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Preface

Various models in condensed matter and quantum field theories have a large degree
of freedom. In the progress of efficiency of computers, direct computational methods
for those models become one of powerful tools for researchers. The following three
methods are important: Monte Carlo method, molecular dynamical method and
exact calculation method. The last method needs the order of computational times
as the exponential of degree of freedom, while the formers do only a polynomial order
of degree of freedom and a correlation time. If the correlation time were small, we
could carry out the calculation. In the present thesis, we use Monte Carlo method
only.

In general, the correlation time is a natural way to become large in conventional
Monte Carlo methods. For Ising model, it increases in proportions to about the
square of linear dimension of system near a critical point. This phenomena is called
critical slowing down. This makes Monte Carlo simulation for large systems difficult.

To overcome the difficulty, many people have proposed various new algorithms
of Monte Carlo methods. In 1987, Swendsen and Wang (SW) [40] invented a new
algorithm called cluster algorithm for classical Potts modeL It is reported to have
no critical slowing down. It has been extended to other models. It must be noted
that Evertz et ai. [14] applied it to quantum spin models in 1993. The new version
of algorithms for quantum spin models is called loop algorithm. They have some
excellent features which may lead to successful solution, and yet they have been
applied only to a few models.

Loop algorithms drastically reduce critical slowing down and are naturally ergotic
in contrast with conventional worldline Monte Carlo methods. They can be directly
implemented on continuous imaginary time without any systematic error of Suzuki­
Trotter decomposition, and allow some improved estimators for various quantities.
Moreover they can be generalized for various quantum spin models with higher spins
values.

In the present thesis, the loop algorithm is used to study the phase transition of
spin-Ij2 quantum XY model and the property of spin-I Heisenberg antiferromagnet
in low temperatures. Their simulations can be done above-mentioned features of
loop algorithms. Many computations are carried out to see.

Chapter I reviews loop algorithms on discrete and continuous imaginary time
and discusses improved estimators. The general proof of efficiency of improved
estimators is also given. Chapter 2 investigates the two-dimensional 5pin-1/2 XY
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model through loop algorithms near and below the critical temperature and discusses
the phase transition. Chapter 3 reports results of extensive Monte Carlo simulations
of the two-dimensional spin-l square lattice quantum Heisenberg antiferromagnet
by a loop algorithm on continuous imaginary time. Those results are compared with
theoretical predictions and experimental measurements.
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1. Loop algorithm for quantum
Monte Carlo simulation

1.1 Introduction

Quantum Monte Carlo method [39] is one of powerful methods to solve various
problems of quantum models. It is well known that the traditional implementa­
tion of quantum Monte Carlo method has some difficulties: critical slowing down,
ergodicity, systematic error and negative-sign problem.

In order to overcome them, various new algorithms have been proposed. One of
them, is the so called loop algorithm, proposed by Evertz et al. [14] in 1993. It has
some excellent features which may lead to successful solution.

In this chapter, we will introduce loop algorithm and give an improved estimator
for quantum Monte Carlo simulation, and analyze their performance. Before going
into the detail, we will survey a general approach used in quantum Monte Carlo
simulation (§1.2) and a traditional worldline algorithm (~1.3). Section 1.4 reviews
the loop algorithm by Kandel-Domany framework [20,23] and Sec. 1.5 treats the
improved estimator and its performance.

1.2 Quantum Monte Carlo method

In quantum Astatistical mechanics we often ought to calculate the expectation of a
observable X in the form

A -(3H

(X) = TrXe . , (1.1)
Tre-f3H

where fI is a Hamiltonian, f3 is inverse temperature l/knT. In order to calculate
e-/3H in eq. (1.1), which is called density matrix, we have to diagonalize the Hamil­
tonian. But it is practically impossible to diagonalize except few special cases. The
main reason is that the Hamiltonian is usually a sum of uncommutative operators.
So we need to approximate the d~nsity matrix e-f3H appropriately.

Since the density matrix e-{3H can be considered a time evolution operator of
Schrodinger equation with the imaginary time t = iTif3, it is called propagator and
can be represented with Feynman path integral as follows.

Take an n-th order approximant In (x) of the exponential operator e-xH :

(1.2)

1
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The density matrix is then approximated as

(1.3 )

A simple approximant is
(1.4)

(1.5)

However, it is not unitary and hence not applicable for quantum Monte Carlo slIu­
ulations. We usually use another approximant called Suzuki-Trotter (ST) decom­
position instead:

where if = Ei fh each addend Hamiltonian iIi being easily diagonalizable. The
approximant is unitary.

Using ST decomposition, we calculate the density matrix as

-(3He
I

~ .(II e-({3/m)Hi)m

i=l

(1.6)

(1.7)

where lei) totally form a complete set of states. This approximant converges to the
original density matrix in the limit m ----t 00. The limit is not but the Feynman path
integral of the time evolution operator of Scluodinger equation along the imaginary
time axis. Hence eq. (1.7) may be said to be an approximation of Feynman path
integral with discrete imaginary time.

Since each exponential operator e-(f3/m )iIi is also diagonalizable, it can be taken
as one of local Boltzmann factors of a classical system. Consequently, we can apply
Monte Carlo methods for classical models to calculate the density matrix of quantum
models.

Note that a d-dimensional quantum model corresponds to a (d + I)-dimensional
classical system. The index i of lei) plays a role of an auxiliary dimension. It is
the imaginary time in Feynman path integral language. In quantum Monte Carlo
methods, it is called Trotter direction.

1.3 Worldline algorithm

The worldline algorithm [39] is traditionally used to perform Monte Carlo simulation
for quantum models. It lives on a worldline representation.

In Sec. 1.3.1, we describe what worldline representation is. In Sec. 1.3.2, we
explain traditional worldline algorithms. In Sec. 1.3.3, we survey their difficulties in
computation.
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1.3.1 WarIdline representation

In general, when a d-dimensional quantum Hamiltonian comprises short-range inter­
actions, it can be replaced by a (d+ I)-dimensional classical system with short-range
interactions. Using ST decomposition, we put the partition function Z as

(1.8)

(1.9)

where Sp is a set of classical spins belonging to plaquette p on the (d+ 1)-dimensional
lattice and summation L:s extends over all configurations of spins 011 (d + 1)­
dimensional lattice sites. In the following, we introduce an example of an S = 1/2
quantum X X Z model on a one-dimensional chain.

One-dimensional S = 1/2 quantum XXZ model

The S = 1/2 quantum XXZ model on a one-dimensional chain of N sites is defined
by the following Hamiltonian:

N

if = - L [Jx(S;8tH +SfS;+1) + }zS:SfH + ESt] ,
i=1

where Sf'is quantum spin-1/2 operator at each site i (f.L = X, Yl z). For the periodic
boundary condition the (N + 1)-site is identified with the I-site.

The Hamiltonian can be considered as a sum of two uncommutative: H =
H odd + H even . Hodd,even is equal to L:i:odd,evell ih where Hi is defined as

(1.10)

Using ST decomposition in a small interval b..T1

we can get the desired factorization of the partition function as

(1.11)

Z Tre-fiH

Tr(e-(fi/m)H)m

Tr (e-(film )Hodd e-«(3/m)H<t,c>1f' + O((f3/m)2),

(1.12)

(1.13)

(1.14)

where m is called Trotter number.
We calculate eq. (1.14) as follows:

Z ::::::

(1.15)
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where {ICt )} is a complete set of states. Here ICt) is a direct product of eigenstates
of S: on a one-dimensional chain:

(1.16)

where S: ISl.t) :::: St.t 15ft) with St.t ::::±~.
Since each Hodd,cvcn itself contains only commutative terms, it is further decom­

posed into the product of two-spin propagators:

(Ct !e-(f;l/m)Hodd,m n \Gt+1) :::: (Gtl II e-(/3/m)Hi ICt+1)'
i:odd,even

For simplicity, we denote each two-spin propagator by

(1.17)

(1.18)

where p stands for a plaquette that consists of four classical spins (see Fig. 1.1),

p =:. ((i, t), (i + 1, t), (i, t + 1), (i + 1, t + 1))

and Sp is the local spin configuration defined as

(1.19)

(1.20)

~.,
o--('tl.,
Q._..,
~-o·
=

classical spin

,/

real direction

Figure 1.1: A plaquette consists of four classical spins.
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We denote the four states of spin pairs by 1 =TT, 2 =T L 3 =11 and 4 =jJ. The
two-spin propagator can be written explicitly as

o
a
a

a
e- 4~ J. cosh(?J,,)

8 _Tn
e-4m

J• sinh(~J,,)

a

a
a
a

...iLJ -..i!....B
eoim .re 2m

(1.21 )

In the above 4 x 4 matrix representation of eq. (1.21), the column index corresponds

to four possible initial state !Si,t, 5t+l,t) , and the row index l5i~t+l' 5i+l,t+l)'
Consequently, we replace the partition function as follows:

(1.22)

where summation :ES? extends over all configurations of spins 5t t on a (1 + 1)-
lll! . ,

dimensional lattice and product TIp extends over all shaded plaquette on lattice (see
Fig. 1.2). The one-dimensional 5 = 1/2 quantum XXZ model is approximated by
the (1 + 1)-dimensional classical Ising model with four spin plaquette interactions.

From the following conservation rule,

5z SZ Sz SZ
i,t + i+l,t = i,t+l + i+l,Hl on each plaquette, (1.23)

we can draw lines connecting the corresponding up spins in the Trotter direction (see
Fig. 1.3). This line is called worldline. Since each spin configuration corresponds to
each worldline configuration one by one, we can describe system by using worldlil1es.

1.3.2 Worldline algorithm

A traditional Monte Carlo algorithm is a sequence of local updates of system config­
uration. In classical systems, Metropolis method or heat-bath method is often used,
which usually updates a single spin at a time. In quantum systems, worldline algo­
rithm is used instead, which updates local worldline configurations. The procedure
consists of two steps:

(i) Proposing local deformations of a worldlille configuration.

