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1
General Introduction

1.1 Introductory remarks

Colloidal particles are utilized in the production processes of various advanced

functional materials, such as electric and magnetic materials, catalyses, ceramics,

paints, medicines, and cosmetics. In these processes, the interfacial features

influence the behavior of the colloids in a medium and the function of the final

products. For the accurate control of the material property, therefore, it is

indispensable to estimate precisely the behavior of molecules near the surface of

colloidal particles and to evaluate quantitatively the interparticle force and the

behavior of the particles.

Colloidal particles are dispersed in various liquid media, which is named the

suspension. The characteristics of the suspension mainly depend on the interaction

force between particles, that is, the "mean force" which is determined not only by

the direct interparticle force but also by the solvent-particle and solvent-solvent

interactions. In order to control the property of the suspension, the third

substances (e. g., electrolytes, surfactants, and polymers) are added to a solution

as either the dispersant or the floccurant if necessary. These additives usually

adsorb onto the surface of colloidal particles to change their interaction force

substantially. Thus, the microscopic structure and dynamics of a solid/liquid

interface govern the surface force and consequently affect the macroscopic

behavior of the colloidal particles.

-1-



In actual processes, the contribution of a non-equilibrium field becomes

important in addition to the equilibrium behavior. For example, it was observed

experimentally that the shear flow largely influences the phase separation

phenomena such as the nucleation and the spinodal decomposition. In the author's

opinion, one can not explain satisfactorily how a non-equilibrium field influences

on a suspension, until one understand exactly the basic characteristics of the

suspension. In this dissertation, therefore, the main attention is focused on the

equilibrium microscopic features of the solid/liquid interfaces and the interaction

forces between colloidal particles. But the non-equilibrium features are also

examined when they are needed.

1.2 Experimental methods

Detailed understanding of interaction forces between colloidal particles in fluids

has been the central subject SJf colloid science. Historically, the van der Waals

theory and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory have been

frequently used to describe the interaction between colloidal particles in electrolyte

solutions. Most experimental results were explained by these theories, although

some observations were not.

Recently, the surface force apparatus (SFA) and the atomic force microscopy

(AFM) were developed to measure in situ the surface force in fluids. As described

below, these instruments have contributed to the progress of colloid science as

greatly as the van der Waals and DLVO theories.

1.2.1 Surface force apparatus (SFA)

The SFA was developed in late 1970s [Israelachvili and Adams, 1978;

-2-



TABLE 1.1: Force measurements by SFA

Liquid medium

Inert nonpolar liquid

Polar liquid

Hydrogen-bonding liquid

Aqueous electrolyte sol ution

Liquid alkane

Polymer melt

Reference

Horn and Israelachvili [1981].

Christenson [1983, 1985, 1986]

Christenson and Horn [1983], Christenson [1984]

Christenson [1984], Christenson and Horn [1985]

Pashley [1981], Pashley and Israelachvili [1984a, 1984b]

Christenson et aI. [1987], Herder et at. [1989],

Gee and Israelachvili [1990]

Horn and Israelachvili [1988], Horn el at. [1989],

Israelachvili and Kott [1988J

Israelachvili, 1991, Section 10.7] and has been used to measure the interaction

forces between cleaved or chemically modified mica surfaces in various media (see

Table 1.1). The attractive van der Waals and repulsive electric double-layer forces

were measured in situ and the results were found to agree quantitatively with the

prediction given by the above theories. However, the forces which the DLVO

theory fails to predict (i. e., non-DLVO forces) were also discovered; for example,

the oscillatory structural force, the repulsive hydration force, the attractive

hydrophobic force, the steric interaction in polymeric systems, and the capillary

and adhesion forces [Israelachvili, 1987, 1991; Israelachvili and Wennerstrom,

1996; Christenson, 1988]. In particular, the long-range attraction which occurs

between hydrophobic surfaces in water is important, because this attractive force

has been utilized in various industries without knowing the origin of the force

[Israelachvili, 1991, Section 13.6; Christenson and Claesson, 1988; Tsao et aI.,

1991; Kurihara and Kunitake, 1992].

The SFA is a very powerful tool to investigate the interaction forces between

large surfaces and provides a useful information about the adsorbed layers of

molecules near the surface. However, the SFA can not probe the behavior of the

-3-



TABLE 1.2: Smfactant aggregates on solid surfaces visualized by AFM

Surfactant

Cationic b

Anionic r

Zwitterionic d

Nonionic r

Solid surface a

Graphite, MoS1

Mica, Silica

Gold

Graphite

Gold

Graphite

Mica, Silicon nitride

Graphite

Reference

Manne et al. [1994], Manne and Gaub [1995]

Manne and Gaub [1995]

Jaschke et al. [1995]

Wanless and Ducker [1996]

Jaschke et al. [1995]

Ducker and Grant [1996]

Ducker and Grant [1996]

Patrick et al. [1997)

a Classified into hydrophobic, non-metal hydrophilic, and metal surfaces.

b Alkyltrimethylammonium halides.

r Sodium dodecyl sulfate (SDS).

a DodecyldimethyJammoniopropanesulfonate (DDAPS).

r Poly(oxyethylene) n-dodecyl ethers.

individual molecules, which is important to understand the detailed structures and

dynamics of the adsorbed layers.

1.2.2 Atomic force microscopy (AFM)

In late 1980s, the AFM was developed to visualize the atomic scale roughness of a

substrate surface and the adsorbate on the surface [Binning et aI., 1986; Hansma et

al., 1988]. However, Ducker et aI. [1991, 1992] used the AFM to measure the

interaction force between a colloidal probe and a substrate.

Using the AFM, the surfactants, polymers, and biomolecules on the surface

have been investigated extensively. As for surfactants, recent in situ measurements

listed in Table 1.2 show that surfactants form aggregates at the solidlliquid

interface as well as in the bulk solution and the interfacial aggregates exhibit

various morphology of spheres, cylinders, half-cylinders, and bilayers, depending
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on the surface property and the sUIfactant structure [Manne, 1997]. All the

experiments in Table 1.2 were carried out in aqueous solutions of nearly the

critical micelle concentration (CMC). It was also found that even in sufficiently

dilute solutions (:::: CMC/l05
) where micelles are not formed stably in the bulk,

islandlike aggregates of cationic surfactants are formed on the mica surface

[Fukuda, 1996]. But, why and how the aggregates are fanned at solid/liquid

interfaces are poorly understood at present.

1.3 Integral equation theory (lET)

1. 3.1 Basics

In late 1970s, the theoretical works started to elucidate the characteristics of

solid/liquid interfaces and the interactions between the solid surfaces from a

molecular point of view, using the integral equation theory (lET). The lET is

based on the Ornstein-Zemike relation connected with various equations of

closure approximation [Hansen and McDonald, 1986]. The IEf has the following

advantages:

(i) The effects by a very small amount of elements on the whole system can be

estimated appropriately.

(ii) Much computation time is not necessary, because the lET treats molecules

implicitly through molecule-molecule pair correlation functions and there is no

need to calculate interactions between all pairs of molecules.

On the contrary, there are the following disadvantages:

(i) It is not impossible but difficult to apply the lET to the system of complicated

molecules.

(ii) The IEf is applicable only to a stable (or metastable) single phase system in an

-5-



TABLE 1.3: Surface forces in various fluids analyzed by IN

Fluid

Pure Lennard-Jones particle

Neutral hard-sphere

Dipolar hard-sphere

Waterlike hard-sphere

S PClE water molecule

Mixed Aqueous electrolyte

Hard-sphere mixture

Reference

Kjellander and Sarman [1990, 1991], Sarman [1990],

Kinoshita el ai. [1996b]

Henderson [1988], Attard el al. [1991],

Kinoshita et ai. [1996a], Gbtzelamann and Dietrich [1997]

Attard et al. [1991],Kinoshitaetal.l1996a]

Kinoshita et al. [1996a]

Kinoshita and Hirata [1996]

Kinoshita el al. [1996a]

Kinoshita el ai. [1996b, 1996c], Kinoshita [1998]

equilibrium state and provides no dynamical information.

(iii) The reliability of the analyzed results depends largely on the closure equations

used [Attard and Patey, 1990].

The disadvantages (i) and (ii) imply that the IN is not accessible to the interesting

and important phenomena such as the nucleation, the micelle formation, and the

effects of the shear flow. The defect (iii) indicates that the comparison of the

results with those by the molecular simulations is required to confirm the accuracy

of the analyzed results.

