B). The

Hartree-Fock (HF) - Self Consistent Field (SCF) orbitals were calculated by the

HONDO program [30]: the number of the occupied Mas is 86.

The electron correlations in the ground and excited states are taken into

account by the SAC/SAC-CI method. In calculation (A), the higher 42 occupied

orbitals and the lower 124 virtual orbitals, and in calculation (B), the higher 53

occupied orbitals and the lower 132 virtual orbitals are included in the active

space: in calculation (B), only the inner coreMOs are frozen. The total number

of the active orbitals is 166 in calculation (A) and 185 in calculation (B). The

active space includes all n-type orbitals and a large number of a-orbitals. All
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the single excitations and the selected double excitations are included in the

linked term. The energy threshold in the configuration selection step is

different for the rr-n;* excitations and for the other ones. For the former, the

energy thresholds, l.OxlO-5 and 5.0xIO-7 a.u. are used for the ground and

excited states, respectively, and for the latter, 2.0x 10-5 and l.Ox 10-6 a.u.,

respectively, are used [11,31]. Table 1 shows the dimensions of the linked

terms before and after the selection.

3. Ground state electronic structure

The orbital energy and the nature of some higher occupied and lower

unoccupied MOs are shown in Table 2. The n-type orbitals gather in the

HOMO, LUMO regions. In particular, the HOMO, next-HOMO, and the

LUMO which is degenerate are well separated from the other orbitals,

implying the validity of the four-orbital model of Gouterman [2]. These four

orbitals and some lower orbitals which play an important role in the present

study are illustrated in Fig. 1. All of these orbitals are well localized on the

porphin ring. Four occupied lone-pair (n) orbitals on the nitrogens lie below

the most of the n MOs and the a-type orbitals are below of these orbitals.

The Mg 3s orbital mixes in the lower three n orbitals, representing the

coordination bonds between the Mg atom and the porphin ring. They lie in a

rather lower side of the occupied MOs as shown in Table 2. In the unoccupied

manifold, some MOs have the Mg component but they lie higher than the

LUMO belonging to the four orbitals. Actually, the energy levels and the

characters of the MOs of the Mg porphin are quite similar to those of FBP.

The HOMO-LUMO energy gaps are also quite similar: 6.45 eV in FBP and

6.53 (calc A) or 6.52 (calc B) eV in MgP.
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These facts indicate that the 'IT-interaction between the Mg atom and the

porphin ring is small, implying a similarity in the nature of the excited states

between FBP and MgP. However, a large difference that exists between them is

the symmetry. Some orbitals and excited states are degenerate in MgP, but not

in FBP. This causes a large difference in the excitation spectrum, as shown

below.

The correlation energy for the ground state is calculated to be 9.67 (calc B)

or 8.70 (calc A) eV by the SAC method. In the eigenvector for the ground

state, the Hartree-Fock configuration is dominant. For example, the coefficients

of the excited configurations involving the four orbitals are less than 0.05.

Thus, the single reference theory can describe the ground state of MgP with a

sufficient accuracy.

4. Excited states

The SAC-CI theoretical spectrum for MgP is compared in Fig. 2 with the

experimental spectrum for Mg etioporphin (MgEtio) measured in the vapor

phase by Edwards et a1. [32]. Table 3 summarizes the SAC-CI results for the

optically allowed states. The main configurations, characters, excitation

energies and oscillator strengths are shown.

We have observed in the above section that the 'IT-interaction between the

Mg atom and the porphin ring is small in the MgP and that the Mg orbitals do

not lie in the HOMO-LUMO region nor mix with the four orbitals. This means

that the nature of the lower excited states should be similar between FBP and

MgP. However, a large difference lies in symmetry; the former is D2h but the

latter D4h. Therefore, the degenerate excitations in MgP should split into two in

FBP. A comparison between the spectra of FBP and MgP should thus be quite
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useful for the assignment of the observed peaks. However, a point of difficulty

is that there is no observed spectrum for MgP, though we have that for FBP. In

Fig. 3 and Table 3, we compare the SAC-CI levels of the excited states of FBP

and MgP with the experimentally observed levels for FBP, free base TPP

(tetraphenylporphin), MgEtio, and MgTPP [32]. The dotted lines in Fig. 3

connect the states having similar nature. In Fig. 2, the experimental spectrum is

actually for MgEtio.

The Q band is composed of a weak peak observed at about 2.1 eV. By the

SAC-CI calculations, the Q band is assigned to the degenerate 11 E u state

calculated at 2.1 eV in calculation (A) and 2.0 eV in calculation (B). The

intensity is small in accordance with the weakness of the observed peak. The

main configuration of the 11 Eu state is composed of the excitations within the

four orbitals and the weight of the two main configurations, Ialu -7 4eg and

3a2u -7 4eg are almost the same, causing quite a small intensity of the Q band

[13]. This nature is essentially the same as that of FEP [11], though it splits into

Qx and Qy peaks in FBP.

A strong sharp absorption peak is observed around 400 nm 10 the

experimental spectrum. It is called the B (Soret) band. The B band is assigned

to the degenerate 21Eu state calculated at 3.78 eV in calculation (A) and 3.63

eV in calculation (B). The peak in the experimental spectrum lie in the 3.0-3.5

eV region for MgEtio (see Fig. 2) and MgTPP. The main configuration of the

2 1Eu state includes not only the excitations within the four orbitals but also the

excitation from the lower 2a2u MO. This was also seen previously for FBP

[11]. In FBP the mixing of the excitations from the 4blu MO, corresponding to

the 2azu MO in this case, was large; the weight was 27 % in the 2 1B3u state. For

MgP, the weight is smaller and only about 7%. Thus, the four-orbital model

applies better to MgP than to FBP.
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The N band is a weak peak observed in the 3.8-4.0 eV region for MgEtio

and MgTPP. This band is assigned to the 3 1Eu state calculated at 4.4 eV in

calculation (A) and 4.2 eV in calculation (B). The main configuration, 2b2u ---7

4eg does not belong to the excitations within the four orbitals. The nature of

this state is different from that of FBP. The N band of MgP corresponds to the

L band of FBP, and the N band of FBP corresponds to one element of the

degenerate B band of MgP, as clearly seen from Fig. 3. This difference in the

electronic structure of the N band between FBP and MgP is supported by the

difference in the intensity. In the observed spectra, the intensity of the N band

is quite small for MgTPP and MgEtio in comparison with that of the B band,

but for FBP and free base TPP, the intensity of the N band is comparable with

that of the B band [32]. Our theoretical results agree with this observation. The

calculated intensity of the N band of FBP is comparable with that of t~e B band

since it originates from the same degenerate electronic state [11], but the

calculated intensity of the N band of the MgP is quite small in comparison with

that of the B band. Furthermore, comparing the experimental energy levels of

MgTPP directly with those of TPP as shown in Fig. 3, we notice that the N

band of MgTPP is closer to the L band of TPP than to its N band.

The experimental spectra for MgEtio and MgTPP show considerably strong

absorptions, called the M band, in the 5.8-6.2 eV region. This band may be

assigned to the 4 1Eu state calculated at 5.1 eV in calculation (A) and 4.9 eV in

calculation (B). The main configuration of this state is again out of the four­

orbital model.

The 11 A2u state obtained in this calculation has only a very week intensity

and we can not see the band which corresponds to it in the experimental

spectrum of MgEtio. However, in the experimental spectrum of MgTPP, we

can see a weak" 1" band in the corresponding energy region [32], so that the

11 A2u state might correspond to it. The calculated excitation energy of the
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I' A2u state is 4.8 eV by calculation (B) and lies between the 3' Eu and 4' Eu

state. This ordering is seen in the experimental spectrum of MgTPP. The result

of calculation (A) does not reproduce this ordering. In the case of FBP, the

I'B lu state corresponds to this l l Alu state of MgP. The I 1B 1u state ofFBP is

due to the excitation from the lone pair orbital of nitrogen to the LUMO or

next LUMO, while the II A lu state of MgP is due to the excitation from the next

HOMO to the Mg 3s orbital. In calculation (B), we have given a wider freedom

to the Mg basis set than in calculation (A), so that the stability of about 0.6 eV

for the 1 I A2u state of MgP is reasonable.
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Table I
Dimensions of the linked tenns in the SAC/SAC-CI calculations of the singlet states of
MgP

state
Calc. A

before N a after
selection selection

Calc. B

before N a after
selection selection

SAC
lAg 1738599' 1 10827 31S5815 1

SAC-CI
IB Ju (J AJu) 1655788 1 12172 2935912 1
IB2u (lEu) 1735955 4 51654 3182250 4
IB3u (lEu) . 1735955 4. 51654 ,,3182250. 4

a N is the number of states used in the configuration selection step.
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Table 2
HF orbital energy and orbital character of MgP in calculation B

MO orbital energy (eV ) character Mg-component a

Higher occupied orbitals

4blg -14.897 cr
geu -14.628 cr
1b2u -14.609 1C

4a2a -14.407 cr
<>

6alg -14.401 n 3s

5b2g -14.380 cr
10eu -12.791 n

1b 1u -12.058 1C

5b 1g -11.807 n

2eg -10.295 1C

2a2u -9.989 1t:

3eg -9.622 1C

2b2u -9.501 1C

3a2u (next-HOMO) -6.651 1t

1alu (HOMO) -6.368 1t

Lower unoccupied orbitals

4eg (LUMO) 0.153 1t

7alg 2.824 cr 3s

2b 1u 2.932 1t

4a2u 3.405 1t pol. pz

lIeu 5.169 cr pol. Px. Py

3b2u 5.319 1C

Sea 5.721 1C dxz• dyz
<>

2alu 6.311 1C

2b 1u 6.892 1t

8alg 7.370 cr 3s

a Mg AOs included.
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Fig. 1. Some molecular orbitals of MgP. (a) 4ea (LUMO), (b) lal u/:>

(HOMO), (c) 3a2u (n-HOMO), (d) 2a2u, (e) 3b2u, Cf) 2b2u-
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Fig. 2. (a) Vapor-phase experimental electronic spectrum of MgEtio [32] and

(b) SAC-CI theoretical spectrum 'ofMgP, where an open circle denotes the

11A2u state.
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Chapter 3
_-Ground and excited states of d_xyh~me
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Abstract

The SAC(symmetry adapted cluster)/SAC-CI(configuration interaction)

method is applied to the ground and low-lying excited states of oxyheme

(FeCZ3N60zH16). The ground state eAI) is suitably represented by the Pauling

model, Fe(I!) (S=O) + 02 e~g). The SAC-CI result reproduces well the lower

excitation spectrum of oxyhemoglobin. The lowest peak observed at 1.34 eV is

assigned to the 1~g -7 1L g+ excitation of the 02 ligand. Many transitions

originating from the iron d orbitals are calculated, however their intensities are

very small. The lowest triplet state (13A"), which is due to the 1~g -0 31:g­

transition around the 02 ligand, is calculated at 0.47 eV above the ground state,

but its level is sensitive to the electron correlations included. In the geometry

of the deoxy form, this 13A" state becomes more stable than the closed-shell

singlet state eA'), indicating a geometrical control of oxygen affinity of heme.
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1. Introduction

Hemoglobin and myoglobin play an important role in mammalian life

through the transport and storage of oxygen. Fe-porphyrin complex, called

heme, constitutes their reaction center and binds oxygen reversibly [1].

Oxyheme which has oxygen 02 at the sixth site and imidazole at the fifth site as

a residue of histidine in protein is diamagnetic [2] , while deoxyheme is in a

high-spin state [3].

The nature of the Fe-02 bond in oxyheme has been studied both

experimentally and theoretically and some review articles were published

[1,3,4]' X-ray crystal structure analysis revealed an end-on oxygen binding

structure [5]. Several models were proposed for the ground-state electronic

structure of oxyheme. The Fe(II) (S=O) - 02 (S=O) valence bond (VB) model

by Pauling [6] is <J-donation from singlet oxygen eL'1 g) and n: back donation

from the Fe d orbital. The Fe(I!) (S=1) - 02 (S=I) VB model by Goddard et al.

and others [7,8] is based on the spin coupling between the two unpaired

electrons on oxygen and on Fe(II). The Fe(III)-02- model by Weiss [9] involves

one-electron transfer from Fe to 02, so that 02 is regarded as superoxide.

Electron correlations are important for the description of the ground state

of oxyheme [10,11]. Previous CI [12] and CASSCF [10] calculations gave

different electronic structures for the ground states. For the triplet state, the

previous CI calculation [12] failed to reproduce the energy ordering between

the singlet ground state and the lowest triplet state. This indicates that a more

elaborate study is necessary for the lower states of oxyheme.

The SAC(symmetry adapted cluster) [l3]/SAC-CI(configuration interaction)

[14] method [15] is suitable for calculating electron correlations in the ground

and excited states of even relatively large systems like oxyheme. The theory is

designed to be efficient and accurate and the calculational algorithms are rather
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flexible and not so restrictive to the computing system [15]. This method has

successfully reproduced the electronic spectra of a wide variety of molecules

[15], from water, formaldehyde, and ethylene to benzene, pyridine, metal

complexes, and catalytic systems, and up to free base porphin (FBP) [16]. Note

that the EOM-CC method by Bartlett et al. [17] belong to the SAC-CI method

[18] published more than a decade ago than theirs. The differences they claimed

[17] are quite a minor variation of the calculational method of the SAC-CI

theory, which is formally exact. In this study, the ground and some low-lying

singlet and triplet excited states of oxyheme are calculated by the SAC/SAC-CI

method and the electronic structures and the spectrum of these states are

discussed.

2. Computational details

The geometry of oxyheme is taken from the X-ray crystallographic data

[19] for oxyhemoglobin of sperm whale with some small modifications. The

porphyrin skeleton is fixed to D4h symmetry and the entire molecular

symmetry to Cs symmetry. The imidazole plane, one of the NPor-Fe-Npor axes,

and the 0-0 axis are put on the mirror plane as shown in Fig. 1. The C-H

distances in the porphyrin ring and in imidazole are taken from refs. 20 and

21, respectively. The atomic coordinates are shown in Table 1.

Natural deoxyheme has a five-coordinated geometry in which Fe sits out of

the porphyrin plane by 0.6 A [22]. We also carry out the calculation of

oxyheme in the geometry of the deoxy form, in which the porphyrin ring is

moved towards oxygen by 0.6 A along the O-Fe-NIm axis and all others are

fixed at the oxyheme geometry.
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The basis set for the porphyrin ring is of 2p double zeta quality, which is

the same as our previous calculations for FBP [16]. For the Fe atom, we use

Huzinaga's (5333/53/5)/[53321/53/41] set [23] plus p-type polarization function

(a=O.082) and for oxygen (63/5)/[63/41] set [23] plus p-type anion basis

(a=0.059) [23]. The basis set for imidazole is minimal; for C and N,

(63/5)/[63/5] set [23] and for H, (4)/[4] set [24].

Hartree-Fock(HF) molecular orbitals (Mas) are used as the reference

orbitals in the SAC/SAC-CI calculations. For the active space, higher 47

occupied Mas and lower 109 unoccupied Mas are used, and all the single

excitations and the selected double excitations within this active space constitute

the linked operators and their products the unlinked operators. The

perturbative configuration selection procedure [16,25] is carried out for the

main reference configurations, with the energy threshold lxlO-5 a.u. for the

ground state and 1xl 0-6 and 2x 10-6 a.u. for the singlet and triplet excited

states, respectively. The resultant dimensions for the SAC/SAC-CI calculations

are shown in Table 2. The program HONDO [26] and the accelerated version

[27] of the SAC85 [28] program are used for the HF and SAC/SAC-CI

calculations.

3. Ground state electronic structure

First we analyze the HF orbitals for the ground state. We use the following

notations; "nu" and "ng" denote the n-type bonding and antibonding orbitals

localized on oxygen. The superscripts "0" and, "p" as' in "nu0" and Ilnl" denote

that the orbitals are on and perpendicular to the mirror plane, respectively. In

Table 3, the orbital energies and characters are shown. The so called "four

orbitals ll
, 26a', 21a", 23a", and 27a' of the porphyrin ring are located around
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the HOMO-LUMO region, but the LUMO of oxyheme is the antibonding MO

between the Fe dyz and O2 TCgP orbitals and in 23a" MO (next LUMO), the

oxygen TCl orbital mixes. The interaction between Fe and 02 is classified into a

and 1t types. 17a' MO is localized on 02 but has the nature of the a donation

from 02 1tg0 to Fe dz2. 3a", l4a", and 22a" MOs represent Fe-02 TC interaction

which have 3-center 4-electron bond character, however l4a" MO is

delocalized over the entire molecule and the 22a" MO (LUMO) is localized on

the 021tgP orbital. The LUMO energy level is low, which is characteristic to

oxyheme and affects its excited states, as shown below.

In Table 4, the ground state and some low-lying singlet and triplet states of

oxyheme calculated by the SAC/SAC-CI method are summarized. In previous

SCF [29] and SCF-CI [12] studies, some open-shell singlet and triplet states

were calculated to be more stable than the closed-shell state. In CASSCF

calculations [10], the closed-shell state was the ground state and the open-shell

singlet state was by 0.7 eV above the ground state. In our SECr calculation, the

open-shell triplet and singlet states (02 1tgO -7 02 1tgP - Fe dyz) lie, respectively,

0.86 eV below and 0.33 eV above the closed-shell state. The energy ordering

is much changed by the SAC/5AC-CI treatment: the closed-shell state is the

ground state and the open-shell triplet and singlet states lie by 0.47 and 1.54 eV

above the ground state, respectively, as seen in Table 4. This result is consistent

with the antiferromagnetic nature of oxyheme.

In the ground state, the configuration mixing lowers the state energy quite

effectively, indicating a crucial role of electron correlation. The main

configuration is the HF configuration, which mixes with several double

excitations, e.g. from Fe-02 bonding to antibonding MOs.

The electronic structure of the Fe-02 bond in oxyheme is characterized by

Fe(II) (5=0) + 02 eLl g) (S=O) (l)
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based on the electron population analysis and from the nature of the HF MOs.

In Table 5, the Mulliken population analysis is given for the lowest five states

shown in Table 4. In the ground state, the electron population of the Fe atom is

roughly (dxy)2(dxz)2(dyzf, and that for the the O2 ligand is (1tuO)2(nl)2(ngOf. In

this point, our present result is different from Goddard's in which the

population is (dxy)2(dxz)2(dyz) I (dz2) [(nuO)2(nl)2(rcg0)1 (rcl) I from their GVB-CI

calculation [8]. A reason is that they used a seriously approximate model which

ignored the porphin ring itself and imidazole. The net charge of the Fe atom in

the ground state is almost +2 and that of the O2 molecule is almost neutral,

negating the superoxide structure of 02 in the Weiss model. This result

supports the Pauling model as most appropriate for the ground state of

oxyheme among the models proposed, though the amount of the 1t back

donation from Fe dyz to O2 rcl is small as shown in Table 5.

Harcourt [30] indicated that the electronic structure (1) based on the MO

calculation may include the VB component corresponding to the Goddard

model [7,8]. We examined therefore the present result using the Harcourt

method and found that the component corresponding to the Goddard model

little contributes to the present ground state of oxyheme. This is supported by a

large difference in the electron distribution between the present result and the

Goddard one [8].

4. Low-lying excited states

The nature of some low-lying singlet and triplet excited states are shown in

Tables 4 and 5. The ordering is 13AU, II AU, 23A", and 13AI which lie by 0.47,

1.54, 1.95. and 1.97 eV, respectively, above the ground state. The electronic

structures of these states are represented as
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l3A"; Fe(II) (S=O) + 02 eLg-) (S=l) (2)

11 A" ; Fe(II) (S=O) + 02 (I L g+) (S=O) (3)

23A", 13A'; Fe(II) (S==l) + 02 Cf..g) (S==O) (4).

Note that the energy ordering of the free 02 molecule is 3I.g- (O.OeV) < Itl g

(O.98eV) < lI,g+ (1.64eV) [31]. The l1 A" and 13A" states arise by one electron

excitation from the 02 TCg
0 MO to the O2 TCgP-dyz MO (LUMO) and the 23A"

(13A') state from Fe dyz (dxz) to dz
2 . Table 5 clearly shows the changes in the

electron population by these transitions.

The excitations, X l A' ---) 13A" and X l A' ---) 11 A", correspond to the

reorganizations of the electronic structure of oxygen, namely, Itlg ---) 3Lg~ and

Itl g ---) 12:g+, respectively. We note that the 13A" state has a very small

excitation energy of 0.47 eV, since the LUMO energy level is very low and

since the excitation is actually the relaxation of the O2 electronic structure to its

ground state, i.e., 3I,g-. Therefore, the 13A" state should be stabilized to a

larger extent than the closed shell state as the Fe - O2 distance is separated.