(li) Accepting or rejecting them with a suitable probability rule.

Various local deformations are taken for several kinds of quantum models. We
only show an example of one-dimensional 5 = 1/2 quantum XXZ model in the
following.
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classical spin

1-3.,
o
l"'+­
~

~.,
Q......,
~
n
l"'+-_.
o= unshaded

plaquette

--------'!..... real direction

Figure 1.2: A checker-board square lattice.
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-_I real direction

~•••_ B, •
Figure 1.3: Allowed spin configurations, which have non-zero Boltzmann weight, and
their worldline representations. A top row represents allowed spin configurations.
Black and white circles show up and down classical spins, respectively, A bottom row
represents corresponding worldline configurations. Black thick lines are worldlilles.

Worldline algorithm for one-dimensional S = 1/2 quantum XX Z model

Using ST decomposition with a fixed Trotter number m, we can derive the (1 +
I)-dimensional classical system as eq. (1.22) from the one-dimensional S = 1/2
quantum XXZ model (see Sec. 1.3.1).

Allowed spin configurations which have non-zero Boltzmann weight keep the
conservation rule eq. (1.23). A local deformation also must keep it. A simplest
one is a flipping of spins which belong to an unshaded plaquette in Fig. 1.2. It
corresponds to a local move of worldline (see Fig. 1.4 (a)).

In order to keep the detailed balance condition (see Appendix A)l the proposed
local deformation is accepted with the following probability (heat-bath method):

(1.24)

where S~, f.L = (pI, p2, p3, p4) is proposed spin configuration (see Fig. 1.4 (a)) and
w(Sp) is the two-spin propagator defined in eq, (1.18),

But these local updates cannot afford to create another configurations which may
have a different magnetization and winding number. So we need global updates.
Usually, two ways of global updates are used:

• Flipping all spins with a same value on a line along Trotter direction (Fig. 1.4
(b)).
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• Flipping all spins with alternating values on a line along real direction (Fig. 1.4
(c) ).

Each probability for accepting is calculated from the detailed balance condition.

1.3.3 Difficult Points

The traditional worldline algorithm has many difficulties:

• Increasing autocorrelation between successive Monte Carlo configurations near
to a critical point or low temperatures.

• Systematic error due to ST decomposition.

• Ergodicity.

• Negative-sign problem.

The loop algorithm almost overcomes these difficulties except the last problem.
We discuss them in tHe following.

Autocorrelation

A local update algorithm, such as worldline algorithm, for Monte Carlo simulations
near to a critical point of a physical model generally meets with extremely large
autocorrelation between successive Monte Carlo configurations. The phenomenon
is related to critical slowing down in real materials.

In Monte Carlo simulations, the statistical error D.(A) of an observed quantity
A is related to the variance of the estimator 0, the sampling number Nsample and
the autocorrelation time T:

D.(A):::::::
Var (0)

(Nsample/2T) .
(1.25)

It demands such a large sampling number as compared with the autocorrelation
time to assure a small error.

Such situation often appears when the scale length of physical phenomena is
larger than that of local update procedures. The case is seen near to a critical
point. In fact, the correlation length between components grows extremely close to
the critical point, while local update procedures only change components within a
fixed area at a time.

The autocorrelation time T diverges at critical point as follows:

(1.26)

where L is the linear dimension of the system and z is a constant called dynamical
critical exponent. Usually z ~ 2 for local update algorithms. As the system becomes
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unshaded plaquette

(a)

)

worldline

global flip (b)
---~
I I

-3..,
o----('l)..,
Q._...,
('l)
n--_.
o
:l

-------.11I- real direction

Figure 1.4: A local deformation and two global flips of worldlines. (a) a example
for the local deformation. (b) a global flip along Trotter direction. (c) a global flip
along real direction.
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larger, the autocorrelation time grows rapidly. So it is difficult to keep the statistical
error of measured quantities small in Monte Carlo simulations for large systems.

For the worldline algorithm, we see an another reason for the increase of the
autocorrelation time. It is related to the systematic error of ST decomposition as
Sec. 1.2. In order to keep the error small, the Trotter number m must be large
enough. When m is large, the acceptance rate for flips related to non-diagonal
elements of two-spin propagator is very small. Almost all configurations get no
change and then the autocorrelation time becomes large. It diverges as follows:

(1.27)

where ZT is a constant, usually ZT rv 2.
Those matters make quantum Monte Carlo simulations difficult to practice for

large systems or low temperatures.

Systematic error due to ST decomposition

The worldline algorithm treats a classical model which approximates an original
quantum model by ST decomposition accompanied by systematic errors.

Once we obtain a set of data with a fixed temperature and various Trotter
numbers, we must do the Trotter extrapolation to the limit m -I' 00. The Trotter
number m must be enough to ensure the convergence. This causes the above­
mentioned increase of the autocorrelation time.

Ergodicity

Some ways of global flips are introduced in the worldline algorithm to ensure the
ergodicity of the magnetization or the winding number. But they do not work as
are expected. For example, the global flip for the winding number also has low
performance at low temperature. The acceptant rate is almost zero, because it
depends on non-diagonal elements of Hamiltonian.

Furthermore, it is difficult to implement them on such lattices as bond disorder
and depleted lattice, because they are too artificial.

1.4 Loop algorithm

In this section) we discuss two types of loop algorithms: loop algorithm on discrete
imaginary time [14] and that on continuous imaginary time [4]. They overcome
almost aU difficulties of traditional worldline algorithms.

In Sec. 1.4.1, we review a general definition of cluster algorithms by Kandel­
Domany framework [20,25]. In Sec. 1.4.2 and Sec. 1.4.3, we discuss loop algorithms
on discrete and continuous imaginary time, respectively.
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1.4.1 General definition of cluster algorithlTI

For the Monte Carlo simulation of a classical model, Swendsen and Wang (SW) [40]
have invented a new algorithm which is called cluster algorithm.

For illustration of cluster algorithms, we introduce new variables Gp as

Wp(Sp) = L wp(Sp, Gp),
Gp

(1.28)

(1.29)

where Gp is a graph variable defined on aplaquette. The partition function is

Z = L IIwp(Sp) = L IIwp(Sp, Gp),
S P S.G p

where summation l:G extends over all configurations of graph variables.
When a plaquette has N components, the number of breakups of the plaquette

Nb(N) is described as

N

Nb(N) == Lg(N,k),
k

k

LkPi g(N,i) = kN

i=l

(1.30)

(1.31)

If we change spins with a same manner in any breakup peace, then we can get many
kinds of spin configurations from one configuration. The value of the graph variable
Op identifies such a group of spin configurations. The numher of states of Gp rapidly
increases as O(aN ), but this is not so essential in Monte Carlo simulation, because
the number of states used in simulations is small.

According to Fortuin and Kasteleyn [21,22]' w(Sp, Gp) is rewritten as

(1.32)

where ~(Sp,Gp) = 1 if Bp E Gp, and = 0 otherwise.
A Markov process generated by a traditional Monte Carlo algorithm stays in the

spin configuration space:

(1.33)

whereas a Markov process of a cluster algorithm alternates between the spin and
graph configuration spaces:

S(l} -+ G(1) -+ S(2) -+ G(2) -+ S(3) -+ G(3) -+ . . . . (1.34)

The transition probabilities between the spin and graph configurations are defined
as follows:

P(S -+ G)
TIp wp(Sp, Gp)

(1.35)-
l:G' TIp wp(Sp, G~)

P(G -+ S) -
TIp Wp(Spl Gp)

(1.36)
l:sl TIp Wp(S~l Gp)
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where S == Up Sp and G = Up Gp are global spin and graph configurations, re­
spectively. Equation (1.35) denotes that each local transition on a plaquette IS

determined by

(1.37)

It is easy to check that these transition probabilities satisfy the detailed balance
conditions. Hence the appearance probability of spin configuration S in a Markov
chain is

(1.38)

That of graph configuration G is

(1.39)

Since global graph configuration G only indicates how spins in the system are
divided, a spin configuration can be specified among various ones according to
eq. (1.36). There are global differences among these spin configurations and such a
non-local change in Monte Carlo process is taken out by each local stochastic de­
cision on each plaquette as eq. (1.37). The set of spins to be changed with a same
manner is called cluster, and the algorithm updating clusters on system at a same
time by eq. (1.36) is called cluster algorithm.

The implementation way of the cluster algorithm on a computer is fairly different
from that of the traditional algorithm. In cluster algorithm we need to identify
clusters. It corresponds to union-find problem in computer science [1]. Fortunately,
its elapse time is almost of linear order of system size with using list data structures
and path-compressions.

The cluster algorithm has important advantages in comparison with traditional
local update algorithms.

Autocorrelation

The scale of clusters in an efficient cluster algorithm is same as that of physical
phenomena: the correlation function of two sites in the model is identical with a
function of the probability that those two sites belong to a same cluster. Thus
the cluster algorithm greatly reduces the autocorrelation between successive Monte
Carlo configurations in many cases. In fact, the dynamical exponent z is very
small compared with that of traditional local update algorithms and for quantum
models, the autocorrelation time is independent of the Trotter number. So loop
algorithms allow us to do quantum Monte Carlo simulations for large systems and
low temperatures.
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Ergodicity

In order to ensure the ergodicity for quantum models, the worldline algorithm has
artificial global updates. The cluster algorithm only takes natural global flips, with­
out any more global flips.

Improved estimator

In general, the cluster algorithm may have improved estimators for various quanti­
ties. The details are described in Sec. 1.5.