1.3.2 Surface forces in fluids

In order to elucidate theoretically the origin of non~DLVO forces on the molecular

level, the IN has been applied to the pure fluid systems given in Table 1. 3, where

a pair of either uncharged or charged large spheres (or planar walls) are immersed

in a pure fluid. Following these one-component fluids, the lET was recently

applied to an aqueous electrolyte solution [Kinoshita et aI., 1996a] and a multi­

component fluid of hard-sphere mixtures which represents a cyclohexane-
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octarnethylcyclotetrasiloxane (OMCfS) system [Kinoshita et ai., 1996b] and a

nonpolar liquid containing a small amount of water [Kinoshita et ai., 1996c;

Kinoshita, 1998].

1.4 Computer simulation

1. 4.1 Basics

The molecular dynamics (MD) and Monte Carlo (Me) methods have been used to

simulate the molecular behavior in three states of vapor, liquid, and solid and even

in the coexistance of these phases [Allen and Tildesley, 1987; Rapaport, 1995;

Frenkel and Smit, 1996]. In both the methods, a large number of molecules (or

particles) in a cell are considered and their interactions are calculated using the

potential functions prepared. In the MC method, the molecules move one by one

stochastically, by which only the static properties of an equilibrium system are

obtained. In the MD method, the molecules are allowed to move according to their

equations of motion. Hence, the MD simulation provides both static and dynamic

properties of a system, whether the system is either in equilibrium or in non~

equilibrium [Evans and Morriss, 1990]. This is the most advantageous feature in

the MD method. However, the MD and MC simulations consume a large amount

of computation time, because the interactions between all the pairs of molecules

must be calculated.

The evaluation of intermolecular potentials is crucial in the simulation. This is

not only because the potentials influence the simulation results, but also because

they determine the computation time required. As the molecular model becomes

more detailed and precise, the simulation becomes more realistic but more time­

consuming. As far as water and organic molecules are concerned, following two

-7-



models are frequently used, depending on the systems and phenomena to be

examined.

Atomistic model. In an atomistic (or realistic) description, molecules are

modeled as realistically as possible by use of stretching, bending, and torsional

potentials between bonding atoms, and Lennard~J ones and Coulomb potentials

between non-bonding atoms. Several groups have proposed the different atomistic

models such as MM3 [Allinger et al., 1989], AMBER [Weiner et al., 1986],

CHARMm [Brooks etal., 1983], Dreiding [Mayo et al. , 1990], TRIPOS [Clark et

al., 1989], and OPLS [Jorgensen and Tirado-Rives, 1988].

Simple model. Molecules in the simple model are described on the basis of the

following idea: molecular details are ignored except the most characteristic features

such that the universal properties of systems are produced at least qualitatively.

Then, an oil/water/amphiphile system is mimicked by using "waterlike" particles,

"0illike" particles, and "arnphiphilelike" molecules composed of the waterlike and

oillike particles [Telo da Gama and Gubbins, 1986; Smit, 1988; Smit et al., 1990].

1.4.2 Water at solid surfaces

In late I970s, molecular simulations were applied to a solidlIiquid interface. Many

simulations have been performed to elucidate the features of water mainly near the

hydrophobic surfaces and the metal electrodes as shown in Table 1.4. On the other

hand, very few studies have been reported on non-metallic hydrophilic surfaces

because of the various properties of the material surfaces and the difficulty in

modeling. Recently, hydrophilic interfaces have been simulated extensively as

given in Table 104.

It was found that the density profile of water molecules oscillates in the three

layers next to the metallic or hydrophilic surface, accompanying the significant

structural change, and that the diffusion of water molecules near the surface is very

-8-



TABLE 1.4: Simulations of water at solid surfaces

SUiface property

Hydrophobic

Hydrophilic

Metallic

Material

Hydrocarbon

Carbon

NaCI

MgO

SiO~, Lecithin

Hydroxylated silica

Urea

Pt

Ag, Cu, Ni

Reference

Lee er at. [1984], Lee and Rossky [1994]

Zhu and Robinson [1991]

Anastasiou er ai. [1983]

McCarthy er a1. [1996]

Kjellander and Marcelja [1985a, 1985b]

Lee and Rossky [1994]

Boek er al. [1992]

Spohr [1989, 1990], Raghavan erat. [1991a, 1991b]

Siepmann and Sprik [1995]

sensitive to the nature of the surface. The density oscillation was confirmed

experimentally by X-ray scattering measurements of water at charged Ag(lll)

surfaces [Toney et al., 1994]. In the case of the hydrophobic surface, the "icelike"

structure of water was simulated in the interfacial region, which was verified

experimentally also [Iiyama et ai., 1995; Bellissent-Funel et al., 1996].

1. 4. 3 Ion adsorption on solid surfaces in water

In addition to the characteristics of a solid/liquid interface, the ionic behavior near

the interface play an important role in many industrial processes, such as the

dispersion of colloidal particles, the membrane separation, the electrode reactions,

and the crystal growth.

To understand the behavior of hydrated ions near a solid surface in water,

molecular simulations were carried out mainly for the smooth wall and the

atomistic surface of Pt(100), as summarized in Table 1.5. In most simulations, the

ionic behavior was investigated only near the surface, but the following

-9-



TABLE 1.5: Simulations of ion adsorption on solid surfaces in water

Surface model

Smooth wall

Pt(IOO)

Ion

Li+, r, CI-, Br-, r
Na+, Cl-

r

Reference

Spohr and Heinzinger [1986]

Matsui and Jorgensen [1992]

Glosli and Philpott [1992, 1993a, 1993b]

Rose and Benjamin [1991, 1993];

Spohr [1993]

Perera and Berkowitz [1993]

Heinzinger [1996J

simulations were performed to know the potential of the ion positioned in the

region from the interface to the bulk. The free energy profiles for ionic adsorption

onto the waterlPt(lOO) interface were calculated to examine how stably the ion

adsorbs on the surface [Rose and Benjamin, 1991; Spohr, 1993; Perera and

Berkowitz, 1993]. The profiles in tetrahydrofuran as well as in water were

determined to investigate how the profiles are influenced by the characteristics of

solvent molecules [Matsui and Jorgensen, 1992]. However, it is still unclear how

the ionic behavior at the interface is influenced by the properties and structures of

the solid surface.

1.4.4 Complex fluids

Surfactant (or amphiphilic) molecules play an important role in the vast region of

material industry: for example, (i) sUifactants assemble spontaneously in solutions

to form micelles, bilayers, and vesicles; (ii) surfactants adsorb at oil/water

interfaces to reduce the interfacial tension; and (iii) surfactants adsorb onto solid

surfaces to change the nature of the surfaces. These characteristics of surfactants

have been investigated mainly by experimental methods, but the underlying

physics is still poorly understood on the molecular level. Recently because
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TABLE 1.6: Atomistic simulations of various amphiphilic systems

System

Micelle

Monolayer at air/water interface

Monolayer at Iiquidlliquid interface

Monolayer at solidJIiquid interface

Self-assembled monolayer

Bilayer

Reference

Watanabe et af. [I 988],Watanabe and Klein [1991],

Wendoloski et af. [1989], Shelley et af. [1993],

Laaksonen and Rosenholm [1993], BOeker el af. [1994],

MaeKerell [1995], Griffiths and Heyes [1996]

Bareman and Klein [1992], BOeker et af. [1992],

Siepmann et al. [1994], Tarek et af. [1995],

Schweighofer et al. [1997]

Schweighofer et al. [1997], Urbina-Villalba et al. [1997]

Bandyopadhyay el ai. [1998b]

Siepmann and McDonald [I 993], Mar and Klein [1994]

Marrink and Berendsen [1994], Heller e! al. [1993],

Shinoda et ai. [1997]

computational power has advanced, molecular simulations can be applied even to

the amphiphilic behavior in various environments, as described below.

As for the atomistic model, a number of simulations have been implemented on

such systems as summarized in Table 1.6 and quantitative and detailed molecular

information about the real systems is estimated. But unfortunately these atomistic

simulations are limited within a few nanoseconds and this time scale is too short to

examine the important behavior of micellar solutions, such as the surfactant

exchange, or the micellar formation and breakdown that may occur on the time

scale of milliseconds.

As for the simple model, Larson performed the lattice Me simulations for

oil/water/amphiphile systems and observed that the amphiphiles form

spontaneously spheres, cylinders, lamellas, and more complex phases [Larson,

1994, 1996]. Smit and co-workers performed a series of MD simulations and

reported as follows:

-11-



(i) Surfactants adsorb at the oil/water interface and consequently reduce the

interfacial tension, where this reduction becomes larger as the surfactant

concentration is higher or the surfactant has a longer tail chain [Smit, 1988;

Smit et ai., 1990, 1991].

(ii) The molecular structure of surfactants influences the shape of self-assembled

micelles [Srnit et al., 1993b; Esselink et at., 1994; Karaborni et at., 1994J.