These results suggest that the 13A" state has a possibility to participate in the O2

capture and release process of heme.

In Fig. 2, the absorption spectrum of oxyhemoglobin [32] and the SAC-CI

theoretical spectrum are compared in the region of below 3 eV. The calculated

spectrum well reproduces the experimental one. The first peak at about 1.34

eV is assigned to the 11 A" state which is characterized as the 1~g ---) IL g+

excitation within 02 ligand, as described above. This assignment is confirmed

by comparing the absorption spectrum of the horse oxyhemoglobin with that of

the carboxyhemoglobin [32]: the peak at 1.34 eV exists in the former but not in

the latter. The second and third absorptions, called the Q band, are assigned to

the 2 1A' and 3 1AI! states, respectively. These Q bands look similar to those of

FBP, but a difference is that the five orbitals, instead of the fOUf orbitals, are

involved in the excitations. In addition to the so-called four orbitals, the LUMO
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which is localized in the Fe-Oz region also participates in the Q bands as seen

from Table 4.

At the energies 2.82, 2.83, and 3.13 eV, there exist 3 excited states

originating from the Fe d-orbitals, which are roughly characterized as the

ligand field d-d excitations within the Fe atom. The intensities are therefore

quite small. The excitations calculated at 2.75, 3.02, and 3.08 eV are the

electron transfer transitions from Fe d-orbital to oxygen. These excited states

have the electronic structure represented by the Weiss model [9].

In a previous study [33], some very weak peaks were observed at the lower

energy side of the 1.34 eV peak. We may qualitatively assign these peaks to the

triplet states, however, more decisive assignment is difficult at the present stage

of the calculation.

5. Ground and excited states in the deoxy form

Next we calculate the low-lying singlet and triplet states of oxyheme in a

deformed geometry, i.e., in the "deoxy form". The aim is to examine the effect

of the deformation on the relative stability of the low-lying singlet and triplet

states. An X-ray crystal structure analysis [22] showed that in deoxyheme the

porphyrin ring moves towards the sixth sites by 0.6 Aalong the Fe-Nlrn axis.

The results of the SAC-CI calculation for this geometry are shown in Table 4.

In the deoxy form, the closed-shell state become unstable, lying over the

triplet 13A" state by 0.15 eV. This indicates that if some geometrical change is

induced to oxyheme through a confonnational change of the heme protein, the

02 affinity of heme is lowered, facilitating the Fe - 02 bond breaking process.

Though the 13A" state in the present deoxy form is 3.95 eV (90kcal/mol)

higher than the XlA' state of the oxy form, the activation energy should be

58



much smaller than this value, smce we did not consider any geometric

relaxation effect in this calculation. The X 1A 1 --7 13A" transition.would.occur
, c" . ' .... --,. ' -', ~ - : ; \ _.' -. ; <

,:l 'L

at the geome~ry between the oxy ~ndthe deoxy. form. MQre det~iled stucl)' op
,',' . - , ,,. 'i., .,' j. ' - 01-

this process is in progress. I,!
: 1,","-

"

{ .

'. . ,"', ,}

~--.

.' ,;

(.~ .

. , -~ .

" \
r

I ;.

, ')

1- ...

: "

_' -I, '.

, ,.
:", 1

',f'. '.-
....J. I

, "

.;.... , "- .~-".
, .,'ii, ~~-

",".

,,'

" ," .; ..

, :,",

.J '.
\~ -
1 '

59,



References

[1] W. D. Scheidt and C. A. Reed, Chern. Rev. 81 (1981) 543; Y. Nishida,

Inorganic Biological Chemistry (Shokado, Tokyo, 1994) p. 26-58.

[2] L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. US. 22 (1936) 210.

[3] M. Montenteau and C. A. Reed, Chern. Rev. 94 (1994) 659.

[4] 1. Bytheway and M. B. Hall, Chern. Rev. 94 (1994) 639.

[5] 1. P. Collman, R. R. Gage, C. A. Reed, W. T. Robinson, and G. A. Rodley,

Proc. Natl. Acad. Sci. U.S.A. 71 (1974) 1326.

[6] L. Pauling, Stanford Med. Bull. 6 (1948) 215; L. Pauling, Nature 203

(1964) 182.

[7] D. S. Madure, Radiation Res. Suppl. 1 (1960) 218; R. D. Harcount, Lecture

note in chemistry, Vol 30. Qualitative valence bond descriptions of e1ectron­

rich molecules (Splinger, Berlin, 1982) p. 205; B. D. Olafson and W. A.

Goddard III, Proc. Natl. Acad. Sci. US 74 (1977) 1315.

[8] W. A. Goddard III and B. D. Olafson, Proc. Natl. Acad. Sci. US 72 (1975)

2335.

[9] J. J. Weiss, Nature 202 (1964) 83.

[10] S. Yamamoto and H. Kashiwagi, Chern. Phys. Letters 161 (1989) 85; S.

Yamamoto and H. Kashiwagi, Chern. Phys. Letters 206 (1993) 306.

[11] J. E. Newton and M. B. Hall, Inorg. Chern. 23 (1984) 4627.

[12] M. -M. Rohmer, Mathematical and Physical Sciences, Vol. 176 (Reidel,

Holland, 1986) p. 377.

[13] H. Nakatsuji and K. Hirao, 1. Chern. Phys. 68 (1978) 2035.

[14] H. Nakatsuji, Chern. Phys. Letters 59 (1978) 362; Chern. Phys. Letters 67

(1979) 329, 334.

[15] H. Nakatsuji, Acta. Chim. Hung. 129 (1992) 719.

[16] H. Nakatsuji, J. Hasegawa, and M. Hada, 1. Chern. Phys. in press.

60



[17] J. Geertsen, M. Ritby, and R. J. Bartlett, Chern. Phys. Letters 164 (1989)

57; S. R. Gwaltney and R. J. Bartlett, Chern. Phys. Letters 241 (1995) 26.

[18] H. Nakatsuji and M. Ehara, J. Chern. Phys. 101 (1994) 7658.

[19] S. E. V. Phillips, J. Mol. BioI. 142 (1980) 531; S. E. V. Phillips, Nature

273 (1978) 247.

[20] H. Sekino and H. Kobayashi, J. Chern. Phys. 86 (1987) 5045.

[21] J. E. D. Bene and 1. Cohen, J. Am. Chern. Soc. 100 (1978) 5285.

[22J G. Fermi, J. Mol. BioI. 97 (1975) 237.

[23] S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andze1m, E. Sakai,

and H. Tatewaki, Gaussian basis set for molecular calculations, (Elsevier, New

York, 1984)

[24] S. Huzinaga, J. Chern. Phys. 42 (1965) 1293.

[25] H. Nakatsuji, Chern. Phys. 75 (1983) 425.

[26] M. Dupuis, A. Farazdel, MOTECC-91, (Center for Scientific and

Engineering Computations, IBM Corporation, 1991).

[27] H. Nakatsuji, M. Hada, H. Nakai, and J. Hasegawa, the accelerated version

of SAC85, to be published.

[28] H. Nakatsuji, Program System for SAC and SAC-CI Calculations,

(Program Library No.146 (Y4/SAC), Data Processing Center of Kyoto

University, 1985); Program Library SAC85 No.1396, (Computer Center

of the Institute for Molecular Science, 1981).

[29] T. Nozawa, M. Hatano, U. Nagashima, S. Obara, and H. Kashiwagi, Bull.

Chern. Soc. Jpn. 56 (1983) 1721.

[30] R. D. Harcourt, Chern. Phys. Letters 167 (1990) 374.

[31] K. P. Huber and G. Herzberg, Molecular spectra and molecular structure,

Vol III, (Van Nostrand Reinhold Co., New York, 1979).

[32] M. W. Makinen and W. A. Eaton, Ann. N.Y. Acad. Sci. 206 (1973) 210.

[33] W. A. Eaton, L. K. Hanson, P. J. Stephans, J. C. Sutherland, and J. B. R.

Dunn, J. Am. Chern. Soc. 100 (1978) 4991.

6 1



0\
,N

Table 1
Atomic coordinates of oxyheme CA)
segme[1t _atoma _ x y z segment atoma x __ "j

porphin Nl 1.9537 0.0 0.0 imidazole, Nl 0.0 0.0
C2 4.1889 0.6915 0.0 C2 -1.2095 0.0
C3 2.8060 1.1297 0.0 N3 -0.8706 0.0
C4 2.4702 2.4702 0.0 C4 0.5376 0.0
H5 5.0604 1.3294 0.0 C5 1.0562 0.0
H6 - 3.2339 3.2339 0.0 H6 -2.2826 0.0

oxygenb 01 0.0 0.0 1.8267 H7 -1.5281 0.0
02 1.0979 0.0 2.3507 H8 1.0035 0.0

iron Fe 0.0 0.0 0.0 H9 2.0637 0.0
a-The numberings of the atoms iri each segments are given in Fig. 1.
b A.The lengths of Fe-Ol, 01-02, Fe-Npor. and Fe-NIrn are 1.83, 1.21, 1.95, and 2.07,
respectively. The Fe-Ol-02 angle is 115.5°.

z

-2.0654
-2.7916
-4.2036
-4.2391
-2.9478
-2.6693
-5.0604
-5.2134
-2.5587





Table 3
Orbital energies and characters of some HF orbitals of oxyheme

Orbital Orbital energy (eV) Nature a

Occupied orbitals
2a" -18.456
3a" -18.073

15a' -14.079

17a' -13.499
18a' -13.286
13a" -12.720
19a' -12.405

14a" -12.157

16a" -11.813
17a" -11.555

23a' -9.418

25a' -8.825
20a" -8.754
26a' -6.544
21a" -6.035

Unoccupied orbitals
22a ll 0.139
23a ll 0.420
27a' 0.428

02 TeuP + par cr
02 Tel + Fe dyz

0211gO + par 11

02 TegO + Fe di

0211gO + Fe dxz
Fe dxz + 02 11g° +Fe pz + 1m 0" +Fe s +por 0"
Fe dxz

0(2)b py - Fe dyz + par cr + Fe py

Fe dxy
Fe dyz - 1m 11

par 11

Fe dxz - par 1t

Fe dyz - par 1t

par 1t (n-HOMO; 4-orbitals)
par 1t (HOMO; 4-orbitals)

0211l- Fe dyz (LUMO)
par 11 - 021tgP (n-LUMO; 4-orbitals)
par 1t (4-orbitals)

38a'
39a'

42a'
43a'

9.914
10.062

10.740
10.798

Fe dz2 - par cr
Fe dx

2_l- par cr

Fe dx2_y2 - par cr
Fedz2 - Fe Px. - par cr -' 1m a - O(l)b Px

46a' 11.420 Fe dz2 - 021tg0
- 1m 6" - par a

47a' 12.035 .Fe dx2-i - par a
a The plus (+) and minus (-) signs denotes the bonding and antibonding
interaction, respectively.
b 0(1) and 0(2) atoms are illustrated in Fig. 1.
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Table 4
Ground and excited stales of oltyheme in lhe IwO different geometries

oxy form deolty form

stale SAC/SAC-CI Eltptl. SAC/SAC-eI

excitation main configuration nalure oscillalor excitation oscillalor excitauon
energy (eV) _ _ strenglh (direclion) energy (eV) sirenglh' energy (eV)

groWld state
X1A' D.O l.OO(HF) -0. 15(3a"-+22a",3a"-+22a")

+O.11(3a"-+22a" ,2a"-+22a")
O.OC

0\
VI

eltcited state
13A" 0.47 0.66(l7a'-+22a") +O.42(18a'-+22a") <h(ngO)--7<h(rcl)

-O.37(15a'--722a")
11A" 1.54 0.63(l7a'--722a") +O.40(18a'--722a") <h(ngO)--7(h(nl) 8.2xlO's (y) 1.29-, l.34b

-o.34(15a'-+22a")
23A" 1.95 0.33(17a"--738a') -0.31(13a"--738a') Fe(dyz)--7Fe(d~)

13A' 1.97 0.53(19a'--743a') +O.52(19a'--738a') Fe(d:U)--7Fe(d~)

21A'«b) 2.38 0.65(21a"-+23a") +O.63(26a'--727a') por(n)--7por(n) 0.017 (x,z) 2.22-
--O.32(2la"--722a")

21A" '2.44 -o.62(26a'-+22a") -O.55(2la"-+27a') por(1t)-+ 2.9xI0-4 (y)
+O.47(26a'--723a") 02(rcl),por(1t)

31A"(Qy) 2.64 0.69(26a'--722a") +O.50(26a'--723a") por(1t)--7 0.0073 (y)
-0.39(21 a"--727 a') 02(1tgP),por(1t)

31A' 2.71 0.88(21 a"-+22a") +0.34(21 a"--723 a") por(1t)--702(1tl) 8.7xlO·s (x,z)
41A" 2.75 -0.59(25a'-+22a") -0.58(19a'-+22a") Fe(dxz)--7O;z(1tl) 3.0xlO·s (y)
SIA" 2.82 -0.31 (17a"--738a') Fe(dyz)-+Fe(dz;2) 9.0xlO's (y)
41A' 2.83 0.51 (1 9a'-+43 a') +D.48(19a'--738a') Fe(dx:z.)--7Fe(dz;2) 0.0015 (x,z)

+0.31 (19a'-+46a')
51 A' 3.02 ·0.68(20a"-+22a") +O.32(17a"-+22a") Fe(dyz)-+02(1tl) 0.022 (x,z)
61A' 3.08 0.88(l6a"-+22a") Fe(dxy)-+02(1tl) 0.0010 (x,z)
61A" 3.13 -0.56(16a"--742a') +0.51(16a"-+39a') Fe(dxy)-+Fe(dx2.yl) 5.0xlO·7 (y)

·0.40(l6a"-+47a')

a Solution spectrum for horse oxyhemoglobin[33].
b Solution spectrum for horse oxyhemoglobin[32].
C The lowest singlet state of lhe deoxy form is higher by 4.11 eV than the ground Slale of the OltY form.
d Calculated lowesI Slale of the deolty form.

2.6xI0"3

0.12 (Qo)

-O.15d

0.67

1.55



Table 5
Mulliker-!. population analysis for the ground and excited states_of Qxyheme

~········-~X1Ar(SAC) 13A" l IA" 23A" 13A'

0\
0\

Fe (net charge) 1.9069 1.9068 1.9144 1.9601
dx2 0.2061 0.1970 0.1998 0.2399
dy2 0.2118 0.2019 0.2050 0.4658
dz2 0.1576 0.1370 0.1400 0.7510
dxy 1.9837 1.9878 1.9876 1.9911
dxz 1.9761 1.9772 1.9654 1.9813
dvz 1.9267 1.9603 1.9579 1.0020

0la(net charge) 0.0506 0.0158 0.0161 0.0326
Px 1.2443 1.1425 1.1449 1.2465
py 1.08181.5167 1.5051 1.0815
pz 1.7165 1.4267 1.4117 1.7342

02a(net charge) -0.0134 0.0233 -0.0053 0.0095
Px 1.2479 1.1319 1.1310 1.2489
py 0.9884 1.5102 1.5221 0.9617
pz 1.8376 1.3951 1.4128 1.8401

Porb (net charge) __... lJ§98 _~_ -lJ72L_ _ -----J-__..2~2L __ ~1.7982

ImC(netcharge) -0.1742 -0.1731 -0.1731 -0.2038
a The numberings of atoms are given in Fig. 1.
b Porphyrin ring.
C Imidazole.

1.9629
0.4699
0.2454
0.7497
1.9912
1.0344
1.9368
0.0416
1.2420
1.0744
1.7290

-0.0070
1.2440
0.9850
1.8382

-1.7933
-0.2042
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the atoms corresponds to those shown in Table 1.
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intensities drawn by the real and dotted lines, respectively.
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Chapter 4
Excitation spectra of

chlorin, bacteriochlorin,
pheophytin a, and chlorophyll a
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Abstract

Excited states of Free Base Chlorin (FBC), Free Base Bacteriochlorin

(FBBC), Pheophytin a (Pheo a), and Chlorophyll a (Chlo a), which are

derivatives of free base porphin (FBP), were calculated by the SAC

(Symmetry Adapted Cluster)/SAC-CI (Configuration Interaction)

method. The results reproduced well the experimentally determined

excitation energies. The reduction of the outer double bonds in the

porphin ring in the order of FBP, FBe, and FBBC causes a breakdown of

the symmetry and a narrowing of the HOMO - LUMO gap, which result

in a red shift of the Qx band and an increase of its intensity. In the change

from Pheo a to Chio a, the Mg-coordination reduces the quasidegeneracy

in the Qx state and then increases the spectral intensity. The

disappearance of the Qy humps from the absorption spectrum of Pheo a,

compared with that of Chio a, is due to the red shift of the Qy state.
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Introduction

Many biological systems contain porphyrins, chlorins, and

bacteriochlorins. 1,2 These compounds often take an important part in the

biochemical reactions, such as light absorption, electron transfer, 1 and

oxygen transport and storage.2 Due to their scientific importance, they

have been the subject of a wide variety of studies. In particular, the

electronic structures of the ground and excited states of these compounds

are an active field of interest3-9. Semi-empirical INDO/S ca1culations4,5

have been applied to elucidate the energetics of electron transfer in the

photosynthetic reaction center. Using the ab initio method, some large­

scale SCF calculations for the ground6,7 and anionized states7 have been

reported. As for the excited states, although pioneering CI calculations8

have been reported for chlorophyllide a and pheophorbide a, there have

been few calculations using a reliable ab initio method.

Porphyrin, chiorin, and bacteriochlorin have different rc-electron

conjugations. The number of reduced double bonds in the pyrrole rings is

zero, one, and two in porphyrins, chlorins, and bacteriochlorins,

respectively. These reductions causes a considerable change in the excited

states of these compounds, as seen in their absorption spectra.9,10 The

simplest macrocycles without any substituents, i.e., free base porphin

(FBP), free base chlorin (FBC), and free base bacteriochlorin (FBBC),

are shown in Fig. 1. From FBP to FBC, the absorption intensity of the

first excited state, Qx, increases.9 From FBC to FBBC, the Qx absorption

shows a red shift and increases further in its intensity, while the intense B

(Soret) band shows a blue shift. 10

Another characteristic of these macrocycles lies in their various

substituents. Chlorophylls and bacteriochlorophylls have many

substituents; e.g., an additional ring V, a long hydrocarbon chain (phytyl

group), etc. Simplified models of chlorophyll a (Chlo a) and pheophytin a

7 1



(Pheo a) are shown in Fig. 1 and they have only an additional ring V and

the substituents which may affect the 7t-conjugations of the chlorin ring.

Another characteristic is metal coordination. Previous X-ray studies have

revealed the entire structures of the photosynthetic reaction centers of

some bacteria. 1, 11 They contain both Mg-coordinated

bacteriochlorophylls and free base bacteriopheophytins.

Spectroscopically, Mg-coordination increases the absorption coefficient of

the Qx band. 12 This effect is interesting, since in a previous study on

porphin and Mg-porphin,13 the Mg-coordination affected only the

symmetric degeneracy of the absorption, and not the intensity of the Qx

band.

In this study, we examine the above features of the excited states of

these macrocycles by the SAC14/SAC-CII5 method.l 6 The SAC/SAC-CI

method has already established as an efficient and reliable method for

studying electron correlations in the ground and excited states of a variety

of molecules and molecular systems16 including porphyrins. 13, 17-20 We

study the excited-state electronic structures of FBP, FEC, and FBBC with

regard to the differences in the n-conjugation. We then study the effects

of the substituents and the Mg-coordination on the excited states of Pheo a

and Chlo a in comparison with FBC. Conclusion of the study is given in

the last section.

Computational Details

An optimized geometry21 is used for FBC. For FBBC, the same

porphin skeleton as in FBP 17 is used, except for the reduced pyrrole ring,

for which the geometry used in a previous calculation9 was taken. FBC

and FBBC are assumed to have e2v and D2h symmetries, respectively.

For Pheo a, X-ray data22 are used, but for simplicity, some substituents

are replaced by protons,except for the substituents which can conjugate
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with the n-orbitals of the chlorin ring. For Chlo a, the Mg atom is

coordinated to the central nitrogen atoms in Pheo a. These computational

models are shown in Fig. 1.