1.4.2 Loop algorithm on discrete imaginary time

A Monte Carlo simulation for a quantum spin model is replaced by a classical model
as eq. (1.8) to be solved as mentioned in Sec. 1.4.1. In this case, it is called loop
algorithm on discrete imaginary time, because the shape of clusters is loop-like for
the some conservation rules (1.23) and the classical model approximates the quantum
model on discrete imaginary time.

In the following, we are going to show an example for the one-dimensional S =
1/2 quantum XXZ modeL

One-dimensional S = 1/2 quantum XXZ model

It is easy to see from eq. (1.28) and eq. (1.32) that L).(Spl Gp ) sa.tisfies

A(Sp) L: v(Gp)L).(Spl Gp) = w(Sp).
Gl'

(1.40)

It gives that v( Gp) takes zero if w( Sp) is zero and A(Sp, Gp) is one. Sillce
eq. (1.37) makes the transition probability from any Sp to such Gp to be zero, such
Gp is not so essential to be considered. The number of essential breakups for the
S = 1/2 quantum X X Z model are only four in Fig. 1.5.

The breakup Gp = 4 in Fig. 1.5 is called freezing breakup, because it freezes
four spins. The other breakup divides a plaquette iuto two pieces. The freezing
breakup makes larger clusters than the other. From experiences, an efficient cluster
algorithm is to keep the scale of clusters small. Thus the transition probability to
the freezing breakup had better be small.

We represent .1. (Spl Gp) by matrixes as eq. (1.21):

.1.(·,1) (~ ~ H) 1 L).(., 2) = (~ n~o) 1

000 1 000
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Gp=l

Gp=3

Gp=2

Gp=4

Figure 1.5: Breakups for S = 1/2 quantum XXZ model.
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(1.42)

(1.41)~ H).
001

o Jo
o '

-...l!....Be 2m

Ll(·,3) (HH)'Ll(-'4)=(~
00010

From eq. (1.40), A(Sp) is found as

_ (e2~B ~ ~
A = 0 1 1

o 0 0

and v(Gp) is also found as in Table 1.1.

Table 1.1: v(Gp ) for S = 112 quantum X X Z model on discrete imaginary time.

Gp v(Gp )

This algorithm divides spins into a number of loops as Fig. 1.6, which are in­
dependent each other. Table 1.1 tells that the freezing breakup frequently appears
when Jx < }z. Hence the average size of a loop may become large, as expected for
this model.

1.4.3 Loop algorithm on continuous imaginary time

In a continuous limit (131m ~ 0), the worldline is continuous almost everywhere
along the Trotter direction and it may sometimes jump to a neighbor site. Since
the jump is instantaneous, the worldline configuration is described by specifying
the imaginary times at which worldlines jump. In the following, we show the loop
algorithm on plaquettes whose imaginary time interval is infinitesimal.

Partial Hamiltonian Hi can be directly represented by the graph variable Gp as

(Gtl Hi ICt.+1) = - L ap(Gp)Ll(Sp! Gp) - Bp(SI')'
Gp

(1.43)

where f:l(Sp, Gp) is same as in the previous section.
If € =131m <t:: I, wp(Sp) takes the form

wp(Sp) = (Ctl e-d1i ICtH) ~ e-fBI'(Sl'l[Ip(Sp) + EL ap(Gp)Ll(Sp, Gp)],
Gp

(1.44)
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""3..,
o--ttl..,
Q.._...,
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t":l-_.
o=

-------.~ real direction

Figure 1.6: Loops on the checker-board square lattice.
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where Ip(Sp) is the identity operator on a plaquette. For simplicity, we take 6.(Sp, 1) ==
I p ( Sp) in the following.

Taking the limit of an infinitesimal imaginary time spacing (E --t 0), the transition
probability (eq. (1.37)) on a plaquette is reduced to the followings:

(i) If the present state Sp is compatible to the graph Gp :::::: 1, i.e., if there is no
exchange of spins in the time interval (t, t + E),

P(Sp -; Gp) :::::: Eap(Gp)tl(Sp, Gp) (Gp"l= 1),

P(Sp'---' 1) = 1 - L P(Sp'---' G~J
G~""l

(1.45)

(ii) If the present state Sp is incompatible to the graph Gp :::::: 1, i.e., if the state at
t is different from that at t + E,

(1.46)

We apply eq. (1.45) to plaquettes (with infinitesimal Hheights") at which world­
lines continue along the Trotter direction. The probability of choosing a graph
Gp "1= 1 in the imaginary time interval E is Eap ( Gp)~(Sp, Gp). This means that in
the continuous limit we distribute graphs Gp over such an interval uniformly, i.e.,
with a Poisson process, with the probability density 0,,(G1,)6.(Sp, Gp). On the other
hand, eq. (1.46) gives the probability (not probability density) with which a graph
is assigned to each point of time where the local state is changed or two neighboring
worldlines are exchanged.

Consequently, for general models, the loop algorithm with continuous imaginary
time can be summarized as follows. For each pair of nearest neighbor worldlines,

(i) distribute graphs Gp("I= 1) with a Poisson process with eq. (1.45) over every
imaginary time interval in which worldlines are not interrupted,

(ii) choose a graph Gp with eq. (1.46) at each point of time where states are
exchanged between the two sites,

(iii) assign the graph Gp :::::: 1 elsewhere,

and then update spin values by flipping clusters (eq. (1.36)).
This algorithm have several important advantages in comparison with that on

discrete imaginary time as follows.
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Systematic error due to ST decomposition

With a finite Trotter number m, we have systematic errors due to ST decomposition.
To reduce them) we must take the Trotter extrapolation, while in the continuous
limit it is not necessary. This feature is important to carry out quantum Monte
Carlo simulation in low temperature) because the Trotter number m is usually so
large to suppress those systematic errors in low temperatures.

Implementation on computer

Memory capacity to keep worldline configurations can be reduced by a technique of
specifying a imaginary time at which worldlines jump. Furthermore, its implemen­
tation is sometimes steeply simpler than that on discrete imaginary time. We will
show a good example of a higher spin case in detail in Chap. 3.

S = 1/2 quantum XXZ model

We here illustrate q,n example of the S = 1/2 quantum XXZ model.
From eq. (1.43)) B(Sp) is found as

~ 0 0
o 0 0
o 0 0
o 0 0

(1.47)

and a(Gp ) is also found as in Table 1.2. In this case, a(l) is negative. Its value is
however not used (see eq. (1.45) and eq. (1.46)).

Table 1.2: a(Gp ) for S = 1/2 quantum XX Z model on continuous imaginary time.

Gp a(Gp )

1 -iJx - !a(4)
2 t(Jx - Jz) + ta(4)
3 4(JX + Jz) - za(4)
4 max(O)HJ:-Jx ))

1.5 Improved estimator

We will introduce new estimators of various quantities, which deserve the so-called
improved estimators. In fact, they can reduce the statistical errors of measured
quantities. In the present section, we first define a general improved estimator in
cluster algorithms and discuss its performance.
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1.5.1 Definition of improved estimator

If we denote a normal estimator of a quantity by j(8), which is defined as a function
of spin variables 8, then the corresponding new estimator is defined as

j(G) = Ls j(S)W(S, G),
LS W(S,G)

(1,48)

where W(S, G) = TIp wp(Sp, Gp).
From eq. (1.38) and eq. (1.39), the average of the estimator j(G) is equal to that

of the normal estimator j (S):

where

(f(G)) = (f(S)),

(X) =I: X W(S, G)j I: 111(S, G).
S,G S,G

(1.49)

(1.50)

In (1,48) we calculate the average over the O(a:Nc ) states in a time, where Nc

is the number of clusters in a graph configuration G. This is a reason that the
estimator (1.48) is improved from normal one. Fortunately, we can easily calculate
it as follows.

For example) various quantities as susceptibility, static structure factor and he­
licity modulus are defined by the following form,

(1.51)

where 0i is a constant and Si is the spin variable at site i. The improved estimator
is defined as

A2 (G) = I:A~, (1.52)
c

with
Ac == LOiS., (1.53)

iEc

where c identifies each cluster in the graph configuration G and summation Lc
extends over all clusters in G. Though the estimator is given as the average over
o(a:Nc ) states, they are easily calculated.

1.5.2 Variance of hnproved estimator

It must be noted that the improved estimator has smaller variance than that of the
normal estimator. In the following, we explicitly evaluate the variance of general
improved estimators.

The normal estimator A2(S) is decomposed into two parts:

A2(S) =L A~ + L AcAc' = A2
( G) + A;cm'

c c,pd
(1.54)
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where A;em is defined as Ec#d AcAd· For simplicity, symbol 0, Oimpr and Own
denote the normal estimator, improved estimator and A;em' respectively.

Since clusters are flipped independently in SW algorithm, the expectation values
of all the cross terms in Orem are vanishing. Therefore,

(1.55)

For the same reason, we can derive another useful equation,

(1.56)

Equation (1.55) leads to
(1.57)

This implies that the Oimpr is another estimator. The new estimator Oimpr depends
only on the graph variables.

One graph configuration represents 2Nc spin configurations. Therefore, a sam­
pling of Oimpr corresponds to taking an averaged value over many samplings of O.
From eq. (1.56), the variance of 0 is related to those of Oimpr and Orem as

Var (0) - ((Oimpr + Orem)2) - (Oimpr + Orem?

- Var (Oimpr) + Var (Orem)

> Var (Oimpr).

(1.58)

(1.59)

(1.60)

The performance of an estimator is related with the variance (1.25), and hence the
estimator Oimpr is surely improved one.

We here have introduced the improved estimator for quantum models based on
the discrete time representation. We can use the same definition in the continuous
time representation as well.