(iii) An oil droplet is solubilized in a micellar solution [Karabomi et ai., 1993J.

The point to note is that the size distribution of surfactant aggregates and the

critical micelle concentration (CMC) have been also evaluated by these

simulations, which are not obtained by the atomistic simulations because of the

lack of the computational power [Larson, 1992; Smit et ai., 1993a; Rector et ai.,

1994; Brindle and Care, 1992; Desplat and Care, 1996; Wang et ai., 1993;

Haliloglu and Mattice, 1994]. All these results support that the simple description

of amphiphilic systems can capture, at least qualitatively, most of the underlying

physics in the systems.

Further details of complex fluid simulations are well reviewed elsewhere

[Klein, 1992; Srnit, 1993; Pastor, 1994; Karabomi and Srnit, 1996; Tobias et ai.,

1997; Larson, 1997; Bandyopadhyay et at., 1998a].

1.4.5 Surface forces in fluids

Since 1980, the interaction forces between neutral planar walls in a fluid have been

calculated, as summarized in Table 1. 7. In these simulations, the molecular film

confined between the walls must be in equilibrium with the bulk fluid. Hence, the

grand canonical ensemble and the test particle insertion method were employed in

most of the studies. A new statistical ensemble [Bordarier et ai., 1997J and a new

MD cell [Wang et ai., 1994; Gao et ai., 1997J were also developed for this

purpose. However, in the author's opinion it seems rather difficult to apply these
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TABLE 1.7: Surface forces in various fluids evaluated by simulations

Ruid Reference

Lennard-Jones particle

Mixture of Lennard-Jones particles

Ellipsoidal Gay-Berne particle

Dipolar Lennard-Jones particle

Waterlike hard-sphere

Alkane

Snook and van Megen [1980], Magda et al. 11985],

Berard et al. [1993], Bordarier et at. [1997],

Gao et ai. [1997], Schoen and Diestler [1997]

Somers et ai. [1993]

Gruhn and Schoen [1997, 1998a, 1998b]

Han et at. [1993J

Luzar et at. [1987J

Wang et at. [1994], Gao et at. [1997], Dijkstra [1997]

methods to a mixture and a complex fluid,

1.5 Objective of this work

For the accurate material processing, it is important to understand systematically

the interaction between solid surfaces in a fluid and the interfacial microstructure,

as described in Section 1. 1. Although these problems have been investigated

experimentally, the behavior of individual molecules near the interface is still

poorly understood. The theoretical method and the molecular simulation also have

been applied to the problems, but unfortunately the studies were not systematic

because the applications were limited to a simple system.

The objective of this dissertation is to elucidate systematically the behavior of

water molecules, ions, and surfactants near a solid surface and the interaction

forces between the surfaces using MD simulations. The author expects that this

work can give the fundamental and important insight into the precise control of

production processes of particulate materials.
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This dissertation is composed of three Parts (I-III) and eight Chapters (1-8) as

follows:

In Part I (Chapters 2 and 3), the behavior of water molecules near a solid

surface is examined using the atomistic model. Chapters 2 and 3 deal with water

near the hydrocarbon and NaCl-crystal surfaces, respectively, which are typical

hydrophobic and hydrophilic surfaces. The characteristics of water molecules at

these surfaces are investigated and compared in detail in terms of the interfacial

structure and diffusion of water molecules and the hydrogen-bonding network.

How the difference in the nature of hydrophobic and hydrophilic surfaces

influences the properties of water molecules is also discussed.

In Part II (Chapters 4 and 5), the adsorption of ions and surfactants onto

liquid/solid interfaces is investigated. In Chapter 4, the simulation developed in

Chapter 3 is extended to investigate the ionic behavior near the interface. The

adsorption of Na+ and cr ions onto the NaCl-crystal surfaces in water is examined

in terms of the free energy profiles for adsorption. It is clarified how stably the

ions are adsorbed on the surfaces and how the adsorption behavior is influenced

by the size of the ions and the detailed structure of the surfaces.

In Chapter 5, the adsorption of surfactants on a solid surface in water is

examined. At the begining, the simple description of water, oil, and surfactant

molecules and solid surfaces is developed to make the simulation possible within

the limits of the present computational power. This simple model is verified by

comparing the results with those by the atomistic model. Then, the surfactant

adsorption onto the hydrophobic and hydrophilic walls in water is simulated. The

mechanism of the adsorption and aggregation of surfactants on the surface is

proposed, and how the mechanism is influenced by the concentration and

molecular structure of surfactants is discussed in detail. These results are critically

compared with the recent AFM measurements.
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In Part III (Chapters 6 and 7), the interaction force between macroscopic

colloidal particles in a fluid is investigated systematically. The new computational

technique to evaluate surface forces in a fluid is proposed in Chapter 6. Using

this evaluation method as well as the simple model given in Chapter 5, the

interaction forces between colloidal particles in simple fluids and alcohol-water

mixtures are calculated in Chapters 6 and 7, respectively. These results are

compared in detail with the corresponding SFA and AFM measurements.

Finally, Chapter 8 discusses all the results in this thesis to give conclusions.

The perspectives in the"tvID method to investigate the effects of a non-equilibrium

field are also given.
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Part I

Water at Solid Surfaces



2
Water at Hydrophobic Surfaces

-Smooth Hydrocarbon Surfaces-

2.1 Introduction

In the first two chapters, the basic characteristics of water at hydrocarbon and

NaCI-crystal surfaces are investigated and compared in detail, which are typical

hydrophobic and hydrophilic surfaces, respectively. Although simulations of the

same systems were already reported as shown in Table 1.4, the results seem to be

insufficient and nonsystematic. Hence, the purpose of Chapters 2 and 3 is not only

to give the detailed and systematic information, but also to answer the question,

"what is the essential nature of water at the hydrophobic and hydrophilic

surfaces?" Note that the wisdom obtained helps the author to construct the coarse

model of water, oil, and surfactant molecules and solid surfaces, as is described in

Chapter 5.

2.2 Basics of molecular dynamics method

2.2.1 Intermolecular potentials

1) Atoms

Consider first the simple case of a system containing N atoms. The potential

energy is formally written as
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(2.1)

where the first term represents the effect of an external field on the system and the

remaining terms represent interparticle interactions. The second term denotes the

pair potentials, which depend only on the magnitude of the pair separation r jj = jrj ­

rJ It is believed that the pair term contributes to more than 80 % of the total

interparticle energy, compared with the three-body and higher-order terms. In

practice, the calculation of the three-body term is very time-consuming on a

computer.

The interparticle potentiaJ generally used in computer simulations IS the

effective pair potentiaJ u/f(r,). Accordingly, Equation (2.1) is rewritten by

UN'" L ul(r) + LL r4ff
(r;}.

i i<j
(2.2)

The effective pair potential is carefully determined so as to reproduce experimental

data of the system employed. This indicates that the effective pair potential

includes the many-body effects approximately and is different from the true two­

body potential ulrij)' For simplicity, the notation u(r;) or u(r) is used in this

dissertation.

2) Small molecules

Secondly, consider polyatomic molecules that can be treated as a rigid body

satisfactorily (e.g., N2 , CO2 , H 20, and CH4). A model molecule is composed of

interaction sites, which are usually centered on the positions of the nuclei in the

real molecule. The interaction between rigid molecules i and j is a complicated

function of their relative positions r;, rj and orientations Qi' Qp In practice, the

intermolecular potential is a sum of pairwise interactions between site a in molecule

i, at position ria' and site b in molecule j, at position r j />:

(2.3)
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where uab is the pair potential between sites a and h, and rab represents the site-site

separation Irja - rjbl.

3) Large molecules

For larger molecules it is necessary to consider the internal motions of stretching,

bending, and torsion. The torsional potential is the most important, because it

largely influences the molecular conformations; for example, trans and gauche

conformers of n-butane. Further details of the intermolecular potentials are well

documented in the recent books IAllen and Tildesley, 1987; Sprik, 1993;

Rapaport, 1995; Heyes, 1998}.

2.2.2 Periodic boundary conditions

The size of the system employed is limited by the computational power. The

largest number of atoms simulated is 106_107 up to date, while a real material is

composed of about 1023 atoms or molecules. This indicates that the system

simulated is affected by the effects of the finite size and the surface. To eliminate

these effects, the periodic boundary conditions are usually used. The conditions

are not necessarily imposed in all the dimensions and frequently applied in one or

two dimensions, depending on phenomena to be simulated.

As shown in Figure 2.1, molecules in a part of a real material are considered,

whose number is about 102_105
. The molecules are positioned in a box (i.e., the

basic cell), which is surrounded by the image cells. When the force acting on a

molecule in the basic cell is calculated, the contribution from molecules in all the

image cells is added to that in the basic cell.