The basis sets used in this series of molecules are the same. Huzinaga's

(63/5)/[2s2p] set23 is used for C, Nand 0 atoms, and (4)/[1s] set24 is used

for H. For Mg, we used Huzinaga1s (533/5)/[5s/3p] set23 plus two p-type

polarization functions (S=0.045 and 0.143) and a d-type polarization

function (S=l.Ol), which are the same as those used previously. 13

In the SAC/SAC-CI calculations, only the inner-core orbitals are

excluded from the active space. All single excitations and selected double

excitations are included in the linked term. The energy threshold for the

perturbation selection17,25 is Ix 10-5 hartree for the ground state and for

the excited state, 5xl0-7 and lxlO-6 hartree for n-n* and other

excitations, respectively. The results of the selections of the linked terms

are shown in Table 1. The number of the reference states are generally 4

so that the accuracy of the present calculations is not very good for the B

states. The correlation energies calculated for the ground states of these

compounds are also shown.

The Hartree-Fock SCF calculations are performed using the HONDO

(ver. 8) program26 and the SAC/SAC-CI calculations by the SAC85

program27 modified for large-scale calculations.28

Excited States of FBP, FBe, and FRBe

FBP, FBC, and FBBC have n-conjugate systems which are different in

the number of the reduced pyrrole rings, as shown in Fig. 1. The HF

orbital energies of the HOMO, next-HOMO, LUMO, and next-LUMO of

FBP, FBC and FBBC are shown in Fig. 2. Orbitals having similar

characters are connected by dotted lines. As changing from FBP, FBC, to

FBBC, the near degeneracies between the HOMO and next-HOMO, and
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between the LUMO and next-LUMO, which are called the "four

orbitals",3 are removed considerably. It is already established that the

"four orbitals" play crucial roles in the valence excited states of

porphyrin compounds.3,13,17-20 Fig. 2 shows that in FBP, FBC, and

FBBC, the reduction of the pyrrole rings considerably affects the energy

levels of the HOMO, LUMO, and next-LUMO. The molecular orbital

shapes of these "four orbitals" are shown in Fig. 3. The next HOMOs of

FBP, FBC, and FBBC have no amplitudes on the reduced pyrrole

positions, so that their energy levels are scarcely changed, while the

HOMOs have some coefficients so that the reduction destabilizes the Mas

due to the shortening of the n-conjugation. Exactly the same argument is

also valid for the LUMO and next-LUMO of these compounds.

The excited states of FBP, FBC, and FBBC as calculated by the

SAC/SAC-CI method and the experimentally determined excitation

energies are shown in Table 2. For FBBC, however, we could not find

the experimental data, so that those of the bacteriochlorin derivative,

bacteriopheophorbide (BPheo),10 are cited. The excitation energies

calculated for FBP, FBC, and FBBC show good agreement with the

experimental values, with an average discrepancy of 0.19 eV. The low­

energy shift of the Qx band from FBC to FBBC and the increase in the

intensity of the Qx band from FBP to FBBC are faithfully reproduced.

The first bands at 1.98 and 1.6 eV in FBC9 and BPheo lO are assigned

to the x-polarized IB 1 and IB3u states, respectively, by comparison of the

experimental values and the theoretical results. In FBC and FBBC, these

Qx states represent HOMO ---7 LUMO excitation which is strongly

coupled with next-HOMO ---7 next-LUMO excitation. In FBP, the

electronic structure of the Qx state is characterized as quasidegenerate

excited configurations. However, this quasidegeneracy is relaxed in FBC

and FBBC, as shown in Table 2. The ratios of the weights of the two
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excitations are 1:0.70, 1:0.50, and 1:0.27 m FBP, FBC, and FBBC,

respectively.

In FBC and FBBC, destabilization of the HOMO and next-LUMO

levels produces red shifts and relaxation of the quasidegeneracy in the Qx

states. Table 3 shows the energies and the orbital energy gaps for the

main configurations of the Qx bands. In FBP, the energies of the 5bl u~

4b2g and 2au ~ 4b3g excited configurations are similar: 4.15 and 4.22

eV, respectively. However, in FBC and FBBC, destabilization of the

HOMO and next-LUMO levels makes the orbital energy gap (L1€ in Table

3) between the HOMO and LUMO small and that between the next­

HOMO and next-LUMO large. The energies of the HOMO ~ LUMO

configurations are stabilized and those of the next-HOMO ~ next-LUMO

configurations are destabilized in FBC and FBBC as shown in Table 3.

Since a greater energy difference leads to a weaker coupling of the two

configurations, the Qx state takes a greater HOMO ~ LUMO character

and a smaller excitation energy. The main factor of these energy shifts of

the configurations is the change of the orbital energy gaps, L1€, as shown

in Table 3. The coulomb and exchange integrals which appear in the

diagonal term have little contribution to the~e energy change.

The relaxation of the quasidegeneracy leads to an increase in the

intensity of the Qx bands in FBC and FBBC. In FBP, the two main

configurations are almost degenerate and the transition moments of each

configuration cancel each other. The contributions of the 5b 1u~ 4b2g

and 2au ~ 4b3g excited configurations to the transition moment (product

of the SAC-CI coefficient and the transition dipole moment for each

configuration) are -3.18 and 2.85, respectively, which offset each other.

This causes the small intensity of the FBP Qx band.19,34 However, the

quasidegeneracy in FBP is relaxed in FBC and FBBC. The difference in

the SAC-CI coefficients causes incomplete cancellation of the transition
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moment and an increase in the intensity of the Qx band in FBC and

FBBC. Weiss34 identified this incomplete cancellation mechanism using a

qualitative model. The present results support this mechanism.

Further, the change in the configuration-transition dipole moment due

to the HOMO ~ LUMO excitation ifself, <OlrIHOMO..-7LUMO>

(r=x,y,z), is also a cause of the increase in the transition dipole of the Qx

states in FBBC. The configuration-transition dipole moment is shown in

Table 3. The value of the element in FBBC, <0IxI3au~4b3g>, (5.60) is

larger than that in FBP, <0IxI5blu~4b2g>, (4.61) or FBC, <0IxI6a2~9b2>

(4.60). To better understand which atoms have a large contribution, a

population analysis for the transition dipole moment in the HOMO ~

LUMO configuration for FBC and FBBC and in the HOMO ..-7 next­

LUMO configuration for FBP were calculated as in a Mulliken

population analysis as explained in the Appendix. Fig. 4 shows the results

of the analysis for the atoms whose contributions are greater than O.Ol.

The sum of the atomic transition moments of the pyrrole rings having N­

H bonds increases considerably in FBBC. This finding is related to the 1t­

conjugation narrowing caused by the reduction of the pyrrole rings in

FBBC.

The second bands at 2.29 and 2.3 eV in FBC9 and BPheo lO are

assigned to the y-polarized 2A 1 and IBzu states calculated at 2.39 and

2.42 eV, respectively. This assignment agrees with the conventional

one,9,31 and the ordering of the polarization directions of the Q bands is

the same as in FBP. The Qybands of FBC and FBBC are characterized as

the next-HOMO .~ LUMO excitation, which is strongly coupled with the

HOMO ~ next-LUMO excitation. The effects of the reduction on the

excitation energy and the configuration mixing of the Qy bands are small,

as shown in Table 2, since the energy gaps between next-HOMO and
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LUMO and between HOMO and next-LUMO are affected very little, as

seen in Fig. 2, by the reduction from FBP to FBC and to FBBC.

As for the B band in FBC, the strong peak at 3.18 eV In the

absorption spectrum9 is assigned to the x-polarized 2B 1 state calculated at

3.59 eV. Our SAC-CI SD-R calculation tends to overestimate the

excitation energy of the B-band. 16 This state is characterized as next­

HOMO ...-7 next-LUMO excitation, which is strongly coupled to HOMO

...-7 LUMO excitation. The broad shoulder9 in a blue side is assigned to

the y-polarized 3Al state calculated at 3.74 eV, which is characterized as

HOMO ...-7 next-LUMO excitation coupled to next-HOMO ...-7 LUMO

excitation. The order of polarization is supported by experimental

results35 . Previous MRSDnCI calculations by Nagashima et. a1. 9 gave the

same assignment. As for FBBC, the calculation indicates that the 2B2u

(By) and 2B3u (Bx) states are at 4.11 and 4.24 eV, respectively, which

may overestimate the experimental values. Their characters are HOMO

...-7 next-LUMO excitation and next-HOMO ...-7 next-LUMO excitation,

respectively. The B states of FBBC shift to higher energy region than

those of FEP and FEC. Since we can not find experimental data for the B

band of FBBC, direct comparison with experiments is impossible.

However, the same blue shifts were observed in the absorption spectra of

their derivatives, bacteriopheophorbide and pheophorbide. 10

In FBBC, the ordering of the Bx and By states are reversed due to the

high energy shift of the Bx state in FBBC. With respect to the orbital

energy difference, the Bx state is higher than the By state in FBP, FBC

and FBBC, as seen from Fig. 2. However, after SAC-CI treatment, the

Bx state is more stable than the By state in FBP and FBC. This is very

general as seen in our previous studies on porphyrins. 16,19 In FBBC, since

the energy difference between the two configurations is very large, the

coupling between the two main configurations is weakened and then the
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Bx state lies on the blue side of the By state. Experimental examination of

the order of the polarizations of the peaks involved in the B band is very

interesting.

Excited States of Pheo a and Chlo a

In the photosynthetic reaction center of plants, chlorophyll and

pheophytin play important roles in the electron transfer. Chlorophyll is a

substituted and Mg-coordinated chlorin and pheophytin 10 is a free-base

form of chlorophyll. The absorption spectrum of pheophytin is almost

the same as that of FBC with regard to the excitation energy,IO,30

although the vinyl group and ring V seem to affect the 1t-electron system

of the chIorin ring through n-conjugation, since in X-ray coordinates the

molecular plane of these substituents is parallel to that of the chlorin

ring,22 On the other hand, with Mg-coordination, the absorption

spectrum of chlorophylllO,32 is much different from that of

pheophytin.32 First, the intensity of the first excited state increases.

Second, the double humps in the 500-nm region of pheophytin spectrum

are not found in chlorophyll one. This coordination effect is very

interesting, since for FBP, the Mg-coordination only affects the

symmetric degeneracy in the absorption spectrum. I3

Substitutions and Mg-coordination affect orbital energy. The HF

orbital energy levels of the "four orbitals" for Pheo a and Chlo a are also

shown in Fig. 2. In comparing FBC and Pheo a, the substitution stabilizes

the HOMO (79th MO) and the LUMO (80th MO). Actually, small

orbital mixing of the substituent orbitals (the vinyl group and oxygen in

ring V) is observed in HOMO and LUMO of Pheo a. In comparing Pheo

a and Chlo a, the Mg-coordination slightly destabilizes the orbital energy

of HOMO (78th MO) and next-LUMO (80th MO) by 0.1 and 0.2 eV,

respectively, while those of LUMO and next-HOMO are almost
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unchanged. Little, if any, orbital mixing between Mg and the "four

orbitals" is seen in Chio a.

The calculated excited states of Pheo a and Chlo a are shown in Table

2. As for the Q band, the SAC-CI results reproduce well the

experimental peak positions and the increase in the intensity of the first

excited state in Chlo a. As for the B band, the present results

overestimate the experimental excitation energies.

The first bands of Pheo a and Chio a, which are the Qx bands both at

1.87 eV,32,33 are assigned to the x-polarized 2A excited state calculated

both at 1.81 eV. In comparison with the Qx band of FBC observed at

1.98 eV and calculated at 1.68 eV, the substituents and the Mg­

coordination do not have a large effect on the excitation energy of the Qx

state. However, as shown in Table 3, the energies of the configurations

which comprise the Qx states of these compounds are different. For Pheo

a, the two main configurations shift equally to a higher energy region by

about 0.2 eV, compared to FBC. For Chio a, the HOMO -7 LUMO

excitation is stabilized by 0.19 eV and the next-HOMO -7 next-LUMO

excitation is destabilized by 0.18 eV, compared to Pheo a. For Pheo a,

the ratio of the weights of the two configurations is the same as in FBC,

due to the parallel energy shifts of the two main configurations. However,

in Chlo a, the weight of the HOMO -7 LUMO excitation increases and

that of the next-HOMO -7 next-LUMO excitation decreases. The

configuration interactions give a different mixing of the configurations

but accidentally similar excitation energies.

The difference in the configuration mIxIng leads to different

properties of the Qx states of Pheo a and Chlo a; i.e. the transition

moment. In comparing FBC and Pheo a, the spectral intensities of the Qx

bands are similarly small, since in each molecule, the contributions to the

transition moments due to the two main configurations cancel each other
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owing to the similarity of the SAC-CI coefficient. 19 On the other hand,

Chlo a shows different configuration-mixing, as mentioned above, so that

the cancellation is rather incomplete leading to a greater intensity of Chlo

a than that of FBC and Pheo a.

For FBP, FEe and FBBC, the incomplete cancellation is caused by the

coefficients and the transition moments of the configurations, as examined

in section 3. For FBC, Pheo a, and Chlo a, the transition moments of the

configurations are similar, as shown in Table 3, due to a small mixing

with the substituents and Mg. Therefore, the incomplete cancellation in

Pheo a and Chlo a is 'mainly due to the breakdown of the

quasidegeneracy.

In our previous study on Mg porphin (MgP),13 Mg-coordination was

shown to have little effect on the intensity of the Q band. In the Q state of

MgP, the two main configurations were almost degenerate. Due to the

Mg-coordination in FBP, the weight of the most important configuration,

5b 1u --7 4b2g, decreased due to a destabilization of the 4b2g orbital, while

that of the next most important configuration, 2au -7 4b3g, increased due

to a destabilization of the 2au orbital, which leads to a more degenerate

situation. Therefore, the cancellation of the transition moments between

these two excitations were almost complete in MgP. However, in Chlo a,

a destabilization of the HOMO (77th MO) contributes to an increase in the

weight of the most important HOMO -7 LUMO excitation and a

destabilization of the next LUMO (79th MO) contributes to the decrease

in the weight of the next most important 76 --7 79 excitation. This causes

a reduction in the quasidegeneracy of the two main configurations and

give a net transition moment due to an incomplete cancellation ofthe two

contributions.

The second bands measured at 2.3 eV for Pheo a 10,30,32 and at 2.1 eV

for Chio a32,33 were assigned to the y-polarized 3A excited states
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calculated at 2.33 and 2.17 eV, respectively. The disappearance of the

humps at 480-550 nm in the Pheo a spectrum 10,30,32 is explained by the

red shift of the 3A state in Chlo a. The main configurations of the 3A

states of Pheo a and Chlo a consist of the next-HOMO ~ LUMO

excitation strongly coupled to the HOMO ~ next-LUMO excitation.

As for the B band, the SAC-CI calculations reproduce the

experimental absorption of Pheo a with a discrepancy of 0.28 eV, but

overestimate that of Chlo a by 0.6 eV. As for Pheo a, the strong peak

and the shoulder of the B band are assigned to the x-polarized 4A state

. and the y-polarized 5A state, calculated at 3.37 and 3.52 eV, respectively.

These states are characterized as next-HOMO ~ next-LUMO excitation

and HOMO ~ LUMO excitation, respectively. The ordering of the

polarizations of the B band of Pheo a is the same as that of FBC. In a

previous fluorescence polarization study in meso-pyromethyl

pheophorbide, the ordering of the polarization was considered to be

lower y-polarization and higher x-polarization, and the substituents were

thought to change the order of the polarizations.36 However, a more

recent fluorescence polarization study on pheophorbide a by Goedheer33

showed a different result in that the lower and higher sides of the B band

are x- and y- polarizations, respectively. Our SAC-CI results support

Goedheer's results. In our study, the substituents did not change the

order of the polarizations.

The peak of the B band of Chlo a is observed at 2.90 eV in ether.35

The SAC-CI calculation gives an excitation energy of 3.48 eV (y­

polarizations). The counterpart of the B state is calculated at 3.65 eV (x­

polarizations. This ordering is different to that of Pheo a and FBC, but

corresponds to the experimental results)2,33,36-38 The Mg-coordination

reverses the order of the polarization in the B band of Chlo a from that

of Pheo a.
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In the SECr calculations of FBC and Pheo a, the polarizations of the B

states were y- and x-polarization in the order of increasing energy, in

contrast to the results of the SAC-CI calculation. In FBC and Pheo a, the

x-polarized B states which are dominated by next-HOMO ~ next-LUMO

excitation are stabilized by strong mixing with low-energy HOMO ~

LUMO excitation. By the SAC-CI treatment, the weights of the HOMO

~ LUMO excitations in the Bx states are further increased in FBC and

Pheo a. This causes the x-polarized B states to be more stable than the y­

polarized B states. However, in Chlo a, the SAC-CI treatment increases

the weight of the next-HOMO ~ next-LUMO excitation in the x­

polarized B states. These results show the importance of the electron

correlations for the descriptions of the B states.

Conclusion

The excited states of biochemically important compounds FBe,

FBBC, Pheo a, and Chlo a were calculated by the SAC/SAC-CI method.

The results of calculations well reproduced the absorption spectra of these

compounds. This together with the previous results for porphyrins13,17­

20 shows that the SAC/SAC-CI method, which gives accurate results for

small molecules,16 is also applicable to relatively large biochemical

compounds. These results encourage us to apply the SAC-CI method to

the energetics of biochemical reactions, including different electronic

excited states.

The effects of the reduction in the pyrrole rings of the porphyrins are

studied for the absorption spectra of FBP,FBC, and FBBC. Such

reduction destabilized the HOMO and next-LUMO levels due to a

shortning in the 1t-conjugation of these compounds. Since the HOMO­

LUMO gap decreases, the Qx states shift to a lower energy region and

their quasidegenerate characters are relaxed, causing an incomplete
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(2)

(3)

cancellation in the transition dipole moment which leads to an increase in

the intensity of the Qx band of FBBC relative to that of FBP. Further an

increase in the configuration-transition dipole moment itself is also a

reason of the increase of the transition intensity.

The effects of the substitutions and the Mg-coordination were

analyzed. The substitutions do not affect the HOMO - LUMO gap of

Pheo a. On the other hand, in Chio a, the Mg-coordination reduced the

HOMO-LUMO gap causing a breakdown of the quasidegenerate character

of the Qx state. This leads to an increase of the intensity of the Qx band of

Chlo a due to a smaller cancellation of the transition moment than in Pheo

a.

Appendix

Molecular orbitals cpj are described in LCAO approximation as,
cpj = I.CjrXr' (1)

where Xr is an atomic orbital and Cjr a MO coefficient. The transition

dipole matrix element for a single excitation is written as,

(<1>HFIQI<1>i~J = ..fi(lfJ; IQllfJa)
=-tiICriCsa (Xr IQIXs),

r,s

where i and a show occupied and unoccupied orbitals, respectively, and

<1>HF denotes the HF configuration. Q is a dipole operator (Q=x, y, or z).

Eq. 2 can be divided into the contribution of each atom:
(<1>HFIQI<1>HU)= I(QL

A

where the atomic contribution to the transition dipole element is written

as
(4)

retlwm II s

like the Mulliken population analysis.
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TABLE 1: Dimensions of the SAC/SAC-CI calculations for
FBC, FBBC, Pheo a, and Chlo a
State Before Reference

Selection State
After

Selectiona

FBC
Ground state(SAC)

Al 7009800
Excited states(SAC-CI)

Al 7009800
B{ 7006134

1

4
4

22810

70206
78721

FBBC
Ground state(SAC)

Ala 3661607
Co

Excited states(SAC-CI)
Alg 3661607
B2u 3657853
B3u 3657832

1

1
4
4

28190

26672
64167
71162

Pheoa
Ground state(SAC)

A 76935809
Excited states(SAC-CI)

A 76935809

1

4

23621

60692

249711

Chloa
Ground state(SAC)

A 91848680
Excited states(SAC-CI)

A 91848680 4 71422
a Correlation energies for the ground states of FBC, FBBC, Pheo a, and
Chlo a are -0.38933, -0.48829, -0.24554, and -0.31067 hartree,
respectively.
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TAllLE 2: Excited stales of FllP, FllC, FllllC, Pheo a, llnd Chlo a calculated by the SAC/SAC-CI method
SAC-CI Exptl.