2. Kosterlitz-Thouless transition
of S == 1/2 quantum XY model in
two dimensions

2.1 Introduction

The XY model in two dimensions has been discussed in various contexts such as
magnets with easy-plane anisotropy, superconductivity in a thin layer, granular
superconducting materials, and insulator-superfluid transition in He4 systems. Nat­
urally, a number of works were devoted to clarifying the nature of the phase transi­
tion and the low-temperature phase of this model. Among them notable was a large
scale Monte Carlo simulation by Ding and Makivic [12,32]. Based on computation
of the linear in-plane susceptibility and the correlation length at various tempera­
tures, they concluded that a phase transition takes place at TKT = 0.350(4) [12,32]
or 0.353(3) [10], and that this transition is of Kosterlitz-Thouless (KT) [30] type.
However, it is technically difficult to distinguish an exponential divergence from an
algebraic one. Because of this difficulty, the validity of their conclusion on the na­
ture of the phase transition was questioned [11,41]. For the same reason, in spite of
their very extensive Monte Carlo calculation, Gupta and Baillie [16,17] did not draw
a definitive conclusion although their numerical results seemed to suggest that the
phase transition of the classical XY model is exactly what the KT theory predicts.

It should be noted that the above-mentioned technical difficulty is partially due
to the absence of finite-size-scaling type analysis which is a COIllmon and powerful
tool in most numerical studies. However, Solyom and Zinlan [38] pointed out that
the straightforward application of the ordinary finite-size-scaling analysis leads to a
wrong result not only when the power-law temperature dependence of the correlation
length, which is wrong, is assumed but also when the correct exponential divergence
is assumed. They studied the size dependence of the first excitation gap in the
S = 1/2 anisotropic X X Z model in one dimension, which is exactly solvable and
known to have a transition of the KT type at the antiferromagnetic isotropic point.
They found that the exact estimates for the finite systems do not fit into the standard
form of the finite-size-scaling at the critical point.

Therefore, to obtain a definitive answer to the question concerning the nature of
the phase transition, we need to have a correct form for the system size dependence
of quantities of interest. In previous studies, to our knowledge) a systematic study

21
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of such system size dependence has been missing for the quantum XY model. There
are however some reports on classical XY models. Instead of using the ordinary, ,
finite-size-scaling form, Weber and Minnhagen [44] used the Kosterlitz renormal­
ization group equation [29] for the data analysis in their study of the classical XY
model in two dimensions. They verified the KT type phase transition by comparing
the size dependence of the helicity modulus, Y, at the critical temperature with the
renormalization group flow along the critical line that converges to the KT fixed
point with a logarithmically slow convergence. They observed not only that the
computed helicity modulus exhibits the logarithmic dependence on the length scale
but also that even the pre-factor of this logarithmic term agreed with the predicted
one. Following the same idea, Olsson [36] performed a more detailed analysis of
the cla.ssical model with an extensive Monte Carlo simulation. He observed that
the system-size dependence of the helicity modulus agreed with the form derived
from the Kosterlitz renormalization group equation below and above the critical
temperature as well as right at the critical temperature.

The helicity modulus is known to exhibit the universal jump at the critical
temperature [35] .. This quantity corresponds to the super-fluid density when the
model is regarded as a Boson system with hard-cores. In the worldline quantum
Monte Carlo method, the helicity modulus is represented as the fluctuation in the
total winding number of worldlines by the following equation [37],

(2.1)

where W = (W:r:, Wy ) with Wx (Wy ) being the total winding number in the x (y)
direction. It is difficult to measure this quantity by means of a conventional worldline
quantum Monte Carlo method because a conventional algorithm is not ergodic in
that the winding number is not allowed to vary. In principle, it is possible to make
it ergodic by introducing additional global movements of worldlines. In practice,
however, such additional and in most cases "ad-hoc" global movements are seldom
accepted and the resulting estimates of the helicity modulus have large statistical
errors. Therefore, Makivic [31] divided the whole system into a number of sub­
systems and measured the winding number for each sub-system which may vary. It
is not totally clear if this alternative way of measurement gives the same answer
as the conventional one does. Another difficulty of the conventional Monte Carlo
method is its long autocorrelation time near and below the critical temperature.
These difficulties limited the accuracy and the precision of the MakiviC's estimates
of the helicity modulus and narrowed the accessible temperature range of simulation.

In the present study, we report some results of the quantum Monte Carlo simu­
lation of the S = 1/2 XY model using the loop algorithm [14,23] with both discrete
and continuous imaginary time representations [4]. The use of the loop algorithm
eliminates both of the above-mentioned difficulties. There the number of particles
as well as the winding number can vary. At the same time, there are a number of
reports [23] on the drastic improvement in the autocorrelation time of the simula­
tion by loop algorithms. We aim at a detailed and precise comparison between the
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quantum XY model and the theory by Kosterlitz [29] through an accurate estima­
tion of the thermal fluctuation in the winding number near and below the critical
temperature. We show that such an estimation allows us to examine a new scaling
form different from the ordinary finite-size-scaling. In this scaling form, the distance
from the critical point, Le., K - KKT appears in the form of (K - Kl<T)(log(L/ La)? I

in contrast to (K - KKT )LYT in the ordinary finite-size-scaling. At the same time,
the quantity x = (1i/2)W2

) - 2 scales as xlog(L/Lo) rather than x/Lw with some
exponent w. This "scaling" form is consistent with Olsson's fitting functions.

In Sec. 2.2, we describe loop algorithms on discrete and continuous imaginary
time. In Sec. 2.3, the definition of helicity modulus, its improved estimator and
details of simulations are described. In Sec. 2.4, estimates of the helicity modulus
are presented and we summarize the results in Sec. 2.5.

2.2 Loop algorithm for S = 1/2 quantum XY model

The S = 1/2 quantum XY model is defined by the following Hamiltonian.

H = ~ Hij = -J ~(SiSj+ SiSj),
(~J) (1,J)

(2.2)

where (ij) rUllS over all nearest-neighbor pairs on a square lattice. As for the spin
operators, we use the convention in which (S/;)2 = 1/4 (j1, = x, y, z). We will take J

~ .

as the unit of the energy scale in what follows.
Our Hamiltonian can be considered as a sum of four sub-Hamiltonians: fI =

HA +HB +He + fID • Each sub-Hamiltonian is a sum of operators commutable with
each other, i.e.,

where

Hx = L Hij (X = A,B,C,D)
(ij)EX

A _ {(ij)li E odd column,j = i + ex},
B _ {(ij)li E odd row,j = i + ey},

C _ {(ij)li E even column, j = i + ex},
D _ {(ij)li E even row,) = i + ey},

(2.3)

(2.4)
(2.5)
(2.6)

(2.7)

(2.8)

and ex (or e y) is a unit lattice vector in the x (or y) direction.
Using the ST decomposition, we transform the partition function into the fol­

lowing form,
z ~ L IIw(Sp).

s p

Here, p stands for a plaquette in the (d + I)-dimensional space-time with two edges
perpendicular and the other two parallel to the imaginary time axis. The space-time



24 2. Kostcrlitz-Thouless transition of S = 1/2 quantum XY model in two dimensiolls

location of its left-bottom corner is given by (i, t) with

{

(4n).6.7 if i E A
_ (4n + 1).6.7 if i E B

t = (4n + 2).6.7 if i E C '
(4n + 3).6.7 if i E D

(2.9)

where the imaginary time spacing, .6.7 =(JIm, is the unit of the discretization of
the imaginary time. The number of steps m is called the Trotter number. The
symbol Sp in eq. (2.8) is the local spin configuration on a plaquette p and w(Sp) is
the two~spin propagator defined below. The symbol S in eq. (2.8) stands for the
spin configuration of the whole space-time or the union of all Sp's, Le., S = Up Sp.
We denote the four states of spin pairs by 1 =li, 2 =iL 3 =!i and 4 =11. Then,
the two-spin propagator can be written explicitly as

(s~final) lexp (-(.6.r)Hij) Is~initial))

(

10 0 a )a cosh(fl.;]) sinh(fl.;J) a
o sinh( fl.;]) cosh( fl.;]) a .
a a 0 1

(2.10)

The symbol s~initial) and s~final) stand for the local state of two corners at the bottom
and top edges of the plaquette p, respectively. The local state of the whole plaquette,
Sp, can be regarded as the combination of the two. In the 4 X 4 matrix representation
of eq. (2.10), the column index corresponds to four possible initial state, S~il1itial),

and the row index S~fil1al).

2.2.1 On discrete imaginary time

With using the notation in Sec. 1.4.2, the loop algorithm on discrete imaginary time
is specified by A(Sll ) = 1 and v(Gp ) in Table 2.1.

Table 2.1: v(Gp ) for S = 1/2 quantum XY model on discrete imaginary time.

Gp v(Gp )

1 He-~r] + 1)
2 ~(e ~r J - 1)

3 H1- e-~J)

We see from eq. (1.36) that P(G -+ S) is vanishing if Sp is not compatible
to Gp for any p, while it takes a value independent of. S as long as all Sp's are
compatible to Gp's. This means that sites belonging to the same loop should be
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flipped simultaneously with a probability 1/2, and two distinct loops should be
flipped independently. Since flipping a loop is a global update, one may imagine
that the cluster algorithm reduces the autocorrelation time due to slow relaxation
modes associated with large structures. This is indeed the case as reported in a
number of articles [23].

In this case, the Markov process is also ergotic, that is, the winding number can
vary in our Monte Carlo simulation.

2.2.2 On continuous imaginary time

The loop algorithm on continuous imaginary time is specified by B(Sp) = 0 and
a(Gp ) in Table 2.2.

Table 2.2: a(Gp ) for S = 1/2 quantum XY model on continuous imaginary time.

Gp a(Gp )

1 _1.J
4

2 1J
3 I J4

The graph assignment in this algorithm is simple as follows:

(i) for each uninterrupted time interval during which spins on these worldlines are
antiparallel, generate "horizontal reconnections" (graph Gp = 2 in Fig. 1.5)
of worldlines with probability density J /4, and for parallel spins, generate
"diagonal reconneetions" (graph Gp = 3) of worldlines with probability density
J/4,

(ii) at each point of time where worldlines exchange, assign a horizontal or diagonal
reconnection with equal probability (1/2),

(iii) assign the graph Gp = 1 elsewhere.