For a short-range potential, the "minimum image convention" with the

"spherical cutoff' is practiced approximately. In this procedure, a molecule

interacts only with the nearest molecules irrespective of whether they reside in the

basic cell or one of the neighboring cells, only when the separations are less than
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Figure 2.1. Periodic boundary system, in which the basic cell is surrounded by the image

cells. A two-dimensional system is illustrated for clarity.
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cutoff distance R CU1
• When a rectangular cell with dimensions L" x Ly x L z is given,

Rcut must satisfy the following relation for consistency with the minimum image

convention:

(2.4)

\\!hen a long-range potential is employed with three-dimensional periodicity,

the Ewald method is usually applied other than the above cutoff procedure as

described in Section 2.3.3.

2.2.3 Equations of motion

The equations of motion depend on the molecular model and statistical ensemble

employed [Allen and Tildesley, 1987; Rapaport, 1995; Frenkel and Smit, 1996].

The author here describes only a simulation method of non-linear rigid molecules

in a microcanonical (NVE) ensemble, where the number of molecules N, the

volume V, and the total energy E are constant. The differential equations to be

solved are a Newton-Euler equation of motion:

2d r j _

Fm-- .
dC "

dco.
1 . -' = A.. T. + (0. x (I . ro.) .dt 'I I I

(2.5)

(2.6)

Here m is the mass of a molecule. 1 is the inertia moment along the principal axes,

which consists of only diagonal elements (i. e., lxx, I»" and IJ, and co j is and the

corresponding angular velocity. A j represents the rotation matrix given by the

Euler angles to convert the space-fixed coordinate into the body-fixed coordinate.

F j and T
j
represent the force and torque acting on the center-of-mass of molecule i,

respectively, and are given by
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F=L F =L (_ auN
),

I aEi Ia DEi aria

Ti=L. (ria - r) x F;a =L. (ria - r) X (_ ~~N) .
aEI aEI ia

(2.7)

(2.8)

Equations (2.5) and (2.6) are solved numerically, where the quaternions are

used as orientational parameters instead of the Euler angles. More details of this

numerical procedure are given elsewhere [Allen and Tildesley, 1987; Rapaport,

1995].

2.3 Methods

2.3.1 Molecular models

1) Water-water interaction

Various models for water-water interaction have been proposed because water is a

unique fluid and plays an important role in our surroundings. Water models

widely used in computer simulations are ST2 [Stillinger and Rahman, 1974],

MCY [Matsuoka et al., 1976], SPC [Berendsen etal., 1981], SPC/E [Berendsen

et ai., 1987], and TIP4P [Jorgensen et ai., 1983 l.

In this dissertation, the SPCIE model is selected not only because it faithfully

reproduces the bulk property of water, but also because it is efficient in

calculation. As illustrated in Figure 2.2, the SPCIE water is composed of three

sites, whose internal geometry is rigid with 0.1 nrn distance between 0 and H

atoms and 109.740 angle (i. e., a tetrahedral angle) between two OH bonds

[Berendsen et ol., 1987]. The water-water potential is a sum of these site-site

interactions:
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Figure 2.2. SPCIE water model, which is rigid with three sites.
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Figure 2.3. Interaction energy Ixtween a water molecule and the hydrocarbon wall, as a

function of the distance from the surface z'. The outermost plane of atoms in the wall is

positioned at z' = O. The hydrocarbon wall is treated as a flat structureless plate. The

water-surface interaction does not depend on the molecular orientation (see the text).
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where the subscript 00 represents oxygen.-oxygen interactions, qa is the point

charge on site a in molecule i, and c and aare the energy and size parameters for

the Lennard-Jones (12--6) potential, respectively. On the right-hand side of

Equation (2.9), the first term represents the Coulomb interactions and the second

tenn describes the repulsion by the electron cloud overlapping.

The values of parameters for the point charges and the overlap repUlsion are

determined such that the thermodynamic quantities of the model water are

consistent with the experimental data; that is, qo = -2qH = -D. 8476e, Coo = 0.648

kllmol, and %0 :::: 0.3166 nm. The anisotropy of hydrogen bonds is represented

implicitly via the site-site interactions. The hydrogen-bonding energy between two

SPC/E water molecules in their most favorable configuration is found to be -30.0

kllmo!. More details are given in the original papers [Berendsen et ai., 1981,

19871·

2) Water-surface interaction

The interaction between a water molecule and a hydrocarbon surface is represented

by the (9-3) potential [Lee et ai., 1984}:

wall A B
u (z):::: - --

9 3 'Z Z

A = 17.477 X 10-6 kJ nm9/mol,

B = 76.144 X 10-3 kJ nm3/mo!.

(2.10a)

(2. lOb)

where z is the perpendicular distance between the outermost plane of the solid wall

and the center of an 0 atom in an SPCIE molecule. The hydrocarbon wall is treated

as a flat structureless plate, because the atoms in the solid are smeared out in all the

directions. There is no hydrogen-wall interaction, indicating that the interaction
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between a single water molecule and the wall does not depend on the molecular

orientation. This is because the diameter of the H atom and the interaction with the

wall are, in practice, negligible compared with those of the 0 atom.

The values of parameters A and B given in Equation (2. lOb) are appropriate

for a material like paraffine [Lee et al., 1984]. The potential has a minimum of ­

1.93 kl/mol at z = 0.297 om (= 2 min ) and exhibits the zero value at z = 0.247 nm

(= 2 0), as shown in Figure 2.3. It is worth noting that the binding energy of -1. 93

kllmol is much smaller in absolute value than the hydrogen-bonding energy of ­

30.0 kl/mol, which makes the nature of the surface hydrophobic.

2.3.2 Basic cell

Figure 2.4 illustrates the unit cell with the dimensions of Lx x Ly x Lz =1.862 nm

x 1. 862 nm x 2.362 nm, where the origin of coordinates is taken at the center of

the cell. The outermost layers of two solid walls are parallel to the xy plane and

located at z =-L)2 and +L)2, between which 216 water molecules are confined.

The periodic boundary conditions are applied in the directions x and y. A water

molecule whose 0 atom is positioned at z experiences the external potential,

lr\Z), given by the superposition of U""II from the walls:

(2.11 )

The profile of uext(z) is given in Figure 2.5. The effective width of the cell in the z

direction is defined as the separation between points at z = -L)2 + 2 0 and L)2 ­

2 0 > where each u",all on the right-hand side of Equation (2.11) is zero.

2.3.3 How to handle long-range forces

1) Basics

The Ewald lattice summation technique has been commonly used to calculate the
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Figure 2.4. Basic cell for MD simulation. Shaded plates represent the outermost plane of

atoms in the hydrocarbon wall.
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Figure 2.5. External potential from the two planar walls of the basic cell when the 0 atom

of a water molecule is located at z (see Figures 2.3 and 2.4). Vertical dashed lines denote

the outermost plane of atoms in the wall.
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long-range Coulomb interactions in a system, which is periodic in all three

dimensions [Allen and Tildesley, 1987]. However, the Ewald method can not be

applied straightforward to an inhomogeneous system whose periodicity exists only

in two dimensions, as shown in Figure 2.4.

To calculate the Coulomb interactions in the system with two-dimensional

periodicity, several groups developed the 2D-Ewald methods [Heyes and van

Swol, 1981; Heyes, 1994; Rhee et ai., 1989; Hautman and Klein, 1992].

Recently, Lekner [1989, 1991] suggested a different technique. Unfortunately,

these methods seem to have the following defects:

(i) Programming is not easy since the algorithm is much complicated.

(ii) Enormous computation time is needed.

(iii) It is still unclear whether the methods can reproduce faithfully the behavior of

the anisotropic systems or not.

Alternatively, the Coulomb interactions are truncated at a finite spherical radius

of WU
" which typically ranges 0.8-2.0 nm. There are three main spherical

truncation methods:

(i) Potential shifting method, where the electrostatic potential between each pair

is scaled by [1 - (r/Rcutif

(ii) Force switching method, where the force is smoothly truncated to zero at r =
W U1 over a given range (typically 0.1-0.2 nm).

(iii) Force shifting method, where a constant is added to the force such that botl1

the force and potential are zero at r =R
eut

.

Further details of these methods are given elsewhere [Steinbach and Brooks,

1994].