Stale ExcilUtion Oscillator Excitation
Muin configuration (C ~ 10.21) Nature energy strength energy

(eY) (eV)
FBpn

1B3u O.73(Sb Iu-14b2g)+0.61 (2aU-14 b3g) n-n· I.7S 1.13x10-3 ; x 1.98b,2.02c ; Qx

1B2u -0.70(2aU-14 b2g)-0.66(Sb Iu-14bJg) n-n· 2.23 S.66xI0-3 ; Y 2.42b,2.39c ; Qy
283u -0.64(2uu-14 b3g)+0.S2(4b Iu-14b2g)-0,43(Sb] u-14b2g) n-n* 3.S9 1.03 ;x 3.33b,3.1Sc ;8

2B2u 0.66(Sb Iu-14bJg)-0.63(2au-14b2g)-0.2S(4 b Iu-14b3g) n-n* 3.79 1.73 ;y 3.6Sb ;N
FBC

18 1 -0.78(6a2-19h2)-0.S S( 8b2-17a2) n-n* 1.68 6.24xI0-2 ; x I.98c,I.94d ; Qx

2AJ -0.75( 8b2-19b2)+0.S 8(6U2-17 a2) n-n* 2.39 8.02xIO-3 ; y 2.29c,2.29d ; Qy
2B] -0.7S( 8bz-17a2)+0.S 3(6a2-19b2)-O.22(7 b2-17a2) n-n* 3.S8 1.28 ; x 3.18c,3.19d ;B

3AI O.72(6a2-17a2)+0. S6(8 b2-19b2)+O,22(7b2-19b2) n-n* 3.74 1.68 ;y
FBBC

IB3u O.8S(311U-14b3g)+0,44(Sb IU-1S b2g) n-n* 1,47 1.88x10- 1 ; x (J .6)C ; Qx

IB2u O.77(Sb Iu-14b3g)-O.54(3au-tSb2g) n-n* 2,42 2.S7xIO-2 ; y (2.3)C ; Qy
00 2B2u -0.77(3au-1Sb2g)-0.S4(Sb Iu-14b3g)-O.20(4b 1u-14b3g) n-n* 4.11 1.86 ; Y (3.1 [shoulder]}C ;B
00

2B3u -0.84(Sb Iu-1Sb2g)+0,44(3au-1 4b3g) n-n* 4.24 2.11 (3.4)C ;B; x
Pheo a

2A -0.74(79-180)-0.SI (78-t81 )-0.23(79-181) n-n* 1.81 7.22xI0-2 ; x 1.9 f ,I.86g,I.87d ; Qx

3A -0.74(78-180)+0.52(79-181 )-0.28(79-180) n-n* 2.33 4.S7xI0-2 ; y 2.3 f ,2.33 g,2.30d ; Qy

4A -0.73(78-181 )+0.51 (79-180) n-n* 3.37 1.20 ; X 3.l f ,3.04 g ;B

SA -0.72(79-181 )-0.50(78-180)+0.24(78-181) n-n* 3.52 1.03 ;y 3.2 f ;B

+0.22(77 -180)
Chlo (/

2A 0.81 (77----)78)-0.37(76----)79)-O.2S{76----) 78) n-1t* 1.81 0.179 ; x 1.87'\ 1.88g ; Qx

+0.21 (77-t79)

3A -0.77{76-t78)+0.44(77-t79)-0.31 (77-178) n-n* 2.17 8.26xIO-2 ; y 2.14'\2.16& ;Qy

4A +0.78(77-t79)+0.42(76-t78)+0.26(74-t78) n-1t* 3.48 1.01 ;y 2.88h,2.90g ;B

SA -0.84(76----)79)+0.35(77-t78) n-n* 3.65 1.38 ;x

a Rcfaence 17
bIn GIIS phase. Reference 29
C In benzene. Reference 9
d In benzene. Reference 30
e Datu for bacleriopheophorbide and not for FBBe. Reference 10
r Reference 10
g In ether. Reference 32
h In ether. Reference 33



TABLE 3: The energies (in eV) and moments (in a.u.) of the main
configurations of the Qx band for FBP, FBC, FBBC, Pheo a and
Chlo a.
Molecule FBP FBe FBBC

Excitation 5b lu~4b2g2au~4b3g 6a2~9b2

Weight 0.53
<Olxli-1a>a 4.61

.6.eb 6.62
EnergyC 4.15

Molecule

0.37
-4.67

6.66
4.22
Pheo a

0.61
4.60

6.28
3.71

0.30 0.72 0.19
-3.41 5.60 -3.92

7.72 5.24 8.46
4.71 3.27 5.37

Chloa

Excitation 79~80 78~81 78~80

Weight 0.56 0.26 0.04
<Olxli-1a>a 4.41 -3.24 -0.13
<Olyli-1a>a 1.58 -1.47 3.39

.6.e
b 6.35 7.77 6.82

Ener,gyC 3.87 4.91 4.23

77~78

0.66
4.51
1.22

6.18
3.68

76~79

0.14
3.08
1.03

7.99
5.09

76~78

0.06
-0.93
3.61

6.81
4.23

aTransition moments of the configurations
b Orbital energy gap in eV
CEnergy of the main configuration relative to that of the HF configuration.
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FBP

y

Lx
H-I H-I

FBC

H-IH-1

a

Pheoa
H-I H-I

Chio a

a

Figure 1. Molecular geometries of FBP, FBC, FBBC, Pheo Q, and Chlo

Q. Some substituents in the X-ray structures of Pheo Q and Chlo Q are

replaced by protons in the present calculations (see text).
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next LUMO
4b3g

HI-! Hl-l

next LUMO Hl-l HI-!

5b2g

HOMO
2au

HI-! H-I

Hl-l HI-!

1+I HI-!

LUMO Hl-l HI-!

4b3g

HOMO
3au

HI-! HI-!

1+1 1+1

LUMO
4b2g

nex[HOMO
5b 1u

FBP

next HOMO
8b2

HI-! HI-!

FBC

next HOMO HH

5b 1u

FBBC

Figure 3. Illustration of the "four orbitals" of FBP, FBC, and FBBC.
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Figure 4. Population analysis for the transition moment of the HOMO---7LUMO
excitation configuration of FBC and FBBC and the HOMO-7next-LUMO excitation
configuration of FBP. Atoms with contributions larger than 0.01 are shown.



Part II
SAC-CI study on the excitation spectrum

and the electron transfer reactions
in the photosynthetic reaction center

of Rhodopseudomo'nas viridis
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Abstract

The excited states of the photosynthetic reaction center of

Rhodopseudomonas viridis are clarified by the SAC-CI method. The

theoretical excitaion spectrum successfully reproduced the expe~imental

one in excitation energy, oscillator strength, and angle of transition

moment and a theoretical assignment for the absorption spectrum is

shown. Linear dichroism for the excited states is also taken into

consideration for confirming the assignment. Dimerization effects seen in

the excited states of special pair are explained by comparing with those of

monomer. Protein effect on the excitation spectrum is calculated to be

red-shifts of the peak positions in almost of all the states.
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1. Introduction

Solar energy transduction to chemical energy is essentially important

task for the survival of the life on the earth. This indispensable task is

carried out by photosyntheses of green plants and some bacteria. The

photosynthetic reaction center (RC) of Rhodopseudomonas viridis (Rps.

viridis) is shown in Figure 1. The RC works for the transduction of the

solar energy to driving forces of biochemical reactions. Excitation of

special pair (P; bacteriochlorophyll b dimer) by a light absorption or an

energy transfer cause a primary electron transfer at the RC, which is the

first step of the photosynthesis. (See reference [1])

Thus far the interesting features of the electron transfer have been

investigated by substantial efforts on this system. The long-range

character [2], the high efficiency [1], and the unidirectionality [3,4] were

experimentally found and they have been studied extensively due to both

scientific interests and a technological applicability. However, almost all

of the studies were concentrated on a dynamics caused by the first

absorption. In Figure 2, the absorption spectrum of the RC of Rps.

viridis [5] is shown. The spectrum has complex structure in both visible

and near-infrared regions, which is indicating a possibility that the RC is

workable by other absorptions. Namely, the each absorption is opening a

channel for each dynamics. Recently, experimental results indicating new

pathways of the electron transfer from B* of Rhodobacter sphaeroides

were reported [6,7]. For investigating another dynamics, an

understanding of the excited states is indispensable. The precise

assignment of the spectrum would provide us a starting point for the

investigation of the another feature of the electron transfer reaction in the

RC.

Previously, some semi-empirical calculations for the excitation

spectrum were reported [8-10]. Their theoretical spectra qualitatively
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reproduced spectral feature but failed to reproduce the Q bands and linear

dichroism (LD) data (angle of transition moment from C2 axis of the

RC)[9, 10]. Although these works brought important information about

the excited states, the theoretical assignment was not satisfactory due to

lack of accuracy of approximations of their method.

In the present, ab initio electronic structure theory achieved chemical

accuracy. The application of these method to large system as

biochernicaly important system is one of the challenging frontier of

quantum chemistry. The applicability to large systems is one of the

important conditions which must be satisfied to be an useful theory. The

SAC[Il] /SAC-CI [12] method [13,14] is one of the accurate theories for

the excited states, which describes electron correlations for ground and

excited, ionized, anionized, and high-spin states. The SAC/SAC-CI

method has been applied to many systems and established its accuracy and

reliability [13,14]. In recent years, in order to apply the SAC-CI method

to the excited states of the photosynthetic RC, we have developed

algorithm and program. The SAC-CI method is successfully applied to

the excited states of porphyrin compounds, free base porphin [15,16], Mg

porphin [17], bacteriochlorin [18], and pheophytin [18] and showed its

applicability to the excited states of such moderately large systems.

In this paper, we applied the SAC/SAC-CI method to the excited states

of the RC of Rps. viridis. This study is aimed to assign the absorption

spectrum and to understand the excited electronic structures of the RC.

First, we describe the excited states of bacteriochlophyll b and show the

assignment of the absorption spectrum in section 3. The excited states of

P and the dimerization effects about energy level splitting and oscillator

strength are described in section 4. In section 5, the SAC-CI assignment

of the absorption and LD spectra and the electronic structure of the

excited states are shown. Protein effect on the excitation spectrum, which
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IS introduced by a point charge model and a continuum model, IS

discussed in section 6.

2. Computational details

The structure of the RC of Rps. viridis [2] is shown in Figure 1,

which shows the well-known symmetric alignment of the chromophores

(L- and M-branches). For geometry of chromophores, a X-ray

crystallographic structure [2] (lPRC in Brookhaven Data Bank [19]) is

used. The present calculations are done for each chromophores, special

pair (bacteriochlorophyll b dimer; P), two bacteriochlorophyll b (BL and

BM), two bacteriopheophytin b (HL and HM), menaquinone (MQ), and

ubiquinone (UQ), where the subscripts Land M denote chromophore

belonging to L- and M-branches, respectively. For calculational

efficiency, some substituents in the chromophores are simplified, except

for the substituents which could n-conjugate with rings. The adopted

models are shown in Figure 3. The labelling of the atoms and rings are

also shown. Our previous calculations reproduced the absorption

spectrum of the low-lying excited states instead of these simplifications

[18].

The basis sets are common to these calculations. For C, N, and 0

atom, Huzinaga's (63/5)/[2s2p] sets [20] and for H atom, Huzinaga's

(4)/[1s] set [21] is used. For Mg, Huzinaga's (533/5)/[5s/3p] set [20] plus

two p-type polarization functions (~=0.045 and 0.143) and d-type

polarization functions (~=1.01) are used.

Protein effect is introduced by a point charge model. The model

contained about 30,000 atoms. The geometry of the heavy atoms in RC

protein and cytochrome c are taken from the X-ray structure [2] (lPRC

in Brookhaven Data Bank [19]). The ionized form is adopted for the

ionizable residues, ASP, LYS, ARG, and OLU. For protein and waters,
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the published charges [22,23] are used. For the chromophores, which are

excluded from quantum-chemical calculation, Mulliken charge of HF

orbitals are used.

In the SAC/SAC-CI calculations, the orbitals whose energy are in -0.7

- +0.7 a.u. are chosen for active space, in which at least 2p electrons are

correlated. In our experience, this criteria would be enough to reproduce

the low-lying excited states of porphyrin compounds [14-18]. In P, which

is the largest molecule in the present calculation, 90 occupied and 220

unoccupied orbitals (total 310 orbitals ) are taken into active space.

Perturbation selection [15,24] is carried out in order to select double

excitation operators. For the ground, excited, and electron attached

states, the energy threshold, lXlO-5, lxlO-6, and Ix10-6 a.u. are used,

respectively. For the ground, excited, and ionized states of P, the

threshold of 3XIO-6, 2xIO-7, and 3xlO-6 a.u. are used, respectively. All

single excitations and the selected double excitations are included in the

linked term. The dimension of the SAC/SAC-CI calculations are shown

in Table 1. Correlation energies for the ground states of these

compounds are also shown. Number of doubly excited configurations are

rather reduced and the correlation energy of these molecule is relatively

small from our previous calculations.

For Hartree-Fock SCF calculation, the HONDO version 8 program

[25] and for the SAC/SAC-CI calculation, the development version [26] of

SAC 85 [27] program is used. Parallel implementation is carried out for

an integral transformation step which is the most time consuming in the

present calculation.

3. Excited states of bacteriochlorophyll b

Here, we introduce the excited states of bacteriochlorophyll b

monomer (BChl b) composing the one-side of P, in order to understand
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the excited states of P more easily and to confirm the accuracy of the

SAC-CI metnod. Figure. 4 shows the experimental [28] and the SAC-CI

spectrum of BChl b and Table 2 shows the data for the excited states. The

result reproduced the low-lying excited states of the experimental

spectrum. The average error is 0.14 eV. The first excited state, i A, is

characterized as HOMO --7 LUMO excitation (n-rc*) in which HOMO-l

--7 LUMO+ 1 excitation (n-n*) slightly mixes. In free base porphin

(FBP) [15], these HOMO --7 LUMO and HOMO-l --7 LUMO+1

degenerate and their transition moments are canceled out each other by

the degenerate excitations [18,29]. In the case of BChl b, reductions of

the C=C bonds in the pyrrole rings cause destabilizations of energy levels

of the HOMO-l and LUMO+l, which result in a larger intensity than that

in FBP [18]. The second excited states, 31A, is characterized as HOMO-l

--7 LUMO excitation (n-rc*). The directions of the transition moments of

the 21A and 31A states are perpendicular and parallel to the axes along the

two reduced pyrrole rings, respectively.

4. Excited states of special pair (P)

In this section, the electronic structures of the excited states of P,

especially dimerization effects are shown. The details of the assignment

for the absorption spectrum of the RC are described in the latter section.

In Figure 5, the calculated energy levels of the excited states of P (the

central column) are compared with those of BChl b (the second column

from the left). The first excited states P(2 1A) are calculated to be at lAO

eV and a red shift caused by the dimerization are reproduced. The reason

of the red-shift is that the energy gap between the HOMO and LUMO

decreases by the dimerization, due to HOMO-HOMO and LUMO-LUMO

interactions between the two monomers. Under 3 eV region, total seven

excited states of P are calculated, which consist of four exciton (Ex) and
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three charge transfer (CT) states. In Table 3, net charges of the excited

states of P are divided into the contribution by the each monomer, PL and

PM. The difference of the electron population between the Ex and CT

states is clearly seen in Table 3. In the CT states about a half of an

electron move to the other monomer. This polarizing property would

cause geometric relaxations of P in the CT states. The each monomer

state splits into four states by the dimerization as shown in Figure 5; two

Ex and two CT states, since two CT states (electron transfer to the other

monomer) are newly included by the dimerization (details are shown in

Appendix). The dotted lines connecting from dimer to monomer states

shows the parent monomer state for the dimer states. Thus, P has eight

states (four Ex and four CT states) originating from monomer 2 and 31A

states.

As for the oscillator strength, the P(2 and 6 1A) states have large

intensities in the excited states of P. In Table 4, the summary of the

excited states of P are shown. The oscillator strengthes of the P(2 and 6

I A) states are 0.607 and 0.144, respectively. The reason why only these

states have relatively large intensities is related to symmetry of P and

properties of the monomer states. As mentioned above, P has a pseude-C2

symmetry, though it is almost broken in the X-ray structure [2]. Then the

excited states of P can be approximately assigned to the irreducible

representations of C2 symmetry as shown in Figure 5. The P(2 and 6 lA)

states are belongs to B and A symmetries, respectively. In the B and A

symmetries, the directions perpendicular and parallel to the C2 axis are

allowed, respectively. On the other hand, the monomer 2 and 3 1A states

have a large "perpendicular" and a secondary large "parallel" transition

moments, respectively as described above. Accordingly, states in B

symmetry originating from the monomer 21A state, the P(2 1A) state, and

states in A symmetry from the monomer 31A state, the P(6 1A) state, have

104



large transition moments. As seen in Table 3, the P(7 1A) state has a

relatively large oscillator strength of 0.120, since, due to symmetry, the

P(7 1A) state mixes with the HOMO -7 LUMO excitation which have a

large transition moment.

5. Excitation spectrum of the reaction center

The absorption and LD spectra by Breton [5] and the SAC-CI method

are shown in Figure 6. The experimentally observed peaks in the

absorption spectrum are numbered from I to XIII. The dotted lines

denote the proposed assignments in the present study. The excitation

energy, oscillator strength, and angle of transition moment between the

C 2 axis of the excited states are given in Table 4. Although the

experimental spectrum has complex structure in a small energy range, the

calculated spectrum reproduced the experimental one with the averaged

error of 0.21 eV in excitation energy. Our assignments are grounded by

excitation energy, oscillator strength, LD spectrum, and angle (8) of

transition dipole moment from the C2 axis of the reaction center which

are estimated experimentally by the LD spectrum [5]. Although we

replaced inter-chromophore interaction to a classical coulomb interaction,

the calculations reproduced the experimental values, which might indicate

the adequacy of our approximation.

The first band I at 1.25 eV has been attributed to Qy states of P, since

there is no low-lying peak in the absorption spectrum of Band H

monomer. This assignment are supported by the semi-empirical studies

[8-10]. In the present calculation, the band I is also assigned to P(2 1A)

state calculated at 1.4 eV, since the angle e (85.1 deg.) is most close to the

experimented one (90 deg.) [5] than those of the other candidates and a

calculated large plus LD component seen in Figure 6 is also found in the

experimental one [5]. Although the present calculation failed the energy
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order of the first singlet excited state, the discrepancy with the

experiment is 0.15 eV. The main configuration of the P(2 I A) state is

HOMO(H) ~ LUMO(L) (n-rr*) excitation with a small mixing of H­

I~ L+1 excitation. Due to in-phase (same-sign) coupling of these

configurations, the P(2) A) state is characterized as exciton (Ex) coupling

of the Qy state (H~ L excitation) of monomer (see Appendix).

Comparing with the ground state of P(X) A), about 0.1 electron is

transferred from PM to PL as seen in Table 3. The P(2! A) state has small

charge transfer (CT) character due to configuration mixing of CT

excitations to Ex ones. The intensity of the P(2 1A) state is 0.607, which is

two times larger than that in B monomers. This enhancement is due to

Ex character of the state; the additive contribution of the intensity of the

two monomers (see Appendix).

Band II at 1.46 eV is observed as a small peak on a red-side shoulder

of band III [5]. This peak has been attributed to an excited state of P,

since this peak vanishes in the absorption spectrum of P+ in oxidized RC

[5]. The P(3!A) state calculated at 1.62 eV should be assigned to the band

II, since the angle e (36.9 deg.) agrees well with the experimental one (30

deg.) and the energy separation from the first excited state (0.22 eV) is

comparable with that in experiment (0.21 eV). The main configuration

of the P(3! A) state is H-I ~ L (n-n*) excitation with a small in-phase

mixing of H ~ L+ 1 excitation, which is characterized as an exciton

coupling of monomer Qy state (H~L excitation), The intensity of the

P(3) A) state is quite smaller than that of the p(ZI A) state, although these

two state are both Ex states. The reason is that in C2-fixed dimer, the

P(3 l A) state belongs to A symmetry in which transition from the ground

state is allowed only along a direction along C2 axis and the H~L

excitation of the monomer has small intensity in this direction.
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A strong peak, the band III (1.49 eV) has been ascribed to Qy bands of

B's and the bands IV (1.54 eV) and V (1.57 eV) to Qy bands of H's,

respectively [5]. Further, the band IV was attributed to HL by an

experimental result in which an illumination of A>900 nm light to the RC

bleached this peak due to a photoreduction of L-branch chromophores

[30]. The present assignment supports the previous ones. The band III is

assigned to the first excited states of BM (2 lA) and BL (2 1A) calculated at

1.35 and 1.45 eV, respectively, since the calculated angles e, 64.3 and

67.2 deg. for BM and BL, respectively, and the plus LD components as

seen in Figure 6 (b) are consistent with the experimental ones. These e
values and LD spectrum are useful to distinguish from the states

originated from H'S. The band IV and V are attributed to the first excited

states HL (2 IA) and HM (2 I A) calculated at 1.59 and 1.75 eV, respectively.