2.3 Quantum Monte Carlo simulation

2.3.1 Helicity modulus

In the present study, we focus on the helicity modulus because it may be directly
related to the solution of the Kosterlitz renormalization group equation and therefore
may exhibit some behavior characteristic of the KT transition. We have measured
the helicity modulus by computing the fluctuation in the total winding number
of worldlines with eq. (2.1). The total winding number Wx (or W y ) is defined as
the sum of winding numbers of individual worldlines. The winding number of an
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individual worldline is the number of times the worldline wraps around the system
in the x or y direction before coming back to its starting point. The total winding
number of worldlines for up spins is exactly the same in magnitude as that for down
spins and has the opposite sign. We here count only the winding numbers for up
spins. Alternatively, Wx can be defined as

1
Wx = L I>~X(Sp),

X p

; ax(Sp) = 2: aiSi,
x iEp

where Lx is the lattice size in the x direction. The symbol ax(Sp) stands for the
function which takes on the value 1 (or -1) if an up-spin worldline passes through
the plaquette p in the positive (or negative) x direction and takes on the value 0,
otherwise. Equivalently, a:i is a constant which only depends on site i and takes on
the value ±1/4 or zero. To be more specific, ai = 1/4 when the site i locates at
the lower-left or upper-right corner of a shaded plaquette and ai = -1/4 otherwise.
(Which is 'left' is an irrelevant question here as it is a matter of the overall sign
of the winding number and we are interested only in its squared value.) The other
winding number Wy can be also calculated in the same manner.

2.3.2 Improved estimator of helicity modulus

From eq. (2.11), the improved estimator for W; is

(2.12)
c

where c denotes a loop and Wx,c is defined as

(2.13)

The Wx,c simply equals to a half of winding numbers of a loop c. The improved
estimator for W; is defined in the same manner.

We compared the error between the normal and the improved estimator in long
runs at various temperatures. We found that the improved estimator reduces errors
in about twenty per cent and the total performance of the new estimator is 1.5
times better than that of the conventional one in terms of the computational time
required.

2.3.3 Simulations

In what follows, we present numerical results both from our older set of simulations
performed with a discrete time version of the code and from our newer set with
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a continuous time version. We have taken various temperatures between 0.22 and
0.60 and used lattices with L = 8,12, 16,24,32,48,64,96 and 128 in our simulation.
For simulations with the discrete time version, we have used m = 8,16 and 32 for
the Trotter number. When the systematic error of Trotter discretization exceeds
the statistical error, we have reduced the systematic error by the extrapolation to
m = 00 using three different Trotter numbers. For L = 12,24,48,96 and 128 at
all temperatures and for all Vs near the critical temperature, we have used the
continuous time version.

The length of a typical IUn on L = 128 at each temperature is more than lOG
Monte Carlo sweeps (MCS). The most time-consuming part in the entire code is the
cluster identification. It is a task of assigning each spin a number that specifies which
cluster the spin belongs to. In doing this, we only use the information of the local
connectivity. To make a good use of vector processors for this kind of task, we need
to use a vectorizable algorithm. For the discrete version of the code, we adopted an
efficient vectorized code following Mino's idea [33]. This idea is based on the "divide­
and-conquer" strategy. In this strategy, we firstly divide the lattice into many small
sub~lattices and identifies clusters in each sub-lattice neglecting the connectivity
outside of the cluster. This process can be easily vectorized or parallelized because
cluster identifications of different sub-lattices are independent of each other. We then
combine two adjacent original sub-lattices to form a larger sub-lattice and identify
clusters in this sub-lattice. In doing this, we can use the information of the clusters
in the smaller sub-lattices which have already been obtained in the previous step.
We repeat this procedure until all the sub-lattices are combined into a single lattice,
Le., the original whole lattice. Using this algorithm, we achieved the efficiency of
1.5 million site updates per second per one vector processor of Fujitsu VPP500. For
the loop algorithm on continuous imaginary time, we used a parallel computer and
took trivial parallel approach. Our code does about 29000/(L2f3) sweeps per second
on a node of Hitachi SR2201.

In our simulations, each run is divided into several bins. The length of a bin is
taken large enough so that bin averages may be statistically independent from each
other at least approximately. In order to check this conditioll, we have measured
autocorrelation times of the improved estimator of the squared winding number
at low temperatures T < 0.35J by the standard binning analysis for a run of 105

MCS with L = 64. They turned out to be smaller than 2 MCS in all cases. We
have not observed any difficulty due to low temperature except that, trivially, the
computational time per one Monte Carlo step increases proportional to the inverse
temperature. The statistical independence among bins is assured, because the small­
est bin length used is 1000 MCS. An error bar shown in the figures in the present
study represents one standard deviation. Results of the squared winding number
(W2) are summarized in Table 2.3.
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Table 2.3: Squared winding number (W2
).

Til L=8 L = 16 L = 32 L = 64
0.220 2.429(3) 2.433(6) 2.41(2)
0.240 2.214(3) 2.225(5) 2.22(2)
0.260 2.040(3) 2.046(5) 2.05(2)
0.280 1.876(2) 1.865(4) 1.86(2)
0.300 1.728(2) 1.722(4) 1.73(2)
0.320 1.592(2) 1.57(1)
0.325 1.582(1) 1.557(2) 1.540(3) 1.538(5)
0.330 1.552(1) 1.524(2) 1.508(3) 1.493(3)
0.332 1.542(1) 1.510(2) 1.492(3) 1.478(3)
0.334 1.528(1) 1.492(2) 1.478(3) 1.471(3)
0.335 1.521(1) 1.489(2) 1.471(2) 1.454(3)
0.336 1.518(1) 1.483(1) 1.463(2) 1.450(2)
0.337 1.508(1) 1.475(1) 1.455(2) 1.446(2)
0.338 1.505(1) 1.466(1) 1.444(2) 1.433(2)
0.339 1.500(1) 1.4617(9) 1.442(1) 1.425(1)
0.340 1.491(1) 1.4556(9) 1.434(1) 1.418(1)
0.341 1.486(1) 1.4480(9) 1.426(1) 1.407(1)
0.342 1.480(1) 1.4417(9) 1.419(1) 1.400(1)
0.343 1.4727(9) 1.4374(9) 1.409(1) 1.392(1)
0.344 1.4682(9) 1.4292(8) 1.403(1) 1.385(1)
0.345 1.4633(9) 1.4214(9) 1.396(1) 1.377(1)
0.346 1.4571(9) 1.4149(9) 1.388(1) 1.366(1)
0.347 1.451(1) 1.408(1) 1.384(2) 1.359(2)
0.348 1.445(1) 1.401(1) 1.370(2) 1.348(2)
0.349 1.439(1) 1.396(1) 1.365(2) 1.342(2)
0.350 1.433(1) 1.391(1) 1.356(2) 1.334(2)
0.351 1.426(1) 1.379(2) 1.348(2) 1.319(2)
0.352 1.423(1) 1.376(1) 1.338(2) 1.309(2)
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Table 2.3: Squared winding number (W2
) (continued).

Til £=8 L = 16 L = 32 L= 64
0.353 1.417(1) 1.369(1) 1.337(2) 1.308(2)
0.354 1.412(1) 1.360(1) 1.327(2) 1.298(3)
0.355 1.403(1) 1.354(2) 1.322(2) 1.286(3)
0.356 1.395(2) 1.349(2) 1.311(2) 1.280(5)
0.357 1.393(2) 1.336(2) 1.302(2) 1.270(5)
0.358 1.386(2) 1.336(2) 1.298(2) 1.262(5)
0.359 1.380(2) 1.330(2) 1.284(2) 1.255(5)
0.360 1.373(1) 1.322(2) 1.279(2) 1.247(4)
0.362 1.368(2) 1.305(3) 1.260(2) 1.21(1)
0.364 1.356(2) 1.296(2) 1.246(2) 1.20(1)
0.366 1.340(2) 1.280(2) 1.227(2) 1.18(2)
0.368 1.328(2) 1.262(2) 1.207(2) 1.14(1)
0.370 1.318(2) 1.249(2)
0.375 1.290(2) 1.214(2)
0.380 1.259(1) 1.180(2)
0.390 1.203(1) 1.105(2)
0.400 1.146(1) 1.024(2) 0.872(2) 0.65(1)
0.420 1.033(1) 0.856(2) 0.598(2) 0.242(6)
0.440 0.917(1) 0.676(2) 0.328(2) 0.050(3)
0.460 0.804(1) 0.492(2) 0.142(1) 0.007(1)
0.480 0.686(1) 0.338(2) 0.0518(7) 0.0008(3)
0.500 0.579(1) 0.214(1) 0.0171(4)
0.520 0.479(1)
0.540 0.388(1)
0.550 0.0564(6)
0.560 0.310(1)
0.580 0.2465(9)
0.600 0.1935(9) 0.0132(3)
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Table 2,3: Squared winding number (W2 ) (continued).