2) Force shifting method

The force shifting metl10d is employed in this chapter, firstly because it is easy in

programming and secondly because it gives the local properties of water, which
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are almost the same as those by the 3D-Ewald method, as is shown below. The

interaction potential u(r) is transformed into the shifted-force potential uFSH(r) by

the force shifting procedure:

neU[
r~ n ,

(2.12)

When the Coulomb interaction of u(r) = qH/r is employed, Equation (2.12) yields

{

q,.qj(l r)2
uFSH(r) = -r- - RCUl '

0,

,..,eut
rSn ,

(2.13 )

In this chapter, the Coulomb and non-Coulomb interactions are handled by the

force shifting method and the simple truncation procedure, respectively~ in which

the site-site interactions are calculated only when the center-to-center distance

between molecules is less than or equal to RCUl
•

3) Test 0 f the force shifting method

Before the force shifting method is applied to the system with two-dimensional

periodicity, it is used to simulate 216 SPC/E water molecules in the three­

dimensional periodic cell at 1 g/cm3 and 298 K. The results obtained are compared

with those from the separate simulation using the 3D-Ewald technique which is the

most reliable method in this case. Simulation det.:1ils are given in Sections 2.3.4

and 3.2.4.

Figure 2.6 shows the pair correlation functions of 0-0, o-H, and H-H.

These indicate that the local structure of water is quite similar to that by the Ewald

method, although the functions exhibit a little bit less amplitude. The self-diffusion

coefficient is also evaluated to be 3.0 x 10-5 cm2/s. The value is 20 % larger than

that of 2.5 x 10-5 cm2/s by the Ewald method. The slight discrepancy in these
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J

and 298 K. Solid

and dotted lines indicate the simulations using the Ewald method and the force shifting
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properties comes from the use of Equation (2.13) that underestimates the

interactions between water molecules even at small separations. Although

application of the force shifting method to the Coulomb interactions is on the

coarse side, this method is sufficiently available to capture, at least qualitatively,

the local properties of water. The truncation methods have been further

investigated in other studies [Prevost et al., 1990; Feller et aI., 1995].

2.3.4 Simulation details

The MD simulation is performed using a program based on MDMPOL [Smith and

Fincham, 1982], which is used also in Chapters 3 and 4 after being modified

according to the purpose of each chapter. As described above, the short-range and

long-range interactions are handled using the simple truncation and force shifting

procedures with R CUI =0.82 nm, respectively. The equations of motion, Equations

(2.5) and (2.6), are solved using the leap-frog algorithm. The time step used is 2

fs in this chapter. More details are given elsewhere [Smith and Fincham. 1982;

Allen and Tildesley, 1987].

The simulation is performed as follows:

(i) All the 216 molecules are placed at 6 x 6 x 6 lattice points in the cubic cell

with the dimensions 1.862 nm x 1.862 nm x 1.862 nm and the three­

dimensional periodicity, which corresponds to the density of 1 glcm3
•

(ii) The system is allowed to evolve for 50 ps, during which the temperature is

kept at 298 K by velocity scaling.

(iii) Then, the two planar walls are inserted at z = ± 1. 181 nm and the periodicity

of the direction z is removed.

(iv) After equilibration over 50 ps, the simulation is performed for 100 ps. Here,

the temperature is adjusted to 298 K by velocity scaling at every 100th time

step and the translational velocities of molecules are shifted at every time step
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such that the center-of-mass velocity of the total system IS zero in the

directions x and y.

2.4 Results and discussion

In following Sections 2.4. 1 to 2.4.4, the structure and dynamics of water adjacent

to the hydrocarbon surface are discussed in terms of (i) density profiles of water

molecules, (ii) numbers of hydrogen bonds and nearest neighbors, (iii)

distributions of molecular orientations, and (iv) self-diffusion coefficients, using

the averaged values at ±z.

2.4.1 Density profiles of water molecules

Figure 2.7 shows the density profiles of 0 and H atoms as a function of z. The 0

profile, corresponding to the center-of-mass profile of H20, slightly oscillates to

approach the constant value of 1 g/cm3 from the interfacial region to the bulk

region. Substantially, the surface repels water toward the bulk (i.e., the

"dewerring"), although tile 0 profile has two vague peaks next to the surface. It is

known that this tendency is characteristic at the interface between water and a

hydrophobic plane [Lee et aI., 1984; Lee and Rossky, 1994]. On the other hand,

the hydrophilic sutfaces tend to attract water such that about three dense layers of

water molecules are formed [Spohr, 1989, 1990; Raghavan et al., 1991a, 1991b;

Anastasiou et ai., 1983; McCarthy et ai., 1996; Kjellander and Marcelja, 1985a;

Boek er ai., 1992; Lee and Rossky, 1994). The H profile rises from the zero value

at tile point closer to the wall tllan tl1e 0 profile, indicating tllat tl1e H atoms can

approach closer to the sutface than the 0 atoms.
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2.4.2 Local coordination and hydrogen bonding

It is known that the network of hydrogen bonds between water molecules is

sensitive to the environment. A pair of water molecules is regarded as nearest

neighbors if their 0-0 distance is smaller than or equal to 0.35 nm, the distance at

the first minimum of the Q-.O pair correlation function of SPClE water as shown

in Figure 2.6(a). Water molecules are regarded as hydrogen bonded if they are

nearest neighbors and have a pair interaction energy less than or equal to the

critical value of EBB :::: -10 kl/mol, simultaneously. Figure 2.8 shows the average

numbers of nearest neighbors liNN and hydrogen bonds nHB per water molecule as a

function of z. The separate calculations suggest that the profile of llHB is not

influenced qualitatively by the threshold values of f HB • It is clear that the values of

Il NN and /lHB in the region of Izi < 0.6 nm are almost constant at about 5.1 and 3.5,

respectively, which agree well with those obtained in the separate simulation of the

bulk water. However, the value of ll HB is reduced remarkably at the interface,

which coincides well with the reduction of the value of nNW This decrease in llNN

and ll HB is an expected result, because a water molecule next to the wall has

neighbors toward the bulk, but has no neighbor toward the surface.

The value ll J-IB/nNN , which is a parameter to evaluate the fraction of hydrogen

bonds out of the nearest-neighboring water molecules, is calculated as shown in

Figure 2.9. It exhibits clearly that the value of llHB/llNN increases significantly in the

interfacial region. The opposite behavior in the profiles of I2 HB and nHslnNN implies

that water molecules next to the surface are hydrogen bonded with their neighbors

quite efficiently. It is worth noting that similar results were reported for tlle

immiscible liquid/liquid interfaces such as water/benzene [Linse, 1987],

water/hexanol [Carpenter and Hehre, 1990]. and water/chloroalkane [Benjamin,

1992; Chang and Dang, 1996]. This behavior of water molecules seems to be their

self-defense against undesirable hydrophobic species. The efficient hydrogen-
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bonding of water at the hydrocarbon surface can be explained by the "icelike"

structure formation as described below.

2.4.3 Orientational structure

Tetrahedral geometry of hydrogen bonding. The results presented above

suggest a significant structural change of water next to the hydrocarbon surface,

which arises from the strong water-water and weak water-surface interactions. It

is known that a water molecule tends to be hydrogen bonded with the four

neighbors to form a regular tetrahedral structure. Remember that the average

number of hydrogen bonds in liquid water is 3.5 per molecule, as shown in Figure

2.8.

Judging from the tetrahedral geometry, at least one of four bonds are

unavoidably broken when the planer wall is put into water, as shown in Figure

2. 10. If the more hydrogen bonds are disrupted, the disadvantage to enthalpy

becomes larger. In order to minimize the disadvantage of the overall system, water

molecules keep away from the surface and reorient to form a well-ordered

structure at the interface. The former behavior corresponds to the dewetting as

mentioned in Section 2.4. 1 and the latter corresponds to the icelike structure

formation as illustrated in Figure 2.11 [Lee et aJ., 1984]. This icelike structure is

examined below extensively.

Definition of orientational parameters. The orientation of .water

molecules is investigated in detail as a function of z. For this reason, the fluid

lamina is divided into the layers that are parallel to the xy plane and have a

thickness of 0.093 nm, as defined in Table 2. I. Within each layer, the

distributions of two orientational parameters, 811 and 8 0H , are evaluated: 8'1 is

defined as the angle between the dipole vector of an H20 and the surface normal n:

pointing away from the surface; and 80H is defined as the angle betvveen the vector
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(a) (b) (c)

Number of
broken-bonds 1 2 3

Figure 2.10. Ideal orientations of a water molecule next to the wall. In the bulk, a water

molecule tends to be hydrogen bonded with the four neighbors to form a regular

tetrahedral structure. Spheres and lines represent 0 atoms and hydrogen bonds,

respectively. The number of bonds broken by the wall increases from (a) to (c).