This assignment is rationalized by the evalues, 33.7 and 28.6 deg. and the

large minus contributions in the LD spectrum as seen in Figure 6. It must

be noted that the present result supports the energetic order of HL and HM

which were proposed previously [30]. The orders of the intensity and LD

value between HL and HM are consistent with the experiments [5]. The

molecular structure of His should be an origin of the order, since the gas

phase result shown in Table 4 has the same the order of the states as that

in protein. These four states are Qy bands of B's and HIs, whose main

configurations are H ~ L (rr-1t*) excitations.

We also calculated the excited states of four hemes, c-552, c-554, c­

556, and c-559 by the SAC-CI method raJ. The hemes are included in

cytochrome which locates next to the RC. The first excited state of c-552

is calculated at 1.50 eV, which is at blue-side of the first excited states of

BL and BM [a]. The LD of the state is calculated to be a small negative

value. In the experimental LD spectrum depicted in Figure. 6 (b), the

blue-side shoulder of the large plus peak at 1.49 eV seems slightly
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reduced. Then we propose this reduction is due to the first excited state

of c-552. Thus, the present result indicates the order of the excited states

for 1.4-1.6 eV region as

P(3 lA) < BM(2 1A) < BLC2! A) < c-552(2 1A) < HL(2 1A) < HM(2 1A).

A small peak, band VI, is observed at 1.88 eV in the absorption

spectrum and its LD has a negative contribution as seen in Figure 6 (b).

In our knowledge, there is no assignment for this peak. This peak should

be assigned to the second excited state of c-552, which is calculated at

1.83 eV [aJ. Since the LD of this state is calculated to be a minus

component, the assignment is consistent with the experimental fact.

Band VII is composed of at least two states from LD spectrum [5]. A

peak at 1.8 eV was proposed to assign to HL anion, since this peak

increase its intensity in the absorption spectrum of the photoreduced RC

[30]. We also calculated the electron attached states of HL and the

excitation energy of X 2A(oo--7L) --7 22A(oo--7L) transition is calculated to

be 1.4 eV. The discrepancy of 0.4 eV is somehow large, since a

geometric relaxation effect on X 2A state are not considered in this

calculation.

The blue-side shoulder (1.88eV) of band VII was proposed to be a Qx

component of P from circular dichroism (CD) spectra of oxidized RC [5].

We attribute P(4 1A) state calculated at 2.10 eV to this shoulder. The

calculated LD shows a slightly plus, which is consistent with the

experimental one as seen Figure 6. The energy separation from the first

singlet excited state of P in the theory and experiment [5] are 0.70 and

0.63 eV, respectively, which rationalize the assignment. The P(41A) state

is classified as a Qx component, since the main configuration of the state,

H-2 ~ L (1t-1t*) excitation, is originate from monomer 31A state, H­

1--7L excitation.
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A broad band VIII composes a red-side shoulder of band IX. The LD

experiment showed a characteristic large minus component as seen in

Figure 6 and a specific small value (30 deg.) for the angle e [5]. The

present assignment of band VIII is P (6\ A) state calculated at 2.48 eV.

Although the discrepancy between experiment, 0.48 eV, is rather large,

the calculated angle (25.3 deg.) and the large minus LD value are close to

the experiment [5]. The main configuration is H-3 --7 L excitation (rr­

rr*). The P (6 1A) state is classified to Qx component of the excited state

of P, since this transition is originate from monomer H-l --7 L excitation.

The band IX and X observed at 2.04 and 2.07 eV are attributed to Qx

states of BM (3 1A) and BL (3 1A) states calculated at 2.17 and 2.23 eV,

respectively. The present result supports the previous assignment [5] and

the illuminated result [30]. The present results reproduced the LD

spectrum and the angles e for BM (3 1A) and BL (3 1A). The same energy

order of the Qx states of B is found in the gas phase calculation, which

indicates that the molecular structure of B is the origin of the order of the

states.

Bands XI, XII, and XIII observed 2.23, 2.28, and 2.32 eV have been

attributed to Herne, HL (Qx), and HM (Qx), respectively [5,30]. The

illuminated result [30] indicated lower HL and higher HM. The band XI

might have two components, since the sharp peak of band XI vanishes and

a shoulder remains in the oxidized state (P+) absorption [5]. The sharp

one has a characteristic minus LD. This component is ascribed to c-559

in the previous study [5]. In the SAC-CI result, the first excited state of

c-554 is calculated at 2.38 eV with a relatively large minus LD value as

shown in Figure 6. However, the excited state of P with minus LD is not

calculated in this region (the 61A state has already assigned to the band

VIII). The band XI should be assigned to c-554 and the reduction of

intensity in the oxidized state spectrum [5] could be ascribed to an
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accidental oxidation of c-554. The broad shoulder in the vicinity of the

band XI might be assigned to p(iA), P(7' A) and c-552(4' A) states from

the theoretical spectrum. For bands XII and XIII, HL (3' A) and HM (3 1A)

states calculated at 2.66 and 2.67 eV are assigned respectively, and the

calculated energy order supported the previous experimental assignment

[5,30]. The main configuration of the P (7IA) state is H-l ~ L excitation

(n-n*) which is CT coupling between monomer Qx states. Net charge

shown in Table 3 clearly shows its CT character; about 0.5 electron is

transferred to PL to PM. The P (7 1A) state has relatively large intensity in

comparison with other CT state, since the P (7' A) state borrows its

intensity from Ex state (2 1A) through configuration interaction. The HL

(3' A) and HM (3 1A) states are H-I ~ L excitations (n-n*).

In the energy region higher than the 2.5 eV, four excited states

UQ(2 I A), P(SIA), P(9'A), and MQ(2 1A) with small intensity are

calculated. P(g'A) and P(9 I A) states, are calculated at 2.96 and 3.37 eV.

They are intramolecular CT state in P as shown in Table 3. The UQ(2 1A)

state calculated at 2.S6 eV is H ~ L (n-n*) excitation. The MQ(2 1A)

state calculated at 3.44 eV is n-n* excitation in which H ~ L (n-rc*)

excitation strongly mixes.

6. Protein effect to the excited states

In the present calculation, protein effect is introduced by a point

charge model. In Table 4, theoretical excitation energy, oscillator

strength in the gas phase are compared with those by the point charge

model. Almost all of the energy shift shown in Table 4 are minus values;

red-shifts. The calculated energy shifts are at most -0.2 eV except for

UQ, since the orbital energy gaps are not so much affected by the protein

potential due to even shifts of the orbital energies.
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As for UQ, the shift of the excitation energy is -0.5 eV, since the

energy shift of HOMO is especially larger than that of LUMO. The

energy shifts of the HOMO and LUMO are +1.73 and +0.79 eV,

respectively. The reason of the larger shift of the HOMO is that the

orbital has large amplitude in the negative-potential region generated by

GLU L 212. Unfortunately the excitation energy shift of UQ can not be

compared with experiment, since the absorption band of UQ is hidden by

the strong and broad absorption due to protein or B bands of

bacteriochlorophylls.

The excitation energy shifts of B's are relatively larger than that of

the other chromophores. In the previous article, the absorption spectra of

the RC and bacteriochlorophyll-b in ether were compared [32] and the

red-shifts of Qy and Qx bands were observed. The present calculation

reproduced the red-shifts. The energy shifts are -0.07 eV for the Qy

bands of BL and BM and -0.15 and -0.18 eV for the Qx bands of BL and

BM, respectively, which are comparable with the experimental values,

-0.11 eV for the Qy bands ofB's, -0.11 eV for the Qx bands ofBM, and

-0.08 eV for the Qx bands of BL [5,28]. The reason of the red-shifts are

explained by the orbital energy changes as in UQ. The Qy and Qx bands

of B's are HOMO --+ LUMO and HOMO-l --+ LUMO excitations,

respectively. The orbital energy of the BL and BM are destabilized by

negative electrostatic potential due to ASP M 182 and ASP L 155,

respectively. However, the energy shifts of the LUMO's for BL and BM

are relatively smaller than those of the HOMO's and HOMO-lIs by about

0.2 eV, since the LUMO's avoid from the negative potential region.

These difference causes the smaller energy gaps in protein than in gas

phase.

The present point charge model does not take into account of the

polarization effect of protein. This model might be adequate for Ex

111



states, since their dipole moments are enough small to neglect the effect

on their energies. However, as shown in Table 3, CT state has 2 - 3 times

larger dipole moment than those of Ex states in P.

The polarization effect is easily taken into consideration as an

interaction of dipole moment of the state and the reaction field by using a

continuum model, although this model has arbitrariness in the choice of

the cavity. The polarization energy of electrons in protein molecules is

written as [33,34],

(6-1)

where Tl is the solvent refractive index, f.l. is dipole moment of the state,

and a is the effective radius of the spherical cavity. We used a value of

1.4266 for Tl (bulk property of cyclohexane) and 6.5 A for a [9]. The

estimated polarization energy for the states, .6.E(pol.), and the corrected

excitation energy, EE(Pol.), are shown in Table 3. The polarization

effect is large at CT states (about -0.1 - -0.2 eV) and the excitation

energy of the CT states are red-shifted by -0.1 - -0.2 eV. Figure 5 also

shows the stabilization of the CT states. The P (7 1A) state assigned to the

band X shifted to the red-side by 0.22 eV and the error in excitation

energy decreases to be 0.12 eV. The results indicate the importance of

the polarization effect of surrounding medium in the CT state. In

contrast, the polarization has no effect to the energy of the Ex states due

to small dipole moments of the states.

The photosynthetic RC is included in a transmembrane protein [1,2]

and should be feeling the membrane potential. In the present calculating

model, the electric field due to the membrane potential is not considered.

The polarization of electrons in chromophores is also one of the concern

of protein effect. The chromophore's polarization energy is classically

represented as
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where CXi is atomic polarizability and £,. is a electric field on atom i.

The electric field is roughly estimated to be 8.17x 10-5 a.u., for which

values of 40 A (roughly estimated from X-ray structure of the RC [2])

and 0.168 V (potential in mitochondria [1]) are used for the membrane

thickness and potential, respectively. Judging from Eq.6-2 and the

estimated values of atomic polarizability [35], the electric field by the

membrane is enough small not to affect the energy of the states.

7. Conclusion

The SAC/SAC-CI method is successfully applied to the excited states

of the photosynthetic reaction center. The theoretical spectrum

reproduced the experimental one in the excitation energy, the oscillator

strength, and LD data. The averaged error of the excitation energy is

0.21 eV. The present results supports the experimented order of the Q­

band peak positions between the L- and M-sides. for the B's and His. A

reliable assignments for the absorption spectrum are given, which would

be a help of the photochemical study in the RC. The order of the excited

states for 1.4-1.6 eV region is calculated to be

P(3 1A) < BM(2 1A) < BL(21A) < c-552(2 IA) < HL(21A) < HM(2[A).

Dimerization effects on the excited states are studied. A red-shift of

the first excited state by the dimerization is reproduced. The

intramolecular CT states of P have large CT characters and a half of an

electron is transferred to the other monomer in these states, which should

cause large geometric relaxations and might have other electron transfer

reaction in the RC.

Protein effect is taken into account by a point charge model. The

protein effect on the excitation energy is calculated to be red-shift in
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almost cases. Polarization effect of protein is estimated by a continuum

model. The energy of the intramolecular CT states of P is stabilized by

0.2 eV. However, a precise examination for the protein effects should be

considered by a more accurate treatment for protein molecule, which will

be studied in the nest stage.

Appendix

We show brief explanation about the reason that configuration

interactions (Cl's) characterize the exciton (Ex) or the charge transfer

(CT) natures of the excited states in P and the transition moment

enhancement occurs in the first excited state of P. Since the electronic

structure of P has pseudo-C2 symmetry, we assume here an idealized C2­

fixed P; (1) HOMO-I(H-I), qJ~-I, and HOMO(H), qJ~, of P are. strictly

composed of in- and anti-phase mixing of His of the monomers, qJ~l, and
M2 D D

qJH , and LUMO(L), qJL, and LUMO+l(L+l), qJL+l, of P are composed of

in- and anti-phase mixing of L's of the monomers, <p7' and qJ~2, (2) due

to C2 symmetry, ers between H---7L and H-l---7L+l excitations (B

symmetry) and between H-l---7L and H---7L+l excitations (A symmetry)

are symmetrically allowed, and (3) z-direction are set to C2 axis and y­

direction are set to be parallel to molecular plane of the monomers.

Then, the molecular orbitals for H-l, H, L, and L+1 of P are written as
D N (Ml M2)qJL+l = L+l qJL -qJL (A-I)

qJf = NL(qJ~1 +qJ~2) (A-2)

qJ~ = NH(qJ~l - qJ~2) (A-3)

D N (MI M2)
qJH-l = H-l qJH + qJH. ' (A-4)

where Nx (x=H-I, H, ... ) are normalization factors. Provided the

monomer orbitals are orthonormal, Nx is 1/~ for all MOs. From eg. A­

I to 4, H-)L and H-I-)L+l excited configurations belonging to B

symmetry are written down to the monomer contributions.
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(A-7)

(A-8)

(A-9)

Ilcp~ (1)cpf (2)11 = liNH {cp~l (1) - cp~2 (1)} NL {cp7! (2) + cp~f2 (2) }I!

= liNH NL cp:J! (l)cp71(2)1\ + IINI1 NL cp~l (1)cpr2 (2)11 (A-5)

-liNHNLCP~2 (1)cp7 1(2)11-IINHNLcp~2 (1){f)~2 (2)11

and

Ilcp~-1 (1)CPf+l (2)11 = liNH {cp':l (1) + cp~2 (I)}N L {cpr l (2) - cpr2
(2) }II

= liNHNLCP~I (l)cpr l (2)11-IINHNLCP~I (l)cpr2 (2)11·(A­

+IINHNL cp;:2 (l)cpr l (2)11-IINHNLcp~2 (l)cpr2 (2)11

6)

From eq. A-5 and 6, in-phase Clof the two excitations gives exciton (Ex)

coupling of the monomers, due to canceling out the CT components.

Ilcp~ (l){f)f (2)11 + Ilcp~-1 (1)cpf+1 (2)11

=211NHNL{f)': I (l)cprl (2)11- 211NHNLcp':2 (l)cpr2 (2)11

In the case the monomer MOs are orthononnal, eq. A-7 is simplified to

<I>~sym = 1I{f)~ (l)cpf (2)11 + Ilcp~-1 (l)cpf+1 (2)11

= IlcpZ'l (l)cp~1 (2)11-llcpZ'2 (l)cp~f2 (2)1\

In the other hand, anti-phase CI gives charge transfer (CT) coupling, due

to cancellation of Ex components.

<I>~sym = 11{f)~ (l)cpf (2)11-llqJ~_1 (l)qJf+1 (2)11

= Ilcp':l (l)qJ~2 (2)11_llqJ~2 (l)qJ~1 (2)11

The CI between H-7L+1 and H-I-7L belonging to A symmetry gives the

similar result; in- and anti-phase mixings give Ex and CT states,

respectively.

Next we explain the enhancement of the transition dipole moment of

the P(2 1A) state with this model. The P(2 1A) state is characterized as an

Ex state in B symmetry. The transition dipole moment of the state is

gIven as

(A-I0)
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where' Risdipoleoperator.. The monomer H~I;~.~xcitation; has large
-- . . . . . ~ . .

transition dipole ip y direction. ,From eq.:A-IO, since the matrix

.ei~ments,: .(qJ~ilylfJ'tl) .and ( fJ'~21)'1~~f2Y,'·ha.~e .di'ffere~t .signs. due to C2
",,, .. • _ • __ :~ '", .1" .c.,.'_ /'.. ":, } : . ~ "I' " :~: ;•• ~: .• ,'t",_ ':,' \i"

symmetry, the transition· dipqle moment of the Ex state in B sym1Jletry,

P(2 1A) state, is enhanced.

l1.'6f
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Table 1
Dimensions of the SAC/SAC-CI calculationsa.

Chromophore p BM BL HM HL MQ UQ

.......
tvo

Ground stateb

Before 196049700 7149870 7661654 6228684 6228684 1023165 1677195
After 37549 7570 7582 7298 7983 5021 4347

Excited state
Before 196049700 7149870 7661654 6228684 6228684 1023165 1677195
After 226726 37140 45188 40968 43165 28630 32948

Ionized state
Before 1782090
After 9902

Electron attached state
Before - 340290 356174. 296436 296436 75896 111691
After - 25330 25627 24300 24096 15599 16938

a Calculations with protein model
b Correlation energies for the ground states of P, BM , BL, HM , HL, MQ, and UQ are -0.15752,
-0.12277, -0.11546, -0.13499, -0.15073, -0.13538, and -0.88780 a.ll., respectively.



Table 2
Excited states of BChl bmonomer calculated by the SACISAC-CI method

SAClSAC-CI Exptl.a

21A -0.91(H~L)+0.21(H-1~L+l)

31A -0.88(H-l~L)-0.32(H~L+l)

41A -0.89(H-2~L)-0.15(H-3~L)

State Main configurationb

(C~0.2)

Excitation
energy

(eV)
1.52
2.34
3.53

Oscillator
strengthc

0.395 Y
0.179 x
0.0129 x

Excitation
energyC

(eV)

1.60 Y
2.15 x

a Ref. [28]
b Hand L denote HOMO and LUMO, respectively.
C "x" and "y" are directions of transition moment which are parallel and perpendicular
to the axis along the two reduced pyrrole rings.

12L ~



Table 3
Character for the excited states of special pair (P) calculated by the SAC/SAC-CI method (in protein model).

Net charge Dipole ilE ilEE EE EE(Exp.)
Slate CharacterU moment (Pol.)C (Pol.)d (Pol.)e

PLb PMb (Debye) (eV) (eV) (eV) (eV)

XIA - -0.075 0.075 5.45 -0.01
2 1A Ex -0.179 0.179 3.60 -0.01 +0.01 1.41 1.25 0)
31A Ex -0.019 0.019 7.55 -0.03 -0.01 1.61 1.46 (II)

...... 4 1A Ex -0.197 0.197 5.75 -0.02 0.00 2.10 1.88 (VII)
N
N 51A CT -0.674 0.674 18.00 -0.07 -0.05 2.31

6 1A Ex 0.043 -0.043 8.48 -0.04 -0.02 2.46 2.00 (VIII)

7 1A CT 0.506 -0.506 22.25 -0.24 -0.22 2.35 2.23 (XI)

81A CT -0.675 0.675 16.65 -0.12 -0.10 2.86

9 1A CT 0.539 -0.539 20.00 -0.20 -0.18 3.19

a "Ex" and "CT" denote exciton and charge transfer excited states, respectively.
b "PLu and "PM" denote bacteriochlorophyll monomer constructing P, respectively.
C Change of energy due to polarization effect of protein by a continuum model.
d Change of excitation energy due to polarization effect of protein by a continuum model.
e Excitation energy including polarization effect of protein by a continuum model.



Table 4
Singlet excited states of chromophores in photosynthetic reaction center of RllOdopseJldomollGs viridis.