Tjl L:::: 12 L:::: 24 L:::: 48 L:::: 96 L:::: 128
0.339 1.475(1) 1.449(1) 1.432(1) 1.416(1) 1.416(1)
0.340 1.468(1) 1.442(1) 1.423(1) 1.411(1) 1.409(1)
0.341 1.462(1) 1.432(1) 1.414(1) 1.401(1) 1.398(1)
0.342 1.4557(9) 1.426(1) 1.409(1) 1.392(1) 1.389(1)
0.343 1.449(1) 1.417(1) 1.397(1) 1.382(1) 1.379(1)
0,344 1.443(1) 1.412(1) 1.392(1) 1.375(1) 1.370(1)
0.345 1.4368(9) 1.404(1) 1.383(1) 1.366(1) 1.363(1)
0.346 1.4295(9) 1.398(1) 1.374(1) 1.357(1) 1.350(1)

2.4 Universal jump in the helicity modulus

2.4.1 Kosterlitz renormalization group equations

The helicity modulus can be regarded as the renormalized coupling constant that
appears in the Kosterlitz renormalization group equations. Furthermore) Weber
and Minnhagen [44] regarded the renormalization group flow of the solution as the
system size dependence of the helicity modulus. They observed that the estimated
values at the critical temperature agree well with the theoretical prediction derived
from this idea. In the present study, as we see below, we follow their idea but
use a different method for the analysis in which not only the data at the critical
temperature but also off-critical data are taken into account simultaneously.

The Kosterlitz renormalization group equations are

dx <)

dI :::: -Y-,
dy
di:::: -xy. (2.14)

Here, x and yare renOfmalized parameters after a renormalization operation up to
the length scale L _ Lo(T)e1 where Lo(T) is some characteristic length of the order
of the lattice constant and has no singularity at T = TKT . The renormallzed coupling
constant x is related to the helicity modulus and the squared winding number by
the following equations [35]:

(2.15)

Equation (2.14) has an integral

(2.16)

which does not depend on l =log(Lj Lo(T)). As a function of T, this integral has
no singularity at T = TKT . Therefore we can expand it in terms of the distance
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from the critical temperature, i.e., 6.(K) = a(1< - K KT) +b(K - KKT)2 + ... where
K =JIT. The solution of eq. (2.14) is given by

(K> KKT)
(K = KKT)

(K < KKT)'

(2.17)

This solution is a special case of the following form:

x(T, L) = Z-1 f(6.Z 2
).

This "finite-size-scaling" form can be obtained from the ordinary one

(2.18)

(2.19)

by replacing L by l = 10g{LILo(T)). However, it is easy to see that eq. (2.18) cannot
be made consistent with eq. (2.19) no matter what values are used for the exponents
wand lJ. It should be also pointed out that even if we consider a little more general
form for the ordinary finite size scaling

x(T, L) = LWg (e(T)1 L) (2.20)

allowing e(T) to have the correct temperature dependence, it is still impossible to
cast the solution eq. (2.17) into this form.

From the solution eq. (2.17), it can be seen that the "scaling function" f(X)
has no singularity at X=O. The scaling function should take on the value 1 at the
critical point:

f(X) = 1 + O(X). (2.21)

Note also that our scaling form eq. (2.18) is consistent with Olsson's fitting function
[Equations (lla-c) with (16) and (18) in Ref. [36]].

2.4.2 Finite-size-scaling around Tc

In Fig. 2.1, the squared winding number is plotted against the temperature. We can
see the strong system size dependence characteristic to the KT transition especially
around and above the critical temperature. Because of this large size dependence it
is virtually impossible to estimate the critical temperature and the critical indices
without knowing the "scaling form ll that describes the system size dependence.
Figure 2.2 shows the same data rescaled using eq. (2.18). The parameters KKT and
Lo are chosen to minimize the cost function defined in Appendix B.

In Fig. 2.3, the contour plot of the cost function is shown. The cost function is
the measure of the "badness" of the scaling plot. It is basically the deviation from
the local linear approximation. In order to eliminate data out of critical region, we
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Figure 2.1: Helicity modulus (or super fluid density) Y = (T/2)(WZ) as a function
of temperature. The universal jump is expected at the point where Y = 2T/1r.
Error bars are drown but most of them are so small that they cannot be recognized.
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Figure 2.2: A rescaled plot of the winding number fluctuation. The inset IS a
enlarged view near the critical point.
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have to select data points for the analysis. We have eliminated data points outside
of the region,

4 ? 4 1- < (w-) < - +-
71- -11" 2'

-1.5::; x = (K - KKT )(log(LjLO))2 ::; 1.5.

(2.22)

(2.23)

The value of the cost function at the optimal choice of the parameters tends to be
smaller as we eliminate more data points away from the critical point, making the
resulting estimate more reliable. We have also selected data points with respect to
the system size. However, if we eliminate too many data points the cost function
does not have a meaningful minimum. As long as we obtain a meaningful minimulll,
the results do not significantly depend on the minimum system size adopted, as can
be seen in Fig. 2.3. For the upper contour plot in Fig. 2.3 we have used data for
system size L ~ 8, whereas for the lower we used L ~ 12.

We here quote the estimates adopted in Fig. 2.2:

TKT = 0.3427(2)J, Lo = 0.29(2). (2.24)

The minimum value of the cost function turns out to be 1.9. The deviation of this
value from unity suggests the presence of correction to scaling. We can see from
Fig. 2.2, that the value of the scaling function j (x) at x = 0 is close to unity in
agreement with the prediction (eq. (2.21)). The error in j(O) was determined in a
similar fashion to those for TKT and Lo. It results in

j(O) = 1.0(1). (2.25)

This agreement can hardly be explained unless the Kosterlitz-Thouless picture is
assumed and is a clear indication for its validity in the present model.

2.4.3 Finite-size-scaling at Tc

We have also tried another analysis foHowing Weber and Minnhagen [44], namely,
measuring the chi-square values of the fitting to the critical form (The second equa­
tion in eq. (2.17)) as a function of the temperature. To be more specific, we assumed
at each temperature the following system size dependence of the helicity modulus.

1iT 71 2 ( 1)
2T = 4"(W ) = A(T) 1 + 2log{LjLo(T)) (2.26)

This fitting form is expected to be correct only at the critical point with A(TKT) = 1
(eq. (2.18) and eq. (2.21)).

Since the number of data at each temperature is not enough, the critical tem­
perature cannot be determined as the one at which the fitting is the best. Instead,
we have tried two procedures. One is to fix A(T) to be 1 (but keep Lo as a fitting
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Figure 2.3: Contour plots of the cost function for evaluating finite-size-scaling plots.
The plotted value is defined as SIN in Appendix B. The smallest system size used
is L = 8 for the top figure and L = 12 for the bottom.



36 2. Kosterlitz-Thouless transition of S =: 1/2 quantum Xl' model in two dimensions

variable) and measure the chi-square values of the fitting. The result is shown in
Fig. 2.4. From this figure we conclude that TKT = 0.3430(5). The other procedure is
to allow the coefficient A(T) to vary and see where A(T) crosses the line of A = I,
which should be the case at the critical temperature. The estimated coefficient
A(T) as a function of temperature while both A and Lo are allowed to vary is shown
in Fig. 2.5. The critical temperature is estimated by a linear fitting of the data,
yielding

TKT = 0.34271(5)J,

which is consistent with eq. (2.24).

(2.27)
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Figure 2.4: Chi-square values of the fitting with A(T) fixed to be 1.

2.5 Conclusion

We have obtained accurate estimates of the helicity modulus as a function of tem­
perature and system size. The results fit into the special finite size scaling form
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Figure 2.5: Helicity modulus divided by the magnitude of its universal jump. The
dashed verticallille indicates the critical temperature at which the solid line crosses
the dashed horizontal line (A = 1). The solid line is determined by a linear fitting.
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derived from the Kosterlitz renormalization group equation identifying the renor­
malization scale with the system size. By this scheme we have avoided a technically
difficult comparison between an exponential divergence and an algebraic one. The
coincidence of the estimated critical value of the scaling function with the predicted
one confirms the KT nature of the phase transition. In the numerical simulation
we have used loop algorithms ill both discrete and continuous time representations.
Both of them have turned out to be quite efficient and advantageous especially in es­
timating the helicity modulus which is usually a conserved quantity in conventional
Monte Carlo simulation.



3. Two dimensional S == 1 quantum
Heisenberg antiferromagnet at
finite temperatures

3.1 Introduction

Recently, field theoretical predictions [5,6,19] concerning the correlation length of
the square lattice quantum Heisenberg antiferromagnet (QHA) were directly checked
by experimental measurements [15,34] and several quantum Monte Carlo (QMC)
simulations [3,27,28,32]. While in the case of spin S = 1/2 the validity of the
predictions seemed supported by experiments, in the case of S = 1, experimental
measurements for both LazNi04 [34] and K2NiF4 [15] turned out to be inconsistent
with the theoretical predictions.

The inconsistencies were explained by noting that the theoretical low tempera­
ture expression is valid for the temperatures of the S = 1/2 experiments, but not
valid in the temperature regime of the S = 1 experiments. While a number of
simulations have been performed for S = 1/2, only a high temperature series ex­
pansion calculation [13] and an effective high temperature theory (PQSCHA) [7~9]

are available for S = 1 in the experimentally relevant temperature range.

In this chapter, we compute the correlation length and other thermal averages
for the S = 1 QHA on a square lattice using the loop algorithm generalized to
larger spins [23-25] and compare them with theoretical predictions and experimental
measurements.

The loop algorithm was implemented on continuous imaginary time to eliminate
the systematic error due to Suzuki-Trotter discretization of path integrals. We
found that this algorithm was more simple and efficient for the S = 1 QHA than
that on discrete imaginary time. The improved estimators for the S = 1 QHA are
defined and are used to reduce the statistical error.

In Sec. 3.2 we describe the loop algorithm on continuous imaginary time for
S = 1 QI-IA. In Sec. 3.3, the estimator of correlation length and improved estimators
for various observables are defined and the details of simulations are explained. In
Sec. 3.4 we analysis the results of quantum Monte Carlo simulations. We summarize

the conclusion in Sec. 3.5.

39
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3.2 Loop algorithm for S == 1 quantum Heisenberg
antiferromagnet

The 5 = 1 QHA is defined by the following Hamiltonian,

iI = J "'(S~SJ! + S1IS¥ + S~S7)L-J'J tJ tJ'
(ij)

where (ij) runs over all nearest-neighbor pairs on the square lattice and Sr (j.t =
x, y, z) is a spin-1 operator at site i.