(b)
8

~
--.£

5

-.i
3

-2
1

Figure 2.11. Schematic illustration of the structure of ice, after Lee et al. [1984]. Panels

(a) and (b) show the three-dimensional structure and the two-dimensional projection,

respectively. The layer intervals defined in Table 2.1 are also shown in panel (b). Spheres

and lines represent 0 atoms and hydrogen bonds, respectively.
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TABLE 2.1: Location of fluid layers used to analyze the molecular orientation

Layer number a

1
2

3

4

5

6
7

8
9

10

11

Range of Id/nm

0.931-1.024

0.838-0.931

0.745-0.838

0.652-0.745

0.559-0.652

0.465-0.559

0.372-0.465

0.279-0.372

0.186--0.279

0.093-0.186

0.000-0.093

a The layers arc parallel to the xy plane. The layer denoted 1 is closest to the wall.

of the OH bond and n .. The probability of an2.le 8 , P (8 ), is calculated by usin a
_ ~ I' It I' Co

(2.14)

where 11/8,) is the number of the molecules with the angle between 811 - 118)2

and 8
'1
+ 11 8)2, and N is a normalizing constant chosen so that

(2.15)

In the same way, the probability of angle BoH ' PoH(8oH)' is calculated.

Orientational dis tributions. The frequency distributions of Pit and POH are

shown in Figure 2. 12. POH has two maxima at BaH = 70° and 180° for layer 1 and

at B
OH

=0° and I100 for layers 3-4, respectively. PI' has a maximum at BI< = 120°

for layer 1 and at 8,t = SOofor layers 3-4, respectively. The favorable orientation

of molecules in layer 1 coincides well with that observed in the ideal icelike

structure, as in Figures 2. lO(a) and 2. 11 (b). This indicates that the number of

hydrogen bonds broken by the wall is one per water molecule, which agrees fairly
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Figure 2.12. Orientational distributions pl'(eJ and POHceOH) of water molecules in layers

1-8 (see Table 2.1) near the hydrocarbon surface. el' is defined as the angle between the

dipole vector of an H!O and the surface normal n, pointing away from the surface, and BaH

is defined as the angle between the OH bond vector and n,. Solid and dotted lines indicate

distributions of PI' and PoJj , respectively.
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well with the value calculated by llHB in Figure 2.8, that is, 2.5 - 3.5 =-1. O. The

molecular orientation in layers 3-4 corresponds to that in Figures 2.10(c) and

2.10(b). The profiles of POH and PII for layer 2 are apparently symmetric with

regard to BOH = BII = 90°. This indicates that a water molecule in layer 2 is

intermediate between water molecules in layers 1 and 3 whose orientations are

opposite to each other.

In the case of layers 5-8, molecules do not have their particularly favorable

configurations, as seen from the vertical scales in Figure 2.12. In layer 6,

however, POH has a maximum at BOH =1800 and a minimum at BOH =120°, and Pit

has a maximum B/ I = 120° and two minima at B
JI

= 0° and 180°. The similar

behavior is observed in the angular distributions in layer 1, indicating that the

molecular orientation depicted in Figure 2. 1O(a) also appears in layer 6. It is worth

noting that the 6tll layer of 1:::1 = 0.465-0.559 nm results in the second peak of the

o atom profile next to the surface shown in Figure 2.7.

Thus, water molecules form the icelike structure with about 0.6 nm thickness

near the hydrocarbon surface. This explains the efficient hydrogen-bonding at the

interface shown in Figure 2.9. The icelike structure formation at the hydrophobic

surface was confirmed by other simulations [Lee et oJ., 1984; Lee and Rossky,

1994], theoretical studies [Kinoshita and Hirata, 1996], and experiments [Iiyama

et al., 1995; Bellissent-Funel et aZ., 1996].

2.4.4 Diffusion

Evaluation methods. To probe the motion of water molecules near the

surface, the fluid lamina is divided into the three layers, Ll, 12, and LB, as

defined in Figure 2.7 and Table 2.2. The self-diffusion coefficients parallel and

perpendicular to the surface, D.,}, and D", are calculated in the following way.

Figure 2.13 shows the lateral mean square displacement of molecules within
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Figure 2.13. Lateral mean square displacements of water molecules within the different

layers defined in Figure 2.7 and Table 2.2. Spheres, triangles, and squares indicate values

for Ll, L2, and LB, respectively.
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Figure 2.14. Residence autocorrelation functions, RaU), of water molecules within the

different layers. Symbols are the same as in Figure 2.13. Solid lines show the fining curves

given by Equation (2.19).
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TABLE 2.2: Diffusion coefficients of water molecules in the different layers
near the hydrocarbon sUlface (in 10-5 cm2/s)

Laycr" Ll L2 LB

D,y b 3.7 2.8 2.5

D/ 4.5 3.2 3.1

(D,) b (0.03) (0.11) (0.22)

a The range of Izl is O.7G-O.98 nm for Ll, 0.35-0.70 nm for L2, and 0.OG-O.35 nm for LB (see
Figure 2.7).
b Values are calculated by the mean squarc displacement.
r Values are calculated by the residence autocorrelation function.

each layer. D
xy

is evaluated by the following equations and given in Table 2.2:

D:= :::: lim \I ~(t) - ~(O) 1
2

) :::: lim (tJ..lf)
~ r-;o 2t 1-;0 2t

1Dx)' :::: 2' (Dr + D) .

(~::::x, y, z), (2.16)

(2.17)

Likewise, D:. is calculated and given in the parentheses of Table 2.2. However, the

values of D:. are unreasonably small compared with those of DI)' even in the

bulklike region of LB, where water molecules are expected to have the same

isotropic diffusivity as the bulk water, 3.0 x 10-5 cm2/s. This suggests that

Equation (2.16) is not appropriate, at least in this case, for evaluating the vertical

diffusion coefficient of molecules within a thin film (see also Sections 3.3.6 and

5.3.1).

Alternatively, the residence autocorrelation function is introduced to quantify

D:. appropriately following Sonnenschein and Heinzinger [1983]:

(2.18)

where N (t) is a vector (111' ... , 11216 ) with 11;:::: 1 or 0 depending on whether

molecule i resides in layer a or not at time t. Assuming that the molecules behave

as Brownian particles and the density distribution in a layer is homogeneous at t ::::
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0, RJr) is given by the following analytical expression derived from the diffusion

equation [Sonnenschein and Heinzinger, 1983]:

T = { 2h I J4D:.' for half side closed layer,

hi J4DJ for open layer,

(2.19a)

(2.19b)

where h is the thickness of the layer. The half side closed layer corresponds to Ll

and the open layer corresponds to L2 and LB. Equation (2. 19a) is fitted to the

simulated values of Rn(t) given by Equation (2.18) as shown in Figure 2.14 and

the values of D. are obtained as summarized in Table 2.2.

Diffus ion coefficients. Table 2.2 suggests that the diffusion coefficients of

water molecules increase as they approach the surface. In particular, the diffusivity

in Ll increases remarkably, compared with that for the bulk water, 3.0 x 10-5

cm2/s. The similar result was reported by Lee and Rossky [1994]. This is because

the hydrogen-bonding network near the surface is disrupted, as shown in Figure

2.8 and the water-surface interaction of -I. 93 kllmol is much weaker than the

hydrogen bond of -30. a kl/mol, as described in Section 2.3.1. The significant

increase of the vertical diffusion implies that water molecules at the interface can

easily exchange themselves with those in the bulk; consequently, the icelike

structure induced by the hydrocarbon surface is not necessarily stable.

Unfortunately, there is no experimental data to support the high diffusivity of

water molecules at the hydrophobic interface.

Table 2.2 shows also that diffusion coefficients are anisotropic even in LB.

This indicates that water in LB does not display the same dynamical properties as

the bulk water, although it has the same static properties as the bulk water, such as

the density in Figure 2.7 and the hydrogen-bonding network in Figure 2.8.
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2.5 Concluding remarks

The 1v1D simulation of water at the hydrocarbon surface is carried out and the

following conclusions are drawn.

(i) Water molecules keep away from the hydrocarbon surface not to form any

adsorbed layer.

(ii) In order to minimize the hydrogen-bond breakage near the surface, water

molecules form the icelike orientational structure with about 0.6 nm thickness

next to the surface.

(iii) Water molecules at the interface display the high diffusivity to exchange

themselves with those in the bulk, indicating that the icelike structure induced

by the hydrocarbon surface is not necessarily stable.