SAC-CI (gas phase) SAC-CI (in protein) Exptl.c

Chromo-
phoresa Excitation Oscillator Main Excitation Energy Oscillator Linear Excitation Linear

State Energy strength State configurationb energy shiftC strength dichroism Energl dichroism
(eV) (lCI>0.3) (eV) (eV) (deg)d (eV) (deg)d

P 2[A 1.42 0.673 2'A 0.88(H-7L) 1.40 -0.01 0.607 85.1 1.25 (I) 90
P 31A 1.63 0.067 31A -0.85(H-I-7L) 1.62 -0.01 0.090 36.9 1.46 (II) 30
BM 2'A 1.42 0.335 2 1A -0.92(H---7L) 1.35 -0.07 0.363 64.3 1.49 (III) 70
BL 2'A 1.52 0.372 2 1A 0.92(H-7L) 1.45 -0.07 0.406 67.2 1.49 (III) 70
HL 2 1A 1.65 0.317 21A -0.87(H---7L)-0.34(H-I-7L+I) 1.59 -0.06 0.323 33.7 1.54 (IV) 40
H1-I 2'A 1.67 0.284 21A -0.87(H-I-7L) 1.75 +0.08 0.283 28.6 1.57 (V) 40
P 4 1A 2.18 0.100 41A -0.89(H-2---7L) 2.10 -0.08 0.088 61.0 1.88 (VII)

P 6 1A 2.61 0.181 6 1A 0.70(H-3---7L)-0.37(H-2---7L+ I) 2.48 -0.13 0.144 25.3 2.00 (VIII) 30
I-' BM 3 l A 2.32 0.125 31A 0.88(H-I-7L) 2.17 -0.15 0.149 79.8 2.04 (IX) 70N
W BL 31A 2.41 0.140 31A -0.87(H-I---7L)-0.30(H-I-7L+ I) 2.23 -0.18 0.148 77.1 2.07 (X) 70

P 51A 2.22 0.070 SIA -0.88(H-7L+l) 2.37 +0.15 0.038 87.4

P 7 1A 2.52 0.083 7 1A -0.83(H-I-7L+I) 2.57 +0.05 0.120 71.5 2.23 (Xl)

Hi. 3 1A 2.67 0.103 31A -0.84(H-I-7L)-0.44(H-I---7L+I) 2.66 -0.01 0.091 61.6 2.28 (XII) 70

lli1 3 1A 2.67 0.090 3 l A 0.82(H-I---7L)+0.47(H-I-7L+ I) 2.67 0.00 0.113 53.6 2.32 (XIII) 70

UQ 4 1A 3.85 0.018 21A 0.92(H-7L) 2.86 -1.01 0.001 76.8

P 8[A 3.15 0.006 8 1A 0.80(H-2---7L+ I)+0.38(H-3---7L) 2.96 -0.19 0.013 35.6

P 91A 3.34 0.009 9 1A 0.78(H-3---7L+1)+0.37(H-3---7L) 3.37 +0.03 0.018 84.7

MQ 21A 3.52 0.000 21A 0.74(H-4-7L)+0.45(H---7L) 3.44 -0.08 0.002 32.0

a P, B, and H denote special-pair, bacteriochlorophyll, and bacteriopheophytin, respectively. Land M denote chromophore in Land M branch,
respectively.
b Hand L denotes HOMO and LUMO, respectively.
C Energy shift between excitation energies in protein and in gas phase. Plus and minus signs denote blue anel red shifts, respectively.
d Angle of the transition moment vector with the pseudo-C2 axis of the reaction center.

e Reference 5
f Number in the parenthesis is labelling of the absorption in Figure 3.
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Fig. 2 Absorption spectIilm of Rhodopseudomonas viridis
reaction center[5]



H3CO

H3CO

o

o

06

UQ

1
o

o

o MQ

Figure 3. Calculational models for P, B, H, UQ and MQ. for P, only monomer is
shown. Some substituents in the X-ray structures are replaced by protons in the present
calculations (see text). Labelling of the atoms for P, B, and H is also shown.
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Chapter 6

Mechanism and unidirectionality
of the electron transfer reaction

in the photosynthetic reaction center

130



Abstract

The electronic mechanism of the electron transfer in the

photosynthetic reaction center of Rhodopseudomonas viridis are studied

theoretically by using the SAC/SAC-CI wave functions. The

unidirectionality of the electron transfer is explained by the asymmetry of

the electronic factor, which is originated from the geometric asymmetry

of P. The advantage of the L-side is also found for the transfer from B to

H, which is ascribed to the orientational asymmetry of P The efficient

feature of the electron transfer can be explained by the smallness of the

electronic factor of the charge recombination, which is attributed to the

populational difference between the LUMO and HOMO of P. Protein

effects on the geometry of the chromophores have decisive roles but

electrostatic effect is found to have little influence to the electronic factor.
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1. Introduction

Photosynthesis is a chemical reaction system which utilizes sunshine,

on which survival of the lives on the earth significantly depend.

Photosynthesis has a important role of a transduction of solar energy to

driving forced of chemical reactions. Rhodopseudomonas viridis (Rps.

viridis) are one of the purple bacteria which carry out photosynthesis.

Their photosynthetic reaction center depicted in Figure 1 performs the

transduction by the primary electron transfer. (See reference [1])

The electron transfer (ET) is known to be fast, long-range, and

significantly efficient and there is no such elaborate artificial system [1].

The structure of the RC of Rps. viridis was elucidated to contain seven

chromophores [2]: special pair (P; bacteriochlorophyll b dimer), two

bacteriochlorophylls b (BL and BM), two bacteriopheophytins b'(HL and

HM ), menaquinone (MQ), and ubiquinone (UQ) as shown in Fig. 1. They

have pseudo Cz symmetric alignment which compose two passways (L­

and M- branches) for the ET and they are included in the RC protein

which consists of 1200 residues. Another interesting feature of the ET,

unidirectionality, was also found by the time-resolved fluorescence [3,4],

The excited electron at P is transferred asymmetrically almost along L­

branch, P ~ HL ~ MQ, in spite of the C2 alignment. Accordingly, the

study on the ET is meaningful not only for satisfying our scientific

interest but also for understanding a principle to construct the efficient

artificial photosynthetic or electron transfer systems.

Thus far, the unidirectionality of the electron transfer has been studied

extensively. The rate constant of ET reactions was given by Marcus [5] as

k - 2n IH 12 1 { (~G+ It) 2}
- IF exp - ,

tz (4nART)~ 4 ART

where HIF is the transfer integral which expresses the electronic coupling

between initial and final states. L1G is the free energy'difference between
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initial and final states. A is the reorganization energy of the ET reaction.

Under the adequacy of the above formula, the discussions on the rate

constant are divided into the energetics of the reaction and the electronic

factor, the transfer integral. Regarding to the energetics, semi-empirical

quantum-chemical calculations [6,7], electrostatic calculations [8,9], and a

molecular dynamics simulation [10] were reported. These studies

concluded that the ET along the L-branch is energetically favorable

mainly due to the protein electrostatic effects [6,8-10]. In the other hand,

as for the electronic factor, some calculations of the transfer integrals

using semi-empirical wave functions were reported [7,8,11]. These

studies also showed the electronic advantage of the L-side ET. The

asymmetries in geometry and electronic population of P were mentioned

for the origin of the unidirectionality. However, the clarification of the

unidirectionality have not been confirmed, since the accuracy of the

methods employed in these studies would be unsatisfactory for treating

transitions among the electronic excited states.

At the present, ab initio electronic structure theory achieved chemical

accuracy. The application of these method to large systems as

biochemicaly important systems is one of the challenging frontier of

quantum chemistry. In order to be an useful theory, the applicability of

these method to a large system must be satisfied. The SAC[l2] /SAC-CI

[13] method [14] is one of the accurate electron correlation theory for the

ground and excited, ionized, anionized, and high-spin states [15]. The

SAC/SAC-CI method was applied to many system including the excited

states of porphyrin compounds [15,16-19] and established its accuracy and

reliability [14,15]. Recently, the SAC-CI method was applied to the

excited states of the photosynthetic RC and successfully reproduced the

experimental absorption and linear dichroism spectra [20].
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In this paper, we applied the SAC/SAC-CI method to the ET reactions

in the RC of Rps. viridis. In this study, we utilizes the SAC-CI wave

functions which succeeded in the application for the excited states of the

RC [20]. This study is aimed to understand the dynamics of the ET

reactions in terms of the electronic factor and to clarify the origin of the

asymmetric feature of the reactions. Since the ET isa transition among

the electronic states, the analysis of the transfer integrals could provide us

another picture of the reactions. Further, the theoretical approach to an

experimentally unobserved ET's would provide an important information

for the design of an effective ET system. In section 3, the calculational

detail of the transfer integral is shown. The analyses on the

unidirectionality and the efficiency based on the transfer integrals

calculated by the SAC/SAC-CI wave functions are shown in section 4.

2. Calculation of transfer integral

In this section, we explain the calculational detail of the transfer

integral from the SAC/SAC-CI wave functions of chromophores. Here,

the calculation of the transfer integral of the reaction, P*B --7 P+B -, is

shown as an example. First, the SAC or SAC-CI wave functions of P*,

P+, B, and B- are prepared as

p* : lJl:x = R P exp(sP )<I>~, (2-1)

p+: lJlt=/Pexp(SP)<I>6, (2-2)

B: 1Jl~ = exp(SB)<I>~, (2-3)

B- : lJl:A = E B exp(SB)<I>~, (2-4)

where <I>~ =II¢>;¢J ... '¢~rll and <I>~ =JI¢lB¢>: .. "¢~BII· R, I, and E

operators are the excitators for the singlet excited, ionized, and electron

attached states, respectively. S operator is the excitation operator for the

ground state. For simplicity, the summations of the operators are

omitted. For the SAC/SAC-CI wave functions utilized above, those which
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(2-9)

(2-8)

was calculated in the previous study for the excited states of the RC [20]

are used. The brief explanation for the computational detail of the

SAC/SAC-CI wave functions are shown in the latter section.

The initial and final states of the reactions, P*B and P+B-, are defined

as the product of the wave functions of the fragment states (2-1) - (2-4).

P*B : \{lP*B :: \{l;x \.f'~

= RP exp(sP + SB )<1>~+B (2-5)

P+B- : '¥ P+B- - \}it 'P:
A

=I PE B exp(sP + SB )<1>~+B (2-6)

Here, <t>~+B= II¢r¢r ... '¢~/PIB¢~ ... ·¢~DII·

S· h IPE B . . I .. h RP+Bmce t e operator IS not a smg et excltatlOn operator, t e /

operator is introduced for spin-symmetry adaptation.
P+B- : ,¥P+B- = RP+Bexp(sP + SB )<t>~+B (2-6')

The detail is shown in appendix.

Finally, the transfer integral of the reactions is defined as

P*B --7 P+B-: (\fIP*BIHlqsP+B-). (2-7)

Similarly for the other ET reaction, P+B-H --7 P+BH- and P+B" --7 PB, the

transfer integrals are defined as

P+B-H --7 P+BH-: (\fIBW IHlqtB-H)

P+B- --7 PB : (\{lp+B-IHI qtPB ) .

In the practical calculation, orthonormal LMO's are assumed, which

neglect intermolecular MO overlaps, since the overlaps are calculated to

be very small (at most 10-4 order). For the sake of simplicity, the

configurations having coefficients larger than 0.1 in the SAC/SAC-CI

wave functions, are considered.

3. Computational detail
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In this section, the computations for the SAC/SAC-CI wave functions

used above is explained briefly. For details, see reference 20. For the

geometry of chromophores, a X-ray crystallographic structure of Rps.

viridis [2] (lPRC in Brookhaven Data Bank [21]) is used. For

calculational efficiency, some substituents in the chromophores are

simplified as shown in Figure 2, except for the substituents which could

1t-conjugate with rings. The labeling of the atoms and rings are also

shown. Our previous calculations reproduced at least the absorption

spectrum of the low-lying excited states of the RC, under these

simplifications [20]. For the basis set, C, N, and 0 atom, Huzinaga's

(63/S)/[2s2p] sets [22] and for H atom, Huzinaga's (4)/[ls] set [23] is used.

For Mg, Huzinaga's (S33/S)/[5s/3p] set [24] plus two p-type polarization

functions CS=0.045 and 0.143) and d-type polarization functions (S=l.O 1)

are used [20]. Protein effect is introduced by a point charge model. The

charges reported previously [24,25] for protein and waters or Hartree­

Fock populations for chromophores are placed at the atom centers [2,21].

For the SAC/SAC-CI wave functions for the ground and excited states of

the chromophores, those calculated for the excitation spectrum are used

[20]. For the ionized and electron-attached states, additional SAC-CI

calculations were performed with the same condition as those for the

excited states [20]. At least 2p-electrons are correlated and perturbation

selection [16,26] is carried out in order to select double excitation

operators. For the ground and electron attached states, the energy

threshold, lxl0-5 and lxl0-6 a.u. are used, respectively. For the ground

and ionized states of P, the threshold of 3><10-6 and 3xl0-6 a.u. are used,

respectively. All single excitations and the selected double excitations are

included in the linked term. The dimension of the SAC/SAC-CI

calculations are shown in Table 1. For Hartree-Fock SCF calculation, the
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HONDO version 8 program [27] and for the SAC/SAC-CI calculation, the

development version [28] of SAC 85 [29] program is used.

4. Electronic mechanism of the ET reactions In the RC of Rps.

viridis

In this section, the reaction rate of the ET in the RC of Rps. viridis

are discussed in the respect of the electronic factor. The reactions

described here are the ET from P to B and from B to H along both L­

and M- branches and the charge recombination (CR) from B to P and

from H to P. In Figure 3, the calculated electronic factors, 1HIFI2, in

protein and gas phase are shown for each branch. These values are

proportional to the ET rate constant. Only the electronic factors which

are larger than 1.00 are shown. The energy levels are estimated by using

the previous study [30] (colored green) and the SAC-CI calculated

excitation energies, ionization energies, and electron affinities. The

values in the parenthesis are estimated electronic factor from

experimental data in a previous study [31]. The theoretical transfer

integrals for the ET, P ~ Band B -) H, are 25.2x10-9 and l04.4xl0-9

(with protein effect), respectively and they are similar to the estimated

ones, 21xl0-9 and 72xlO-9 a.u., respectively. These results indicate the

adequacy of the theoretical electronic factor.

The ET reaction from P to H is described as the following. First, p*

IS generated by a direct photoexcitation or an energy transfer from

antenna protein [1]. The p* would be relaxed to the first excited state,

P(2 1A), by an internal conversion as described in Kasha's rule. The ET

reaction from P(2 IA) state to P+( 12A)B-(12A) state would occur along the

L-branch, since the electronic factor of the L-side is about 15 times larger

than that of the M-side as shown in Figure 3. The nature of the transfer

is characterized as LUMO(P) ~ LUMO(Bd. The unidirectionality is
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originated from the asymmetry of the electronic factor, SInce the

calculated electronic part of branching ratio IHL/HM 12::::: 15 in protein

(IHL/HMI2:::::35 in gas phase) is enough large to explain that from

experiments kdkM>5 [8]. Here, the above consideration is based on the

sequential mechanism, since the energy of the intermediate radical pair,

P+B-, was experimentally estimated to be lower than that of the p* state

[30,32]. Even if the ET occurred faster than the internal conversion, the

L-side would be also preferable to the M-side due to the largeness of the

electronic factors. The successive ET from P+(l2A)B-(l2A) state to

p+(l2A)H-(l2A) would proceed along the L-branch. The nature of the

transfer is characterized as LUMO(Bd -7 LUMO(Hd .. The competitive

reaction to the ET from B to H is the CR reaction from p+(l2A)B-(l2A)

state to the ground state of PBH, LUMO(BL) -7 HOMO(P). According to

the electronic factor, the CR is much less preferable to the ET, since the

electronic factor of the CR is only about 4 percent of that of the ET. This

smallness of the electronic factor of the CR is the electronic origin of the

high-efficiency of the ET. After the ET to H, the excited electron would

be transferred to MQ [1]. The side reaction of the ET to MQ is the CR to

ground state, PBH. The electronic factor of the ET to MQ was reported

to be 0.48xlO-9 a.ll. in the previous article [33]. On the other hand, the

electronic factor of the CR reaction by the superexchange mechanism is

evaluated to be 0.053xlO-9 a.u. [34], which is enough small to explain the

high-efficiency of the ET from H to MQ.

5. Analysis of the transfer integral

In Table 2, the electronic factors, I HIF 1
2, for the ET reactions, P*B

-7 P+B -, in various approximations are shown. In order to understand

the accuracy of Fock approximation, the transfer integrals by Fock

approximation are compared with those by total hamiltonian, within a
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single-configuration approximation. Table 2 shows that the values by the

Fock approximation are quite similar to those by the total hamiltonian,

which indicates the adequacy of the Fock approximation in this system.

In the multi-configuration case, the configuration interaction effect

introduced by the SACISAC-CI method is examined. In Table 2, the

inclusion of the configuration interaction effect by the SACISAC-CI

method reduces the value of the transfer integrals, which makes the

transfer integral close to the values estimated from experiments [31,35].

The ratios between L- and M-branch are also shown in Table 1. For P*B

~ P+B -, the SAC-CI reduces the LIM rate by 3/4. Although the Fock

approximation appears somehow qualitative, it has a decisive role for the

transfer integral. Further, it is useful for the analysis and brief

estimation of the transfer integral due to its economical advantage.

6. Electronic factor of the ET from P to B

The unidirectionality of the ET reaction from P to B is originated

from the asymmetry of the electronic factor between L- and M-branches

as shown in Figure 3. Comparing the electronic factor in protein and in

gas phase, the unidirectionality could be explained without protein effect.

Protein effect is not an origin of the asymmetry of the electronic factor.

In order to understand the asymmetry origin, the element of the

electronic factor in the gas phase is further analyzed. Since Fock matrix

element, Jij, (i=LUMO of B and j=LUMO of P), has a decisive role in the

transfer integral HIP as shown in the previous section, this element is

decomposed into the atomic contributions of atoms belonging to Bas,

frj = L L L C:Csj!rs
XES rEX SEP

= Lfx t (6-1)
XE8

where it is the contribution of atom X,C is MO coefficient andJrs (r E B

and s E P) is AO Fock matrix element. From an inspection of eq. 6-1,
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conditions for lij to be large are the following. The first one is a

proximity condition. In order that frs have a large value, the atomic

orbitals rand s should be nearly located, since Irs significantly depends on

the distance between rand s. The second one is a MO coefficient

condition. Even if the irs is large, contribution to fij would be reduced,

when the product of the MO coefficient Cri*Csj is small. The third one is

nodal effects which originates from nodes of the MO's. Summation over

the AO's and the atoms could cancel their contribution each other, if the

MO coefficients have opposite signs. This cancellation could have a large

effect to the total Fock matrix element, in the case that the donor or

acceptor orbitals have nodal structure as porphyrin compounds.

The result for the decomposition oflij, (i=LUMO of Band j=LUMO

of P) is shown in Figure 4 (a). There is also asymmetry between L- and

M-sides and the atomic contribution is large in the BL. The origin of the

asym~etry lies in the difference of the contributions at the rings III and

II of B's as shown in Figure 4 (a). The largest contribution is derived

from the 6-carbon (See Figure 2 for the atomic labeling) in the ring III of

BL and its value is 10.8x 10.5 hartree. On the other hand, the largest

contribution in BM is -6.4x 10-5 hartree of the ~-carbon.

The asymmetry in the molecular arrangement of P was reported

previously [8,11], which we also show in Figure 5. The rings III of BL

and BM are close to the vicinity of the ring I of the PM and PL,

respectively. The distances from the rings III of BL and BM to the rings I

of the PM and PL are 6.89 and 7.41 A (center-to-center distance),

respectively and the L-side is more closer than the M-side by 0.5 A. The

rings II of BL and BM are close to the rings V of PL and PM, respectively.

Especially, the 4a-carbon (See Figure 2 for the atomic labeling) of BL

locates at 4.7 A from the y-carbon of PL. However in this case, the
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distances between the L- and M-sides are similar: 7.13 and 7.14 A,
respectively.

In Figure 5, MO populations of the LUMO's of P and B's are shown,

which are the donor and acceptor orbitals, respectively. Regarding to

B's, the population is almost symmetric between L- and M-sides and some

amplitude are calculated at the 5- and 6- carbons of the ring III.

However, the 4- and 4a- carbons of the ring II have little population in

both B's. In the case of P, the population is gathering in the vicinity of

the rings I of PL and PM. Further, the population of P has a slight

asymmetry, which is slightly localized to the. PL. The rings I and V of PL

have larger amplitudes than those of PM.

Considering the geometric and wave functional infoITIlations described

above, the asymmetry in the ring III contribution of B's is mainly

attributed to the geometric asymmetry. The rings III of B's and I ofP,

which have some MO amplitudes, are closer in L-side than in M-side.

Due to the proximity condition, the L-side has a larger electronic factor

than the M-side. The proximity condition have a priority over the MO

coefficient condition in this case, since the orbital amplitude on the rings I

are slightly larger in PL and in PM. As for the ring II, The origin of the

asymmetry lies in MO coefficient asymmetry. As seen in Figure 5, the

LUMO of P is slightly localized in PL and the "(-carbon of PL, which lay

close to the 4- and 4a-carbons of BL, has some population. In this case,

the distances between the ring I of BL and V of PL is similar to that

between BM and PM as described above. Accordingly, the contribution of

the 4a- and 4-carbon is larger in the L-side due to the MO coefficient

condition.