When implemented in continuous imaginary time, the probability for the graph
assignment in the cluster algorithms for larger spins becomes much simpler than the
original discrete time version [23,25]' although the idea is essentially the same.

As in the case of discrete time, we first extend the Hilbert space by expressing
each spin operator by a sum of 25 Pauli spins:

25
SJl _ ~ '" -/1

. i - 2L-JO'il'
1::::1

(j.t = X, y, z) . (3.2)

We therefore consider (2SN) vertical lines along the imaginary time axis, each spec­
ified by two indices (il), where N is the total number of original spins. Thus a
interaction term of S = 1 QHA is decomposed into four ones of 5 = 1/2 QHA.

For S = 1/2 QHA, B(Sp) is 0 and a(Gp) is defined in Table 3.1 (see Table 1.2 and
eq. (1.47)). Although a(2) is negative, it can be made positive by using a unitary

Table 3.1: a(Gp ) for S = 1/2 quantum Heisenberg antiferromagnet.

Gp a(Gp )

1 _lJ
12 --J2

3 0
4 0

transform as rotation (r'Y -. _ax,y ou a bipartite lattice. a(2) is J/2.
Thus our procedure for the graph assignment is simple as follows:

• For each pair of neighboring worldlines and for each uninterrupted time interval
during which spins on these worldlines are antiparallel, we generate "cuts"
(graph Gp = 2) of worldlines with probability density J /2.

While the loop algorithm on discrete imaginary time need more graphs as two world­
lines jump at a time, this algorithm do not need them.

Since there are unphysical states in the new extend Hilbert space in which some
of the spins have magnitude less than S, we must eliminate such states by applying
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projection operators. Here we use a representation where z-spin components are
diagonalized. The application of the projection operator for a site is realized by
choosing an appropriate boundary condition in Trotter direction as follows:

• If the spin values (&(il)(r)) are the same at the four end points, (il) and (i2)
at r = {3 and at r = 0, we choose a straight connection and a cross connection
with equal probability. The straight connection is to connect (i1) and (i2) at
r = {3 to (i1) and (i2) at r = 0, respectively. The cross one is to connect (il)
and (i2) at r = {3 to (i2) and (i1) at r = 0, respectively.

• Otherwise] we choose the unique method for connecting these four points pair­
wise so that the spin value at each connection point is continuous.

Thus, we form many loops which are to be flipped with probability 1/2. This
algorithm turns out to be more efficient than its discrete version.

---_._ •• __ .1

Trotter direction

t 0

t =f3

cut

•••I. _

•••••I. _

•••••••••••

t = 0

_.. - .._.----

real direction

Figure 3.1: A cut and two horizontal segments. The two types of boundary condition

in the Trotter direction are also illustrated.
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3.3 Quantum Monte Carlo simulation

3§3.1 Estimator of correlation length

The second moment correlation length ~L on a finite system of size L was determined
from the static structure factor S L(q) in the vicinity of Q = (1r1 It) [2]. The eL is
calculated as foHows.

where

( )_ . z(q) ( SCQ+q»)-l
f q = 4sm 2" 1- SeQ)

(3.3)

(3.4)

This estimator for the correlation length (of a finite system) should be correct up
to the fourth order in 21!'IL.

3.3.2 IIllproved esthnator

We use improved estimators to reduce statistical errors of measured quantities of
the static structure factor and the uniform susceptibility.

The improved estimator of the static structure factor is defined as eq. (1.51):

1 ( )2Seq) = V ~exP(-iq. r)S:(r)

4~ (I:: exp(-iq . r )0":,1(r») 2
r,l

1 '"' 2SimpT(q) = V LJ (Mc(q») ,
c

where V is volume of system and c denotes a loop and M c {q) is

Mc{q) = ~ L exp( -iq . r )O";,/{r).
(r,/lEc

(3.5)

(3.6)

(3.7)

(3.8)

Here we have to note that a loop is on spin-l/2 sites not on spin-I. Thus the
improved estimator is defined by 0";,1 not by S:.

Although we can use eq. (3.7) at any imaginary time r, we have used it by
several imaginary time interval !:J.r at a certain time to reduce statistical error. In
our simulation li.r is l.

The improved estimator of uniform susceptibility is simple:

(3.9)
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where Xc is

3.3.3 Simulations

Xc = [~ L 0-;,/(0)] 2

(r,l)Ec

(3.10)

As the analytic low temperature form is not valid in the experimentally accessible
temperature regime, we performed QMC simulations over the temperature range
kaT ~ J in order to compare the experimental data [34] with the S ::::: 1 QHA.

For a given temperature T, when the lattice size L is sufficiently large, ~L de­
fined by eq. (3.3) converges to a size-independent value ~(T), which we regard as
the infinite-size limit. We find that the convergence is achieved to the accuracy
determined by the present statistical error when the condition L ~ 7~L is satisfied.
All the following results are obtained under this condition. For each simulation we
have performed 106 sweeps after 104 thermalization sweeps.

A selection for our results of the correlation length () the staggered structure
factor S(1r, 1r) and the uniform susceptibility X are summarized in Table 3.2.

Table 3.2: Correlation length ~, magnetic structure factor Sen, 7i) and uniform sus-
ceptibility X as a function of temperature t = kBT/2'7l"p~.

J/kBT t L ( S(7i,7i) ·x
0.10 1.83 20 0.298(5) 0.8915(1) 0.051579(6)
0.15 1.22 20 0.396(5) 1.0489(2) 0.068503(9)
0.20 0.92 20 0.497(5) 1.2481(3) 0.08118(1)
0.25 0.73 20 0.610(5) 1.5029(5) 0.09038(1)
0.30 0.61 20 0.739(5) 1.8342(7) 0.09687(2)
0.35 0.52 20 0.894(6) 2.272(1) 0.10108(2)
0.40 0.46 20 1.079(6) 2.854(2) 0.10343(2)
0.45 0.41 20 1.307(6) 3.648(2) 0.10435(3)
0.50 0.37 30 1.604(3) 4.776(1) 0.104000(8)

0.55 0.33 30 1.982(8) 6.392(4) 0.10275(2)

0.60 0.31 40 2.482(5) 8.795(2) 0.100756(8)

0.65 0.28 40 3.14(1) 12.46(1) 0.09829(3)

0.70 0.26 50 4.06(1) 18.25(2) 0.09560(2)

0.75 0.24 50 5.30(2) 27.60(3) 0.09275(3)

0.80 0.23 60 7.06(2) 43.30(5) 0.09000(3)

0.85 0.22 80 9.52(3) 70.03(8) 0.08746(3)

0.90 0.20 120 12.98(4) 116.4(1) 0.08516(3)

0.95 0.19 140 17.97(5) 198.8(3) 0.08309(3)

1.00 0.18 200 24.94(7) 344.0(4) 0.08133(2)
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3.4 Results and analysis

3.4.1 Correlation length

Using chiral perturbation theory, Hasenfratz and Niedermayer (HN) [19] obtained
the temperature dependence of the correlation length up to two-loop order for an
arbitrary magnitude of spin:

eHN = :'~exp (!) x [1-! + 0 (t2
)] ,

827rp" t 2

where t = kaT/21fps, The dependence on the magnitude of the spin S is only
implicit through the S-dependence of the the spin-stiffness constant ps, and the
spin wave velocity c. For S = 1/2, the spin wave theory (SWT) [18] values for
Ps and c were observed to be close to the QMC estimates. As SWT is better for
larger spins, we can confidently use the SWT values for S = 1 in the following with
21rp" = 5.461J and Jie = 3.067J. These values agree to within 1% with the result of
a series expansion about the I.sing limit.

Equation (3.11) is valid in the renormalized classical regime where

t ~ 1. (3.12)

An additional constraint on the temperature comes from the cutoff of the quantum
fluctuations in the effective field theory once the extension in the imaginary time
direction (3 becomes smaller than the lattice spacing a/lie:

(3.13)

The approximation in the last term on the right hand side is again the leading order
SWT result.

In the case of S = 1/2 QHA, it was found by QMC simulations that eq. (3.11) is
valid only at very large correlation lengths [3,28] of the order of 100 lattice spacings
or larger. In the experimentally relevant temperature regime the deviations, while
clearly visible in the QMC simulations, are however smaller than the experimental
errors. Thus, the theory and experiment agree for S = 1/2.

The large discrepancies observed for S = 1 [15,34] are somewhat counterintuitive,
since the theory based on a spin-wave picture should be better for larger spins.
Actually however, as noted previously in refs. 3,5,13,28, larger spins are more
classical. Therefore the quantum effects, which determine eq. (3.11) are cut off at
lower temperatures for larger spins, as can be seen from eq. (3.13). The validity
of eq. (3.11) is then restricted to even larger correlation lengths than for S = 1/2,
much larger than accessible in experiments.

In Fig. 3.2, we plot our QMC results for the correlation length together with
the experimental data [34] and theoretical predictions based on eq. (3.11). Our
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• QMC data
o L~Ni04 measurements
o QMC data + Ising correction

HN prediction
-- PQSCHA approximation
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Figure 3.2: Correlation length eas a function of t = knTj21fp". Filled squares
represent the results of our simulation, the open circles are experimental measure­
ments [34]. While the experimental measurements agree roughly with our QMC
results, they are incompatible with the QMC results corrected for a small Ising
anisotropy (open squares). Compared to analytic calculations, we find that in this
temperature range the low-temperature predictions of eq. (3.11) (dashed line) are
not valid. The PQSCHA approximation [7-9], however agrees well with both our
data and the experimental measurements.
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present estimates are in rough agreement with experimental measurements. Grevel1
et al. [15] and Nakajima et al. [34] have additionally proposed to include the effects
of a small Ising anisotropy using a mean-field type correction to the theoretical
isotropic results. This correction (eq.(7) in ref. 34) however makes the agreement
worse, as can be seen from Fig. 3.2.