(iv) Water in LB can be regarded as the bulk water with respect to the static

properties, but not in tenns of the dynamic properties.
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3
Water at Hydrophilic Surfaces

-NaCl(OOl) and NaCl(Oll) Crystal Surfaces-

3.1 Introduction

The structure and dynamics of water molecules at the hydrophobic surface were

discussed in the previous chapter. In this chapter, these properties at the

hydrophilic surface are examined using the NaCl-crystal surface. WaterINaCI

interfaces are interesting from a crystallographical point of view. An NaCI crystal

is a typical crystal with various faces of different stability in water. It is known that

the preferential adsorption of solvent molecules on a particular crystal face leads to

the reduction of the growth rate of the face. Hence the structure and dynamics of

the water/NaCI interface influence the growth rate of the crystal face and

consequently determine tlle size, the shape, and even other properties of the

crystal.

Ohtaki and co-workers [1988; Ohtaki and Fukushima, 1989] investigated the

dissolution process of the cubiclike NaCl crystal with (001), (111), and (-1-1-1)

faces of about I. 2 x 1. 2 nm2 in water and found that three cr ions at the corners

of the crystal dissolve into water in 7 ps and no Na+ ion dissolves from any face.

However, the interfacial features of water are still unclear, because the focus of

interest was the ionic behavior rather than that the water behavior. Anastasiou et ai.

[1983] investigated the water behavior near the NaCl(OOI) surface and found that

water molecules are adsorbed above Na+ ions of the surface pointing their dipoles

away from the surface and their motion is remarkably reduced. Unfortunately the
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results seem to be deficient, because the density of water was chosen at 0.6 g/cm3
,

which is much lower than the nonnal water density of 1 g/cm3
.

In this chapter, waterINaCI(OOl) and water/NaCl(OII) interfaces are

investigated in detail and compared. NaCl(Oll) is rougher in surface and lower in

density than NaCl(OOl), although both the surfaces have their perfect crystal

structures. Two types of simulations are performed to examine the following

problems:

(I) The stability of the (00 I) and (011) faces of an NaCI crystal in water.

(II) The structure and dynamics of water molecules near these surfaces.

After confirming that both the NaCl(OOl) and NaCl(Oll) surfaces in water at 298

K are stable during the simulation, the attention is mainly focused on how water

molecules at the interface are influenced by the detailed structure of the surface.

3.2 Methods

3.2.1 Molecular models

1) Ion-water interaction

The water model used is the same as described in Section 2.3. L For sodium­

water and chloride-water interactions the model proposed by Pettitt and Rossky

{l986] is used, where the ion is treated as a Lennard-Jones sphere with a central

unit charge. The ion-water potential is a sum of pairwise interactions between ion

i, at position ri' and site bin SPC/E water moleculej, at position rjb:

(3.1 )

where q is a point charge and rib represents the ion-site separation Ir; - fjbl. The

values of parameters Eib and O;b are given in Table 3.1.
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TABLE 3.1: Parameters for ion-water potentials of the Pettitt-Rossky model

Ion (I) Na+ CI-

Oic!IO- lo m 2.72 3.55

OiHIlO- lo m 1.31 2.14

£ldIO-"\ J 0.93 2.5

£IHII 0-2
\ J 0.93 2.5

TABLE 3.2: Parameters for ion-ion potentials of the Tosi~Fumi model

Na+-Na+ N,t-Cl- Ct-Ct

Aij 1.25 1.00 0.75

CJlO-79 J m6 1.68 11.2 116.0

DJIO-99 J m8 0.8 13.9 233.0

(0; + oillI 0-10 m 2.340 2.755 3.170

biIO- 19 J 0.338 0.338 0.338

plIO- 1O m 0.317 0.317 0.317

2) Ion-ion interaction

The ion-ion interaction is modeled using the Born-Mayer-Huggins potential LTosi

and Fumi, 1964; Fumi and Tosi, 1964]:

1.1 q;qj (0;+ OJ-r) Cij Dij
U .(1') = - + A..b exp - - - -,

I) l' I) P 1'6 1'8
(3.2)

where q; is the charge on ion i, A jj is the Pauling factor. and b, 0;, p, Cu' and Dij

are parameters depending the type of ion pairs. The values of parameters are listed

in Table 3.2. Note that the second to fourth terms on the right-hand side of

Equation (3.2) represent the Born repulsion by the electron cloud overlapping, the

dipole-dipole attraction, and the dipole-quadrupole attraction, respectively.
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3.2.2 H 2o-NaCI crystal interaction

To the author's knowledge, the potential for H20-NaCI crystal interaction based

on the Db initio molecular orbital calculation has not been reported. Although the

ion-water potentials given by Equation (3.2) were derived for Na+ and Ct ions

solvated in water at infinite dilution [Pettitt and Rossky, 1986], the H20-NaCI

crystal interaction is calculated using the pair potentials; that is, the water-sulface

interaction is treated as "physisorption" in this study.

Figure 3.1 shows the interaction energy between an H20 of varIOUS

orientations and the NaCI sulface with (001) and (OIl) faces, as a function of the

perpendicular distance from the sUlface z'. The interaction energy of the H20

above an Na'" of the NaCl(OOl) sulface has a minimum of -43 kllmol at z' := 0.24

nm, which agrees well with the minimum ranging from -46 to -29 kl/motat z' :=

0.23 nm obtained from the ab initio periodic Hartree-Fock calculation [Taylor et

ai., 1997] and the measured value of the differential heat of adsorption, 44 kJ Imol

[Barraclough and Hall, 1974]. This manifests that the adsorbate-sulface

interaction is plausibly modeled here.

Comparison of potential curves in Figures 3.1(a) and (b) indicates that the

NaCI(Oll) sulface interacts with an H~O more strongly than the NaCI(OOI). It is

worth noting that in the case of NaCI(Oll) the binding energies of an H20 above a

midpoint of two nearest-neighboring Na+'s and above an Na+ are equal to -81 and

-64 kl/mol, respectively, which are several times larger in absolute value than the

hydrogen-bonding energy between two H20's of -30. 0 kl/mal [Berendsen et aI.,

1987]. Here it is emphasized that a slight difference in the sulface geometry of

crystals causes a significant change in the water-sulface interaction, which leads to

a considerable difference in the structure and dynamics of water molecules near the

surfaces, as is discussed in Section 3.3. Note that the interaction of an H20 with

the NaCI surface is much stronger than that with the hydrocarbon surface of -1.93
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Figure 3.1. Interaction energy between an H~O and an NaO surface, as a function of the

perpendicular distance from the surface z'. The profiles are calculated for the H~O which is

located at different lateral positions and oriented to various directions: above an Na' (solid

lines) and above a midpoint of two nearest-neighboring Na"s (dashed line), pointing the

dipole away from the surface, and above a cr (dotted lines) and aoove a midpoint of two

nearest-neighboring 0-'5 (dashed-dotted line), pointing the dipole toward the surface (see

Figure 3.11). (a) NaCl(OOI); (b) NaCI(OII).
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WaterlNaCI(OI I)

TABLE 3.3: Conditions of MD simulations of 216 water molecules confined
between NaCleOOl) or NaCleOlI) surfaces

Water/NaCI(OO I)

Box length LJnm

LJnm

L!nm
Location of outermost ions z/nm

Cutoff distance WU'/nm

One-time step t1//fs

Average temperature TIK

kllmol (compare Figures 2.3 and 3.1).

3.2.3 Basic cell

1.692

1.692

5.641

±I.26

0.746

1

298

1.595

1.692

7.[80

±1.28

0.698

I

298

Figure 3.2 illustrates a rectangular cell composed of an aqueous lamina and an

NaCI slab, where the periodic boundary conditions are applied in the three

dimensions. The origin of coordinates is taken at the center of the aqueous lamina

and thexy plane is taken to be parallel to the NaCl surface. Note that two separate

slabs appear in Figure 3.2, but actually they are joined each other at z =±L/2 to

form one slab because of the z-directional periodicity. The aqueous region contains

216 water molecules. The crystal slab is composed of either 12 lattice planes of 6

x 6 ions for NaCI(OOl), as shown in Figure 3.3(a), or 24 lattice planes of 4 x 6

ions for NaCI (all), as in Figure 3.3(b). It is confirmed by allowing the ions to

move freely that both the crystal slabs are of stable thickness to keep their

structural and dynamical properties solidlike in vacuum at 298 K. The slab lengths

L r and L y are chosen such that the lattice constant of an NaCl crystal is equal to the

literature value, 0.5641 nm [The Chemical Society of Japan, 1993J. The Na+'s and

CI"s in the outermost layer of NaCI crystals are located at the place z given in

Table 3.3 to satisfy the condition that the density of water at the central region is I
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Figure 3.2. Basic cell for MD simulations. Shaded regions represent the NaCI crystal and

the rest is water. The origin of coordinates is the center of the cell.
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(b)

x

Figure 3.3. Arrangement of ions in an NaCI crystal surface. Small and large circles

indicate Na' and C,- in the first layer from the interface, respectively; and symbols, + and x,

represent centers of Na' and CI' in the second layer, respectively. Dashed small and large

circles denote adsorption sites for Na+ and cr ions, respectively, which are referred in

Chapter 4. Dashed lines are periodic boundaries of the basic cell. (a) NaCl(OOI); (b)

NaCI(OII).
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g/cm3
• The dimensions of the simulation box are summarized in Table 3.3.