7. Electronic factor of the ET from B to H
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The calculated electronic factor for the ET from B to H is also larger

In the L-side than in the M-side. As the same way as the previous

subsection, the Fock matrix element fi} (i=LUMO of Hand j=LUMO of

B) is decomposed into the atomic contribution of H's. The result is shown

in Figure 7. The largest contribution tofij is 42.92xIO-5 and 24.95xIO-5

hartree from I-carbon at the ring I in HL and HM, respectively. This

difference is the main reason for the asymmetry in the electronic factor

between L- and M-sides.

In Figure 7 (a) and (b), the MO populations of the LUMO's of Band

H in the L- and M-branches, respectively, are shown. The origin of the

asymmetry do not lie in the MO asymmetry, since the MO population is

quite symmetric between L- and M-sides. Another important fact found

in these figures is that in both the L- and M-sides, H's and B's are aligned

as the most populated rings I are adjacent each other. The Fock matrix

element iij could be large due to fulfilling the MO coefficient condition.

This effect is apparently seen in the values of the electronic factors, which

is twice as large as that for P to B in the case of the L-side. In a previous

semi-empirical study [7], the electronic factor for the ET's, P --7 Band B

--7 H, were calculated to be equal, which seems out of physical intuition in

the respect of the MO coefficient condition.

In comparison with the geometry between the two sides, the distances

between the four nitrogens center of B andH are 10.67 and 10.59 A for

the L- and M-sides, respectively and the L-side is slightly distant as shown

in Figure 7. However, the orientations of the HL and HM are somehow

different. The distance between the I-carbons of Band H, which have the

largest amplitude in their LUMO's, are 5.03 and 5.46 Ain the L- and M­

sides, respectively. The L~side is more distant by 0.4 A than the M-side.

This orientation asymmetry could be derived from the specific protein

environment surrounding H's. HL has a glutamate side chain (GLU L104)
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near the carbonyl group at the ring V. The GLU LI04 is thought to have

a hydrogen bond with the oxygen of the carbonyl group [36,37] and

might be controlling the orientation of the HL , since in the M-side, OLU

LI04 is replaced to valine (MI31) [2,8] which has no polar group. The

orientational difference affects the atomic contribution asymmetry of the

I-carbon and results in the asymmetry of the total Fock element.

The importance of the nodal condition is indicated in Figure 6. The

atomic contributions between the 1- and 2-carbons in the ring I of H's

have opposite signs and cancel each other. The LUMO of His have a node

between the 1- and 2-carbons, which makes their contributions different

SIgns.

8. Electronic factor of the CR from B to P

The electronic factor of the CR from BL to P is rather small than that

of the ET as shown in Figure 3, although the both reactions transfer

electron between the same chromophores. In this case, the HOMO and

LUMO of P must be compared, since the ET occurs from the LUMO of P

to the LUMO of B and the CR from the LUMO of B to HOMO of P. The

Fock matrix element, ii} (i=LUMO of Band j=HOMO of P), is also

analyzed by the decomposition and compared with the ET reaction in

Figure 4 (b). The ring III contribution is rather reduced, which affects

the reduction of the electronic factor.

In Figure 8, MO popUlation of the HOMO of P is compared with that

of LUMO. Population of the HOMO of P is significantly different from

that of LUMO of P. The HOMO is delocalized in the whole chromophore

and the maximum is seen in the vicinity of the rings II and III of PM,

which is well separated from the ring III of BL. The population in the

vicinity of the ring I of PM is significantly reduced. The MO coefficient

condition is much less fulfilled in the CR than the ET. Accordingly, these
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populational difference causes the asymmetry of the electronic factor,

which would be one of the important reason of the efficient ET in the RC.

9. Protein effect to the electronic factor

Protein effects on the ET reaction are classified into three; a structural

effect which controls the chromophore alignment, an electrostatic effect

to the electronic structure of chromophores, and an electronic effect to

the electronic factor through protein wave functions. In the RC, the

structural effect has definitive roles in the ET as described before. The

unidirectionality and the large electronic factor of theET from BL to HL

are originated from the geometrical asymmetry between L- and M­

branches. The electrostatic effect of protein, which is taken into account

by a point charge model, is shown to have a minor effect on the electronic

factor of the ET, since, the differences of the electronic factor in gas

phase and protein model are calculated to be small. The unidirectionality

could be explained without introducing protein effect. However, we note

that on the energetics of the ET, the protein electrostatic effect would

have a contribution to the unidirectionality as reported in the previous

articles [38,39]. The electronic effect of protein has also a minor effect to

the ET in the RC, since the unidirectionality could be explained without

borrowing the wave functions of protein. The bacteriochrophylls

included in the RC are powerful donor and acceptor, since they have

higher HOMO and lower LUMO levels than those of protein.

10. Conclusion

The electronic mechanism of the electron transfer in the

photosynthetic reaction center of Rhodopseudomonas viridis are studied

by using the SAC/SAC-CI wavefunctions which include the electron
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correlations of the chromophores. The electronic factors of the electron

transfers and charge recombinations are calculated and analyzed

The unidirectionality of the electron transfer is explained by the

asymmetry of the electronic factor. The advantage of the L-side is shown

for the transfers both from P to B and from B to H. The ratios of the

electronic factor are 15.2 and 6.56 for P ~ Band B ~ H, respectively.

The efficient feature of the electron transfer can be explained by the

smallness of the electronic factor of the charge recombination.

The electronic factors are analyzed by the decomposition to the atomic

contributions. In order to have a large electronic factor, three conditions

should be required; the proximity condition, the MO coefficient

condition, and the nodal effect. The asymmetry of the electronic factor

of the electron transfer from P to B is ascribed to the geometric

asymmetry of P (the proximity condition). The distance between the

rings I of PM and III of BL which fulfill the MO coefficient condition are

closer by 0.5 Athan that in M-side. The asymmetry in the ET from B to

H is also ascribed to the geometric asymmetry (the proximity condition).

In this case, the orientational asymmetry of the H's have a definitive role.

The smallness of the CR electronic factor is attributed to the difference in

the MO populations between the LUMO and HOMO of P (the MO

coefficient condition). The considerable nodal effect is found in the

transfer integrals for B to H transfers, in which the contributions from

the adjacent atoms are canceled by the node in the LUMO's of H.

Protein effect on the geometry of the RC have a decisive role in the

electron transfer mechanism. The difference of the molecular structures

between L- and M-branches introduces asymmetric alignment to P and

H's through intermolecular interactions. On the other hand, prot~in

electrostatic effect to the electron distribution is found to be small and

have little influence to the electronic factor asymmetry. Present result
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(A-5)

explains the unidirectional character without invoking the electronic wave

function of protein.

Appendix

The CT state, P+B -, defined as eq. 2-6 is not a pure singlet state, since

the state is defined as the product of the two doublet wave functions, p+

and B-. In eq. 2-6, the operators, IP and EB
, are excitator for the ionized

and electron attached states including one and two electron processes.
p p p p pp p p p

1 = l:e, (S)1, (S)+ l:l:CIJ(D)1J (5)R j (S)
J J j

=*I;CS){C;CS) + ~CrCD)RJCS)} (A-I)

B B B

EB
= LC~(S)E~(S)+ Ll:C~(D)E~(S)RJ(S)

J J J

= ~E:CS){C:CS)+~C~CD)RJCS)} (A-2)

Here, 1;(5), E~(5), and R;(S) are one-electron excitators for the

ionized, electron attached, and singlet excited states. C; (5) and C~ (5)

denote SAC-CI coefficients for the one-electron excitators and C~(D)

and C~ (D) denotes those for the two-electron excitators. Using eq. A-I

and 2, the eq. 2-6 is rewritten as

\jIP+B- = ffI;(S)E;(S){C;(S) +fC~(D)RJ(S)}
, K j

x{C:CS) + fC:LCD)R~CS)}exp(SP +SB)<I>~+B (A-3)

Here, the products of the excitator, 1;(5)E; (S), are written as

IJ (S)E~(S) =ajCXa:cx . (A-4)

Since A-4 is not a singlet operator, the spin contamination occurs in A-3.

For the spin-symmetry adaptation, the RJ+B (5) operator is introduced, in

which the beta counterpart is added into A-4.

RP+B(S) - 1 (t t )
1= J2 ajaaad +ajfJ aa/3

Then a pure singlet state for the P+B~ state is obtained as,
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'fP
'
B' .J ~i+B(s){ei(~)+~f~(1)R;(f)}

C • ",' " .'.. " _ ~ .. ,_~ _ • ...... '.... r .~' -0

X{eNs) +~ e~(D)RJ (s)}exp(Sf +SB )m~+B; (A.c6)
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Table 1
Dimensions of the SACISAC-CI calculationsa.

Chromophore p BM BL HM HL MQ UQ

-VI
N

Ground stateb

Before 196049700 7149870 7661654 6228684 6228684 1023165 1677195
After 37549 7570 7582 7298 7983 5021 4347

Ionized state
Before 1782090
After 9902

Electron attached state
. Before - 340290 356174 296436 296436 75896 111691

After - 25330 25627 24300 24096 15599 16938

a Calculations with protein model
b Correlation energies for the ground states of P, BM, BLI HM' HL , MQ, and UQ are -0.15752,
-0.12277, -0.11546, -0.13499, -0.15073, -0.13538, and -0.88780 a.u., respectively.



Table 2
Electronic factors a IHl~ 2 (xI0-9) in a.u. with some approximations

P-7B B-7H
Approximation

L M LIM L M LIM

Single-configuration approximation

Fb 37.36 1.83 20.42 116.96 17.96 6.51

ftC 37.13 1.85 20.07 116.96 17.96 6.51

Multi-configuration

SAC-CI 25.21 1.65 15.27 104.43 15.93 6.56

Estimated values from an experiment

21d,14e 72d,54e

a Electronic factors calculated with a protein model
b Fock approximation for total hamiltonian
C Total hamiltonian
d Reference 31
e Reference 35
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MQ

Figure 1. Structure of the chromophores in the photosynthetic
reaction center of Rps. viridis. The nuclear coordinates are
taken from ref. 2.
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1
o

Figure 2. Calculational models for P, B, and H. For P, only monomer is shown. Some
substituents in the X-ray structure are replaced by protons in the present calculations (see text).
Labelings of the atoms for P, B, and H are also shown.
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Abstract

The SAC(symmetry adapted cluster)/SAC-CI(configuration

interaction) general-R method is successfully applied to the photoelectron

spectrum of ethylene. The theoretical spectrum satisfactorily reproduces

the outer- and inner-valence regions of the spectrum. The exponential

generation (EG) algorithm followed by the perturbation selection (PS) is

shown to be useful in the generation of small and yet effective higher­

excitation operators for the SAC-CI general-R method. The peak at 23.7

eV is assigned to the "twinning" ionized states, the 22Ag and 32Ag states,

and the peak: at 27.4 eV is attributed to the 62Ag and 72Ag states. In the

energy region around 31 eV, some ionized states are suggested to locate

with small intensities. The r2B3g state obtains its intensity by the initial

state configuration interaction.
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1. Introduction

Ethylene has long been a key molecule in the experimental [1-8] and

theoretical [1,8-14] studies of photoelectron spectra. The assignments of

the outer-valence ionizations are now well established [1,8-14Lbut some

problems still exist in the assignment of the shake-up peaks in the inner­

valence region of the spectrum [8-14]. Different theoretical assignments

[8-14] were reported for the peak at 23.7 eV; "twinning" [8,10,11] (two

ionized states compose the peak) and "non-twinning" ones [9,12-14]

(single ionized state composes the peak). For the quite small hump at 31

eV, the SAC-CI theoretical assignment were proposed previously [12~13]~

but the accuracy of the calculations were not satisfactory, since only the

single and double (SD) ionization operators were included in the linked

term.

The reason of the complexity in the theoretical calculations of the

inner-valence ionization spectra lies in their multi-electron nature:

simultanious ionization and excitation process. For quantitative

descriptions of such processes, large computational efforts are generally

required, since the number of excitation operators increase markedly for

the higher-order excitations [8,14]. However, we believe that the number

of the excitation operators which are really necessary for quantitative

calculations should be limited and can be generated by the exponential

generation (EO) algorithm [15]. The description of such state must be

improved dramatically by including such excitation operators. In our

SAC [16] /SAC-CI [17] method [18,19], such important higher-excitation

operators are included in the linked terms by the general-R (g-R)

algorithm [20] in addition to the single and double excitation operators in

the SD-R method.
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The spirit of the EG algorithm is that the important higher-excitation

operators must be the produsts of the lower important excitation

operators [15]. The EO algorithm is a selective generation method of the

higher-excitation operators from the lower-order ones. The SAC-CI

calculations including such higher excitation operators (general-R) have

been shown to give results close to the full-CI ones with small numbers of

operators [20-22]. On the other hand, the perturbation selection (PS)

procedure [23] is also a reliable method of selection, so that we have

proposed a combined use of the EO and perturbation selection [22,23].

We first do EG for higher excitation operators and then do PS with

respect to the main configurations. The PS alone without EO is too time

consuming for calculations of moderate-size molecules.

In this report, the SAC-CI (g-R) method with the EG + PS for higher­

excitation operators is applied to the ionized states of ethylene. The

assignment of the photoelectron spectrum in both the outer- and inner­

valence regions are given and compared with the previous experimental

and theoretical results.

2. Computational detail

We calculate vertical ionization energIes of ethylene usmg

experimental geometry [24]. The basis sets of calculations are as follows:

for carbon, Huzinaga-Dunning (9s5p)/[5s3p] set [25] plus d-polarization

function (a=0.75) [12] and for hydrogen, Huzinaga-Dunning (4s)/[3s] set

[26] plus p-polarization function (a=0.95), and at the center of the C=C

bond, the s, p, and d functions «({=IA, 0.5, and 1.02, respectively) [27]

are used. The number of the SCF MO's are 74. The SAC-CI g-R

calculations are performed within the active space compo~ed of the 6

occupied and 61 unoccupied MO's: the Is orbitals of carbon and some
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higher virtual MO's are eliminated from the active space. In the SAC-CI

(g-R) method, the EG algorithm [15] is used for the generation of the

triple and quadruple excitation operators. A preliminary SD-CI

calculations were carried out to select the operators for the EO and the

thresholds for the EG, {ASMM, ADMM}, are set to {O.OOS, 0.04}. The

superscripts, "S" and "D", denote single and double excitation operators,

respectively, and the subscript, "MM" , denotes the product of the

excitation operators. The excitation operators whose SD-CI coefficients

are larger than the above thresholds are chosen as the operators for the

EG. In the present calculations, about 6000 operators from single to

quadruple excitations are generated for each symmetry. The BIg and Au

states which are known not to exist in the energy region lower than 30 eV

of the photoelectron spectrum [8] are excluded from the calculations. The

generated configurations are further selected by the perturbation selection

prodedure with the threshold of Ix 10-5 hartree for the main

configurations chosen from the SD-CI results. Table I shows the results

of the selections. All single (ionization) operators and selected higher

operators (PS for doubles and EG + PS for triples and quadruples) are

included in the linked term. Table 1 shows that many of the operators

generated by the EG are further selected by the PS, which shows the

effectiveness of the EG algorithm.

The SCF MO's are calculated by HONDO version 8 program [28].

For the SAC-CI calculations, the development version [29] of the SAC8S

program [30] are used.

3. Result and discussion

The SCF Mas of ethylene are expressed as

(core)\2ag)2(2b l u)2( 1b3u)2(3ag)2( 1b2g)2( 1b2u)2(1 b3g)o(3b I u)o..... ,
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where the number in the superscript shows the occupation number. The

natures of the 2ag, 2bl u, 3ag, and 3blu MO's are 2sO", 2sO"*, 2pO" and 2pO"*,

respectively, the 1b3u and 1bz g MO's are in-plane 2prrj and 2p1ti*

characters, respectively, and the 1bzu and 1b3g Mars are out-of-plane

2p1to and 2p1to* characters, respectively, where the subscripts i and 0

denote in-plane and out-of-plane, respectively.

In Table 2, the ionization energies, monopole intensities, and main

configurations of the ionized states are summarized. The calculated

monopole intensity includes both final-state configuration interaction

(FSCI) and initial state configuration interaction (ISCI) [31]. The

experimental ionization potentials and the previous SAC-CI(SD-R) [12],

2ph-TDA [10], and MRSDCI [8] results are also shown. In the previous

SAC-CI (SD-R) calculations [12], the intensities were calculated including

only the FSCI. The ionized states whose intensities are less than 0.001 are

not shown.

In Figure I, the experimental photoelectron spectrum (PES) and the

present theoretical spectrum are shown. For the experimental spectrum,

we adopt the spectra measured by Bieri et. a1. [7] (10 - 25 eV) and Gelius

[5] (25 eV -; expanded along the vertical axis). The bars connecting

among experimental peaks represent the primary-satellite relationships

obtained by the present calculations. The present results reproduce well

the experimental PES in both the outer- and inner-valence regions.

The primary peaks observed at 10.51, 12.85, 14.66, 15.87, and 19.23

eV [4] are assigned to 12B2u, 12B 2g, 1ZA g, 12B3u, and 12Blu states

calculated at 10.20, 12.75, 14.50, 15.83, and 19.18 eV, respectively. The

average discrepancy between the experiment and theory is 0.13 eV. This

assignment is the same as the previous one [l ,8-14]. They represent

almost pure one-electron processes. The 12B2u, 12B2g, 12Ag, 12B3u states

are the ionization of the carbon 2p electrons in the outer-valence orbitals,
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1b2u, 1b2g , 3ag , and 1b3u, respectively. The 12B Iu state is the ionization

from the 2blu orbital (2s<J*).

There have been a controversy on the assignment of the peak observed

at 23.7 eV as mentioned in the introduction: "twinning" or "non­

twinning" [8-14]. The present result supports "twinning" results proposed

in Refs 8, 10, and 11. This peak is assigned to the two ionized states,

22Ag and 32A g states calculated at 23.54 and 24.55 eV, respectively. The

main configuration of the 2 2A g state is 2h-l p state, (lb2ur2( 4ag) 1, to

which lh state, (2agt l , strongly mixes. The 32A g state is the counterpart

of the 22A g state. In addition, many triple-excited configurations also mix

as sub-configurations. The origin of the "twinning" state is a strong

mixing between the 2h-l p and Ih configurations and the intensities of

these states arises from the (2agt 1 configuration. In other words, the

primary peak of the ionization from the 2ag MO splits into two by the

mixing of the 2h-lp state (lb2ut 2(4ag)l.

A comparison with the previous calculations indicates that the electron

correlations take a large part in the "twinning" phenomenon and that the

inclusion of the small but important higher-excitation operators by the

SAC-CI (g-R) method greatly improve the description of the states.

Recently, a large-scale MRSDCI calculation with a large basis set [8] was

reported, in which the "twinning" was reproduced by using state-averaged

natural orbitals as a reference function but not by the SCF MO's.

Further, the previous "non-twinning" results by theSAC-CI (SD-R)

method [12,13], in which the 22Ao state was calculated to be an one-
o

electron process, are dramatically improved in the present g-R calculation

by the inclusion of the 3,4-ple excitations as linked term and 5,6-ple

excitation as unlinked terms.

The very weak peak observed at 27-30 eV region is assigned to 62Ag

and 72A g states calculated at 28.05 and 29.60 eV, respectively. This
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assignment is the same as in 2ph-TDA [10] and MRSDCI [8]. The main

configuration of these states is (2b Iut I (1 b2ut I (I b3g) I and other double and

triple excitations strongly mix in it. The intensity of the states are

borrowed from the (2agt I configuration.

A quite small hump was observed at 31 eV in the PES [5] and the

previous 2ph-TDA [10] results showed some 2Ag exist in this region. The

present result also suggests the existence of some low-intensity ionized

states, which belong not only to the 2Ag states but also to the states in the

other symmetries. In Fig. 2, the ionized states whose intensities are

larger than 0.001 are shown. The 102B 1u, 112B2u, 122Ag, and 142B3u

states are calculated at 31.47,31.65,32.07, and 33.29 eV, respectively,

and many other ionized states with very small intensities are calculated in

this region. The intensities of these states are due to the configuration

mixings with the lh states, though they are small.

In the recent high resolution PES [8], a new correlation peak was

observed at 21.4 eV. In the MRSDCI calculation [8], the four ionized

states were carefully attributed to this new peak. Among them, the 22B lu

and 32B 3u states calculated at 20.34 and 20.22 eV, respectively, had

relatively large intensities [8]. Our result propose to assign the new peak

to 22B lu state calculated at 20.98 eV, a satellite band of the 12B lu state.