Compared to theoretical predictions we find that the data deviate strongly from
the low temperature formula of eq. (3.11). The effective PQSCHA approximation [7­
9L which is an effective high temperature theory, however agrees well with the QMC
results much better than for S = 1/2 [7-9,27].

3.4.2 Structure factor

The violation of the theoretical predictions [5,6] was observed in the peak value of
the staggered structure factor 8(1f,1f), which according to the theory [5,6] should
scale as

(3.14)

Here M is the staggered magnetization of the ground state and A and C are universal
constants. For spin-l/2 the leading t? form was confirmed by high temperature
series [13]. Recent QMC data [28] at lower temperatures fit the above form very
well in the temperature range t < 3 with A ~ 4.0(1) and C ~ 0.5(1). However,
experiments for both S = 1/2 and S = 1 however were better described by an
empirical law [15,34]

(3.15)

over the same temperature range.
We applied X2 analysis to check the consistency of the spin-l data. Good fits

were obtained for t < 0.28, with x: rv 1 when we allow C to vary, and x: rv 2 with
a fixed C = 0.5. The universal constant A was determined to be A = 4.1(1) and
A = 4.5(1), similar to the values obtained for S = 1/2. The discrepancies between
the fits are non-universal effects caused by the high temperatures.

Compared of our data with the experiments is shown in Fig. 3.3 and we can see
that for low temperatures the experimental data are consistent with the QMC results
and eg. (3.14). The discrepancies that lead refs. 34 and 15 to predict eg. (3.15) occur
at higher temperatures where the experimental data has large error bars. In view
of the precision of our QMC results and the large errors of the experimental results
we suspect that, contrary to the suggestion of refs. 34 and 15, the deviations from
eq. (3.14) are due to uncertainties in the experimental measurements.

3.4.3 Uniform susceptibility

We present in Fig. 3.4 the uniform susceptibility for S = 1/2 together with previously
published S = 1/2 results. First we note that, as expected, the asymptotic low
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Figure 3.3: Ratio of structure factor peak value and square of the correlation length
S(1r,1r)/e as a function of temperature. Solid circles represent the QMC mea­
surements and open squares the experimental measurements. They agree at low
temperatures, but differ at higher temperatures. The solid line is a fit of the QMC
data to the theoretical low-temperature prediction.
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temperature behavior of the renormalized classical regime

(3.16)

sets in at lower temperatures for S = 1 than for S = 1/2.
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Figure 3.4: Uniform susceptibility X as a function of temperature t for both spin
S = 1 and spin 8 = 1/2 (taken from ref. 28). The solid line is the predicted low
temperature form of the renormalized classical regime. The dashed lines have the
universal slope expected for the quantum critical regime. As expected, contrary to
8 = 1/2, no extended quantum critical regime exists for S = 1. However the slope
is close to the quantum critical value as non-universal corrections are still small for
8=1.

It was discovered that for S = 1/2, the uniform susceptibility is the only quantity
for which a clear crossover to quantum critical behavior [6] can be observed at
intermediate temperatures t ,....., 1/3. The uniform susceptibility in the quantum
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critical regime is

x = Xl- +BT (g~:r, (3.17)

with a universal slope B ~ 0.26(1) [6,42,43]. For S = 1 however, as discussed above,
non-universal corrections become important at lower temperatures. No quantum
critical behavior was thus expected for S = 1. We can see in Fig. 3.4 that the
uniform susceptibility for S = 1 deviates from its universal quantum critical behavior
at intermediate temperatures. Its slope is however still surprisingly close to the
quantum critical one, indicating that the non-universal corrections are stillllot very
large for S = 1.

3.5 Conclusion

We have simulated the spin S = 1 quantum Heisenberg antiferromagnet on a square
lattice in the experimentally relevant temperature regime kBT rv J.

In the case of higher spin, the loop algorithm on continuous imaginary time is
also more effective and efficient than the traditional worldline algorithms [32] and
simpler than on discrete imaginary time. Improved estimators have worked well and
are simple to calculate.

We find a better agreement between the Heisenberg model and experimental
data than is expected from the low temperature theory. However, in view of the
existing small discrepancies, it may be necessary to perform simulations on a model
with small anisotropies in the exchange interactions, and to critically check the data
analysis of the experiments.
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Summary

In the present thesis, we made the best use of loop algorithms in order to investigate
the spin-1/2 quantum XY model (QXY) and the spin-1 Heisenberg antiferromagnet
(QHA) on the two-dimensional square lattice and have obtained the following results.

The helicity modulus in QXY is precisely estimated for systems up to 128 x 128
near and below the critical temperature. The critical temperature is estimated as
TKT = 0.3427(2)J. The obtained estimates for the helicity modulus are well fitted
by a scaling form derived from the Kosterlitz renormalization group equation. The
validity of the Kosterlitz-Thouless theory for this model is confirmed.

For QHA model, the temperature dependence of the correlation length] suscep­
tibilities and the magnetic structure factor are computed by extensive Monte Carlo
simulations (QMC). In the experimentally relevant temperature regime the theoret­
ically predicted asymptotic low temperature behavior is found to be not valid. The
QMC results, however, agree reasonably well with the experimental measurements
of LClQNi04 even without considering anisotropies in the exchange interactions.

In both QXY and QHA cases, we have found that loop algorithms are very
effective and the improved estimators work well as expected. Consequently, it can
be said that the loop algorithm is the best tool for numerical studies for quantum
spin models at low temperatures and critical points.

51



-52 Summary j •



A. Markov chain approach

In order to make a sequence of configurations on the desired distribution in Monte
Carlo simulations, we usually use a Markov chain. A configuration S1l0W in a
Markov chain is made from a previous configuration Sprev by a transition proba~

bility P(SpTC1J -+ Snow)'
When the transition probability satisfies the following conditions:

P(S)P(S -+ S') = P(S')P(S' -+ S) (A.I)

and
P(S -+ S') > 0 (P(S') > 0), (A.2)

then the appearance probability of a configuration S on the Markov chain converges
the distribution P(S). It is useful in Monte Carlo simulations. Equation (A.I)
and (A.2) are called the detailed balance condition and the ergodicity condition,
respectively. The transition probability used in Monte Carlo simulations needs to
satisfy these conditions.

There are two popular transition probabilities:

Metropolis' method

Heat-bath method

P(S -+ S') =min(l, P(SJ)jP(S))1

, _ P(S')
P(S -+ S) = P(S) + P(S')

(A.3)

(AA)

Almost local update Monte Carlo methods use these transition probabilities.
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B. Cost function for evaluating
finite-size-scaling plots

In this appendix, we present a new estimator for evaluating finite-size-scaling plots.
The estimator is basically a deviation from a local linear approximation analogous
to the previous estimator [26]. The advantage of this type of approaches is that we
do not need to assume any specific functional form for the scaling function. These
estimators are functions of trial values for various parameters such as critical indices
and temperature; KKT and Lo in the case of quantum XY model (QXY). Since the
previous estimator was discontinuous as a function of these parameters, searching
for its minimum - the optimal point - was a rather tricky task. One could hardly
tell if a local minimum found was really a global minimum. The discontinuity came
from the reordering of the data points as we change the trial values of the exponents
and the critical temperature. As we show in the following, we have eliminated this
discontinuity by treating data points for different system size separately.

In what follows, a data point consists of a rescaled estimate Y, a rescaled error
d and a rescaled parameter x at which y and d are estimated. In the case of QXY,
Y = ((7i/2)(W2) - 2)log(L/Lo) and x = (K - KKT)(log(L/Lo))2. Therefore, x, y
and d depend on trial values for various parameters in general. Here we denote one
standard deviation by d. Also we denote the i-th data point for the system size
L by PL,i _ (XL,i, YL,i, dL,i)' These data points are ordered so that XL,i < XL,i+l'

In the previous estimator, we dealt with all the data points without regard to the
system size. Therefore, the order of the data points may change as the trial values
for the exponents vary. Here we have no such reordering due to the change in the
trial values.

For each system size L', we connect adjacent points PL',i and P uHI by a straight
line. Then, for each combination of a data point PL,i and a system size LI

, we choose

J' such that XL' . < XL i < XL' J'+1' Next, we consider a point at x = XL,i on the line
,J , , •. £'.

that connects two points, P£',j and P£"j+1' We denote thIS pomt by PL,i' Smce the

value yfi is expressed as a linear combination of YL',j and YL',j+Il,

£' -
YL,i = PYL',j + qYL',j+l,

XL',]'+l - XL.i
P=' . I q =1- P,

X£',i+l - XL',j

(E.l)

(B.2)

the error dfi, which comes from errors dL',j and dL',j+Il can be estimated through,
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the ordinary error propagation rule. To be specific,

(B.3)

For convenience I we define Pi,l =PL,i' In an ideal case where the linear approxi­
mation is good and the statistical and systematic errors are negligible, all pE's for
various £' should coincide with each other.

Here we assume that the linear approximation is good and the systematic errors
are negligible while the statistical errors are not necessarily negligible. In order to
evaluate the coincidence, then, we consider the weighted sum of deviations of the

. pL"pomts L,;I l.e.!

with

(

L' _)2
S . = ~ _1_ YL,i - YL,i

L,l - L-J 1 dL'
L' n -. L,t

(B.4)

(B.5)L' /_ _ YL,; 1
YL,; =L dL' 2 L dL' 2 '

. L' L,i L' L,;

where n is the number of distinct system sizes. As statistics tells, the expectation
value of SL,; is 1. When we define S as the sum of all SL,;'S, it evaluates quality of
the finite-size-scaling plot. Its expectation value equals the number of data points
N. The acceptable range of parameters is determined by

where m is of order 0(1).

S < minS+m, (B.6)
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