The main configuration is (2b2u)-l(3ag)-1(lb3g)l. The 32B3u state

calculated at 22.84 eV is attributed to the lower-energy side shoulder of

the primary peak at 23.7 eV as described below. The 2ph-TDA method

[10] led to a similar result; the 22B lu and 32B3u state were calculated at

20.32 eV and 23.22 eV, respectively.

The 32B 3u and 42B 1u states calculated at 22.84 and 25.21 eV,

respectively, are suggested to be the lower and higher side shoulder of the

peak at 23.7 eV. The 32B3u and 42Blu states are the satellite peaks

belonging to the main peaks at 15.87 and 19.23 eV, respectively.

172



In the present calculation, many other ionized states with small

intensities are calculated. The 12B3g state is calculated at 17.55 eV and

locates at the shoulder of the primary peak at 15.87 eV. The nature of

the state is (I b2u)-2( 1b3g) I. We note that the B3g symmetry have no 1h

state, which means there is no primary peak to borrow intensity. The

observed intensity is a result of the initial state configuration interaction

(ISCI) [29]. In the ground-state SAC wave function, the double

excitations, (l b2u)-2(l b3g)2 and (l b2u)-2(l b3g) [(2b3g) [ have relatively large

coefficients. The first one is the double excitation from HOMO to

LUMO, which often becomes important in 7t-conjugated systems. The

(1 b2u)-2( 1b3g) [ configuration has its intensity from these two

configurations. The 102B3g state calculated at 30.02 eV also has small

intensity through ISCI effect.

In Table 2, the previous results by SAC-CI (SD-R) [12], 2ph-TDA

[10], and MRSDCI [8] are also shown. The previous SAC-CI (SD-R)

calculations in 1984 with the basis of [5s2pld/2s] plus three bond centered

functions were quite efficient, since the dimension of the calculations

were less than one hundred in each symmetry, and gave accurate results

for the primary peaks. However, since the calculations did not include

higher-excitation operators and the ISCI effect, the ionization potentials in

the inner-valence region were overestimated and "non-twinning" result

was led for the peak at 23.7 eV. The 2ph-TDA calculations with the DZP

basis were reported in 1978. Although the results underestimated the

ionization potentials by about 0.8 eV for the entire spectrum, the energy

separations among the ionized states were reproduced well. Recently, a

quite large MRSDCI calculations with the basis of [6s7p3dlf/5s2pld] plus

four bond centered functions was reported. This is the best calculation so

far made and the results reproduced the detailed spectral features.

Although the dimensions of the present SAC-CI (g-R) calculations are
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if ,q.uite' small ,,(about AOOO...5000 'configurations in ,eachlsymmetry) in

, comparisort with thisMRSDCI calcUlation'" the n~sultsare comparable :as

.seen.from .Table 1., ·Thisj-esult shows· the. SAC~CI (g-R)'methdd based: bn

;; the EO + 'PS,algorithrii is quite effective for.. tne::study )of the:iIi111U-
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Table 1
Dimensions of the SAC/SAC-CI (general-.R) calculations for ethylene.

Number of configurations ( EGa + PSb / EGa)

State Order of excitations
Total

1 2 3 4

...... Singlet ground state
-.....l Ag 64/64 3176/9453 3241/9518-.....l

Ionized states
Ag 2/2 283 /340 3516/4481 1005 /1823 4806/6646
B2g 1/1 244/324 3392/4518 970/ 1893 4607 /6736
B3g 0/0 185 /224 3024/4189 980/1961 4189/6374
B\u 1/1 263 /340 3511/4608 854/1842 4629/6791
B2u 1/1 179/224 2928/4043 859/1940 3967 /6208
B3u 1/1 247 /326 3621/4545 1025 /1896 4894/6768

a EG denotes exponential generation.
b PS denotes perturbation selection.
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a The characters in the parentheses, "s", "m", and "w" denote the intensities of the peaks, strong, medium, and weak, respectively.
b Reference 12. c Reference 10. d Reference 8. e Monopole intensity including the final-slate and initial-state configuration interactions.
f Reference 4. g Reference 6. h. Reference 5.
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Summary. Theoretical electronic spectrum of Tc04- calculated by the

SAC(symmetry adapted cluster)/SAC-CI method is presented. The

spectrum is in good agreement with the experimental one. The observed

peaks are assigned and the existence of several absorptions in the energy

region higher than that observed is predicted. The difference and the

similarity between the electronic spectra of TC04- and Mn04- are

clarified. The spectral difference between Tc04- and Mn04- is due to a

remarkably high energy shift of the 31T2 state of TC04-.

Key wards: TC04-- SAC/SAC-CI method - Electronic spectrum­

Excited state
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l.Introduction

Four coordinated oxo-metal complexes are important as oxidizing agent.

Their visible and ultraviolet spectra have been reported[ 1], and

theoretical assignments[2] were attempted by Ziegler et al. in 1976. Some

complexes show interesting photochemistry as observed for Mn04-[3,4].

We have studied the electronic spectra of the tetraoxo metal complexes,

CrO,t[5], MoO/-[6], Mn04-[7], RU04[8], Os04[8], and also Cr02Cb[9] by

the SAC (symmetry adapted cluster)[lO] and the SAC-CI (symmetry

adapted cluster-configuration interaction)[ll] method[12]. We have

investigated the similarity and the difference in the electronic spectra of

these tetraoxo metal complexes[5]. It has been shown that a sufficient

inclusion of electron correlations for both ground and excited s~ates are

important for reliable ab initio assignments of the spectra.

Technetium belongs to the group VIlA metal as manganese and Tc04­

IS also a strong oxidizing reagent[13]. However, the electronic

spectrum[14] of Tc04- shown in Figure 1 is very different from that of

Mn04-. The peaks of TC04- lie in a higher energy region than those of

Mn04-. TC04- does not have a broad band like that of Mn04- at 3.47 eV,

and the energy separation between Band I and II in Mn04- is larger than

that of TC04-. The correspondence between Band Ills of these compounds

is unclear.

In this study, we calculate the ground and excited states of TC04- by

the SAC/SAC-CI theory and present a theoretical assignment of the

observed spectrum and a prediction of the peaks so far not observed. We

analyze the bonding nature of the ground and excited states and compare

the natures of the excited states with those of the other axo-metal

complexes studied previously[5-9].
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2. Computational details

The geometry of Tc04- is fixed to the Td symmetry with the Tc-O bond

distance of 1.71 'A adopted from the experimental data of X-ray

crystallography[15].

The gaussian basis set we use in this work is valence DZ and TZ

levels. We use for Tc the (l6sl0p7d)/[7s3p3d] set[l6] and the two

polarization p-functions with the exponents a=0.028 and 0.086[16], and

for 0 the (9s5p)/[4s2p] set[16]. From our experience[5-9], this basis set

would reliably describe the valence excited states of this molecule.

The HF orbitals calculated by the HONDO program[l7] are used as

reference orbitals. Electron correlations in the ground state are treated by

the SAC[IO] method and those in the excited states by the SAC-CI

method[ll] with the use of the program SAC85[18]. The space of the

active orbitals must be sufficiently large to accurately describe the

valence excitations. The active space of the present SAC/SAC-CI

calculations consists of 12 higher occupied orbitals and 36 lower

unoccupied orbitals: all valence-type occupied and unoccupied orbitals are

included. For the linked term, all single excitations and double excitations

selected by the perturbative method[ 19] are included. The main

configurations whose coefficients are larger than 0.1 in the 12 lower

solutions in a preliminary SE-CI calculations in each symmetry are used

as the reference configurations for the perturbation selection[19]. The

energy thresholds Ag = 4.0 x 10-5 hartree for the ground state and Ae =

7.0 x 10-5 hartree for the excited states are used in the present

calculation. The numbers of the linked configurations are shown in Table

I.
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3. Results and discussions

3.1. Ground state of TcO/

The SCF orbital sequence and the orbital characters are shown in Table

II. The plus (+) and minus (-) signs denote the bonding and antibonding

combinations, respectively. The lowest three valence orbitals Ie, I t2, and

lal are the bonding MOs between the 4d orbitals of Tc and the 2p orbitals

of O. The higher occupied orbitals 2t2 and I t] are nonbonding MOs

mainly composed of the oxygen 2p orbitals. In particular, the highest

occupied MO (HOMO) 1t1 is completely localized on oxygens. The lowest

unoccupied MO (LUMO) 2e and the higher unoccupied 4t2 MO are

antibonding between the Tc 4d and the 0 2p orbitals. These antibonding

MOs have larger amplitudes on Tc than on O. The unoccupied 2aI and 3t2

MOs are the nonbonding MOs mainly composed of the Tc 5s and 5p

orbitals, respectively.

Comparing with RU04[8] and MoOl-[6J, which are isoelectronic with

Tc04-, orbital energies of the valence occupied MOs are shifted by about

+7.5 and -8.0 eV, respectively. Further, the energy shifts are larger for

the bonding orbitals than for the ligand orbitals by about 1 eV. The

bonding MOs having larger amplitudes on the metal than the ligand MOs

feel the change of the nuclear charge more sensitively.

.Table III shows the total energies, Mulliken atomic orbital populations

and net charges of Tc04' calculated by the HF and SAC methods. By

including electron correlations, the ionicity of the Tc-O bond is much

relaxed, and the relaxation is largest on the Tc 4d orbitals. Table IV

shows the occupation numbers of the natural orbitals of the SAC wave

function. In comparison with the HF ones, the occupations of the I t] and

2t2 MOs decrease more than those of the other occupied orbitals. In the

186



unoccupied MOs, the occupancies of the 2e and 2al MOs increase by

including electron correlations. These changes in the occupation numbers

result in an increase of the Tc 4d occupations and a decrease of the 0 2p

occupations as shown in Table III. Similar relaxation was also found in

our previous studies on Mn04-, CrO/-, etc.[5-9], so this phenomenon

seems to be quite general.

3.2 Excited states of TC04'

Figure 1 shows the experimental electronic spectrum of TC04- together

with that of the related complex, Mn04-[l4]. In the spectrum of TC04-,

there are two strong peaks at 4.27 and 5.00 eV (Band I and Band II) and

a weak peak at 6.59 eV (Band III). These peaks would be due to the

allowed transitions. As compared with the electronic spectrum of Mn04-,

(1) the peaks of TC04- shift entirely to higher energy region, (2) Band I

and II are different from those of Mn04- in both the energy splitting and

intensity, (3) in Mn04-, the Band IIa and lIb are due to the different

excited states[7], but in TC04- we do not know how many states there are

in Band II, and (4) the strong peak of Mn04" at 6.5 eV is not observed for

TC04- in the observed energy region.

We summarize in Table V the SAC/SAC-CI results for the singlet

excitation energy, oscillator strength, and the net charges on Tc and O. In

the Td symmetry only the transitions to the IT2 states are dipole-allowed.

The SACISAC-CI theoretical spectrum for TC04- is shown in Figure 2

and compared with the experimental spectrum. The theoretical spectrum

reproduces well the excitation energies and the intensities of the observed

peaks in 4 - 6 eV region. From Table V the excited states in TC04- may

be divided into two regions (Region A and Region B). Region A is 3.0 -
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Band II and III in TC04- is much larger than that between Band IIa and

lIb in Mn04-, though the corresponding excited states have similar nature.

It is due to a remarkably high energy shift of the 31T2 states (1 tl ~4t2) in

TC04-, and this shift is easily explained from the orbital energy levels

shown in Figure 4. The orbital energy difference between the itl and 4t2

MOs in TC04- is much larger than that in Mn04-. The 4t2 MO of TC04­

lies in high energy, since the anti-bonding interaction between metal and

ligand is larger in TC04- than in Mn04-. This is because the Tc 4d orbital

is more diffuse than the Mn 3d orbital and then the metal-ligand overlap

interaction is larger in Tc04- than in Mn04-.

In the previous study on the photochemical decomposition reaction of

Mn04-[4], l l T2 and 3 l T2 states are shown to play important roles.

Though no report for the photo reaction of TC04- is found, the r l T2 and

2 l T2 states are expected to be important as photochemical reaction

channels, since in Tc04-, these states correspond to the l l T2 and 3 l T2

states of Mn04-.

For the energy region higher than Band III, there is no experimental

data for the electronic absorption of Tc04-. However, as seen from Table

V, we can predict an existence of the three dipole-allowed electronic

states 4 1T2, 5 1T2, and 6 1T2, whose excitation energies are calculated at

7.45, 7.56, and 8.19 eV, respectively, and the intensities to be weak,

weak, and strong, respectively. The 4 1T2 state has a mixed nature of L ~

A and L ~ M transitions, and the intensity is low. The 5 1T2 and 6 1T2

states originate from the L to M (2t2~2al) excitation, and so a larger

amount of electronic charge on 0 is transferred to the metal than in the 1

- 4 1T2 states in Region A as seen from Table V. The 4 1T2 state lies just

on the border of Region A and Region B, since as seen from Table V, the

nature of the transition switches from L ~ A to L ~ M on this state and
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the amount of charge transferred from ligand to metal is median between

those in Region A and Region B.

The peaks of the 51 Tz and 6 1Tz states calculated at 7.45 and 7.56 eV

for TC04' would correspond to the peak III of Mn04' shown in Figure 1.

In particular, the 6 1T2 state of TC04' has a large intensity of 0.0339 so

that it would correspond to the strong peak (Band IV) observed at 6.5 eV

for Mn04' (Figure 1). In comparison with our previous results for Cr042
­

[5], the 61T2 state of TC04- has the same character as the 5 1T2 state of

CrOl-, which gives a strong peak at 6.0 - 7.0 eV(20). The 4-6 1Tz states

may lie higher than the rust ionization potential, since they are excitations

from the orbitals lower than It! (HOMO). Thus, we propose to examine a

new band system in the higher energy region (7.5 - 8.0 eV) of the Tc04"

spectrum.

In the electronic spectra of LiMn04·3H20 and Ba(Mn04)2·3HzO, a

weak absorption called "Teltow band" was observed[2I] in the red side of

II Tz state. This band was calculated to be a symmetry forbidden 11T 1

state in our previous work[5,7]. This state can be observed by a symmetry

lowering from Td to C3v in its crystal. For Tc04", the IITI state is

calculated at 3.83 eV and has the same nature as the symmetry allowed

llT2 state calculated at 4.28 eV (Band I), the excitation from ligand to

antibonding MO (2tl~2e). In this class of complexes like Mn04-, Cr04",

and so forth, the II T I and 11 T2 states originate from the same MO

excitations and the IITI state is always at the red side of the 11T2 state,

though the energy itself is different for different complexes. The energy

difference between the II T 1 and 1[T2 states is roughly due to the

difference in the exchange integrals.

Compared with Mn04', all the peaks observed for TC04- are shifted to

higher energy region by 1.5 - 2.6 eV, as seen from Figure 3. This is
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roughly explained as follows[5]. In the frozen orbital approximation, the

HF excitation energy may be expressed as

AEi~a = £a - £i - Jia + 2Kia

Because the transitions are from ligand to metal, the transitions are

affected by the metal-ligand bond length. Since the Tc-O bond is longer

than the Mn-O bond, the Jia values of TC04- should be smaller than those

of Mn04-.

4. Conclusion

In this study, we have applied the SAC/SAC-CI method to the ground and

excited states of TC04-. For the ground state, the electron correlation

works to relax the ionicity of the M-O bond. For the excited states, the

observed three absorption peaks in the electronic spectrum are assigned to

the lower three dipole-allowed ITz states. Further, the existence of the

weak and strong peaks in the energy region higher than the observed one

is predicted. The similarity and the difference in the electronic spectra of

TC04- and Mn04- are clarified. The Band II in the spectrum of Tc04· is

quite different from the corresponding band in the Mn04- spectrum, as

seen in Figure 1. The reason is the remarkably high energy shift of the

3 1Tz state (It1-74tz) of TC04-, and is due to the largerantibonding nature

of the 4t2 MOs of TC04- than that of Mn04-.
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Table 1. Dimensions of the SAC/SAC-CI calculations of
Tc04-

Symmetry

Ground state : SAC
IAI

Excited statea : SAC-CI
lAI

IA2

lEI

After selection

3686

7444
6676
7191

Before selection

23809

23809
23280
23436

a IB2 states are degenerate with IBI states in the tetrahedral symmetry

19:4' .!.



Table 2. HF orbital energies and characters

Symmetry
(eV)

Charactera Orbital energy

Occupied orbitals
Ie Tc(4d)+O(2p) :B -12.92
It2 Tc(4d)+O(2p) :B -12.84
lal Tc(4d)+O(2p) :B -8.66
2t2 O(2p) :L -8.60
Itl O(2p) :L -7.77

Unoccupied orbitals
2e Tc(4d)-O(2p) :A 4.62
2al Tc(5s) :M 5.65
3t2 Tc(5p) :M 5.70
4t2 Tc(4d)-O(2p) :A 7.35

a (+) and (-) denote bonding and antibonding combinations, respectively.
B, A, L, and M mean bonding, antibonding, ligand and metal orbitals,
respectively
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Table 3. Total energy and the valence electron population for the ground state of
Tc04-

Energy Tc 0
Method......

\0 (Hartree) 5s 5p 4d charge 2s 2p charge
0\

HF -4500.66022 0.032 0.310 4.755 +1.800 1.968 4.737 -0.700
SAC -4501.15316 0.035 0.361 5.013 +1.487 1.967 '4.660 -0.622
~a -0.49294 +0.003 +0.051 +0.258 -0.313 -0.001 -0.077 +0.078-aThe difference between HF and SAC values



Table 4. Occupation numbers of the HF orbitals and the SAC
natural orbitals for the ground state of Tc04-

Orbital HF SAC Difference (per MO)

Occupied orbitals
Ie 4.0 3.9542 -0.0458 -0.0229
1t2 6.0 5.9240 -0.0760 -0.0253
1al 2.0 1.9688 -0.0312 -0.0312
2t2 6.0 5.9029 -0.0971 -0.0324
Itl 6.0 5.8961 -0.1039 -0.0346

Unoccupied orbitals
2e 0.0 0.1237 +0.1237 +0.0619
2al 0.0 0.0494 +0.0494 +0.0494
3t2 0.0 0.1078 +0.1078 +0.0359
4t2 0.0 0.0252 +0.0252 +0.0084
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Table 5. Ground and excited states of TeO,r

Main Excita[ion energy (eV) Oscillator strength Net charge

State configuration nature;)

(C2:O.3) exptl. SAC-CI exptl. SAC-CI Tc 0

XAI I.OOC HF ) 0.00 + 1.486 -0.622

ITI 0.96(1 tl ~2e) L~A 3.83 forbidden +1.283 -0.571

ITz 0.77(ltl~2e) L~A 4.27 4.28 middle 0.0171 +1.293 -0.573

0.57(2t2~2e) L~A

2T) 0.95(2t2~2e) L~A 4.61 forbidden + 1.319 -0.580

IE 0.96(la)~2e) B~A 4.98 forbidden +1.305 -0.576

2Tz 0.71(2t2~2e) L~A 5.00 5.29 strong 0.0415 +1.315 -0.579

2E 0.67(1 t( ~4t2) L~A 6.08 forbidden +1.268 .-0.567

3Tz 0.55(1 tl ~4t2) L~A 6.59 6.20 weak 0.0025 +1.259 -0.564

3TI 0.57(ltl ~4t2) L~A 6.42 forbidden +1.227 -0.557

lA2 0.48( 1tl~4t2) L~A 6.54 forbidden +1.237 -0.559
4TI O.85(ltl~2al) L~M 6.95 forbidden +0.657 -0.414
tAl O.48(2t2~4t2) L~A 7.03 forbidden +1.274 -0.569
5TI 0.56(2t2~4t2) L~A 7.10 forbidden +1.213 -0.553
3E 0.66(2t2~4t2) L~A 7.19 forbidden +1.249 -0.562
4T2 O. 39(2t2~4t2) L~A 7.45 weak 0.0000 +1.042 -0.510

0.37( 1al ~4(2) B~A

0.34(2t2~2a1) L~M

0.32(ltl~3t2) L~M

5T2 O.58(2t2~2al) L~M 7.56 weak 0.0046 +0.858 -0.465
0.42(1al-14t2) B~A

2AI 0.85(1a) ~2al) B~M 8.18 forbidden +0.608 -0.402
6Tz 0.67(2t2~2al) L~M 8.19 strong 0.0339 +0.623 -0.406

aB, A, Land M denote bonding, anti bonding, ligand and metal orbitals, respectively
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