3.2.4 Simulation details

The simulations are performed using the same program as in Section 2.3.4, except

that the 3D-Ewald method is employed to handle the long-range Coulomb

interactions. The time step used is 1 fs in this chapter.

The simulation procedure is as follows. After water of density I g/cm3 and an

NaCI-crystal slab are equilibrated at 298 K separately, they are put together. Then

the ions in the crystal are fixed at the equilibrated positions and water molecules

are allowed to re-equilibrate for 15-20 ps. Two types of simulations are

implemented:

(I) When the stability of the NaCi surface in water is examined, all the ions are

allowed to move for another 10 ps with the initial velocity corresponding to

translational motions at 298 K. The average temperature is kept at 298 K by

velocity scaling to compensate the temperature change due to the

nonequilibrium processes such as the dissolution of ions.

(II) When the structure and dynamics of water near the NaCi surface are

examined, the ions in the NaCI crystal are fixed and the simulation of water

molecules is carried out for 15 ps without any scaling. The average

temperature is found to be 298 K.

3.3 Results and discussion

3.3.1 Stability of NaCI surfaces

The NaCl(OOl) and NaCI(Oll) surfaces are confirmed to be stable in vacuum as

described in Section 3.2.3, but this does not necessarily guarantee that they are

~55-



stable in water. Here the stability of the NaCI surfaces exposed to water is

examined by the simulations of Type I. It is found that no ion dissolves from both

NaCI(OOt) and NaCI(OII) surfaces into water during 10 ps. The outermost ions

fluctuate actively around their average positions of NaCI(OOI) and NaCI(OII) and

no significant difference in fluctuation is observed between these surfaces. This

indicates that the NaCI(OOl) and NaCI(OII) faces in water at 298 K are stable at

least within the simulation period of 10 ps, which is in good coincidence with the

results predicted by Ohtaki and co-workers [1988; Ohtaki and Fukushima, 1989].

Hence, it is plausible to assume that all the ions in the NaCI crystals are located

stably at the time~averag~d positions in the simulations of Type II.

In following Sections 3.3.2 to 3.3.6, the structure and dynamics of water

adjacent to the NaCI(OOI) and NaCl(Oll) surfaces are investigated by the

simulations of Type II. These properties are discussed in terms of (i) density

profiles of water molecules, (ii) scatter plots of molecular positions on the surface,

(iii) numbers of hydrogen bonds and nearest neighbors, (iv) distributions of

molecular orientations, and (v) self-diffusion coefficients, using the averaged

values at ±z except for the scatter plots.

3.3.2 Density profiles of water molecules

Figure 3.4 shows the density profiles of 0 and H atoms. Note that the profile of 0

atoms represents that for water molecules. The 0 profiles have sharp peaks next to

the NaCI(OOI) and NaCI(OII) surfaces, reflecting that many water molecules are

attracted to the surfaces and form adsorbed layers. It is known that this tendency is

characteristic at the interface between water and a hydrophilic surface, whereas a

hydrophobic surface tends to repel water toward the bulk, as explained in Section

2.4. l. Comparison between the profiles in Figures 3.4(a) and (b) suggests that the

structure of water close to NaCI(OOl) and NaCI(Oll) is different from each other.
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Figure 3.4. Density profiles of 0 and H atoms of water molecules near the NaCI crystal

surface. Solid and dotted lines indicate 0 and H profiles, respectively. The vertical dashed

line denotes the center of outermost ions in the NaCl crystal, as given in Table 3.3. (a)

NaCI(OOI); (b) NaCI(OIl).
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TABLE 3.4: Location of adsorbed layers parallel to the xy plane (LI, L2, L3,
and LB), the average number of water molecules in layer a, nw.1or(a), and the
number of typical adsorption sites for water molecules in layer a, nsite(a)

WaterlNaCI(OOI) WaterlNaCI(OI I)

Range of Izi/nm LI

L2

L3

LB
n",ltr( I )/n'i"( I)

llw'ltr(2)/n,j1/2)

0.96-1.07 1.07-1.18

0.81-0.96 0.92-1.07

0.60-0.81 0.70-0.92

0.00-0.60 0.00-0.70

17.7118 10.8112

15.3118 16.0/12

The number of sharp peaks in the 0 profile indicates that at least two adsorbed

layers of water molecules are formed near the NaCl(OOI) surface, while at least

three layers are formed near the NaCI(OII) surface. Since the second peak of the 0

profile in Figure 3.4(b) has a shoulder at Izi = 1. 02 nm near the peak at Izi = 0.99

nm, the second layer is considered to be the "bilayer" composed of water

molecules adsorbed on different relative positions of the surface.

To analyze further the layers, the water lamina is divided into three adsorbed

layers of water molecules (LI, L2, and L3) and the bulklike region (LB), as

shown in Figure 3.4 and Table 3.4. The minimum distance between Ll and the

outermost plane of a crystal is O. 19 nm for NaCI(OO 1) and O. 10 nm for

NaCl(O 11), which indicates that a water molecule can approach the NaCl(O11)

surface about 0.1 nm closer than the NaCI(OOI) surface. This is probably due to

the following reasons: (i) the NaCl(OII) is rougher in surface than the NaCl(OOI),

as shown in Figure 3.3; and (ii) a water molecule interacts with the NaCl(OIl)

more strongly than the NaCl(OOI), as shown in Figure 3.1.

Average numbers of water molecules in Ll and L2 are calculated by integrating

the 0 density profile and listed in Table 3.4 as well as the number of typical

adsorption sites for water molecules in each layer (see Figure 3.5). In the case of

NaCI(OOI), the adsorption sites for Ll are occupied completely by water
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molecules and those for L2 are 85 % occupied. In the case of NaCI(Oll), the

adsorption sites for LI are 90 % covered, but those for 12 are fully covered. This

will explain the presence of the bilayer described above.

3.3.3 Scatter plots of molecular positions on the surface

Scatter plots of positions of all the 0 atoms in the first three layers are displayed in

Figure 3.5. Here the black-looking region means the probable location of water

molecules on the surface. Figure 3.5 shows that the adsorption sites of water

molecules on the NaCI(OOI) and NaCI(Oll) surfaces are different In the case of

NaCl(OOl), water molecules in L1 are adsorbed above an Na+ and those in L2 are

adsorbed above a Cl-. In the case of NaCI(OII), water molecules in L1 are

adsorbed above a midpoint of the two nearest-neighboring Na+'s and those in L2

are adsorbed mainly above a midpoint of the two nearest-neighboring cr's. As

shown in Figure 3.5(b-ii), water molecules in L2 are adsorbed above an Na+ of

NaCI(OII), which corresponds to the presence of the shoulder in the second peak

of the 0 profile shown in Figure 3.4(b). This result implies that the outermost

Na+'s of NaCl(OIl) are masked by water molecules partly in L2 as well as in L 1.

Thus, the adsorption sites of water molecules in L1 and L2 are different in the

NaCl(OOl) and NaCl(OII) surfaces. In both cases, water molecules in L1 are

adsorbed on the Na+'s somewhat more strongly than those in L2 are adsorbed on

the Cl-'s, as expected from Figure 3.1. However, water molecules in L3 behave

more fluidlike apparently because of having no particular adsorption site on the

surface, as illustrated in Figures 3.5(a-iii) and (b-iii).

3.3.4 Local coordination and hydrogen bonding

Figure 3.6 shows the average numbers of nearest neighbors llNN and hydrogen

bonds n
HB

per water molecule as a function of z, whose definitions are the same as
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Figure 3.6. Average numbers of nearest neighbors nNN and hydrogen bonds nHB per water
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vertical dashed line denotes the center of outermost ions in the NaCl crystal. as given in

Table 3.3. (a) NaCI(OOl); (b) NaCl(OII).
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in Section 2.4.2. The values of liNN and llHB in the range of Izi < 0.5 nm are almost

constant at about 5.0 and 3.5, respectively, which coincide with those given by the

separate simulation of the bulk water. These values increase slightly in the range of

Izl = 0.7--0.9 nm. This increase is attributable to the dense layers of water

molecules near the surface, as shown in Figure 3.4. However, the value of nHB is

reduced remarkably closer to the interface, which coincides well with the reduction

of the value of nNW This behavior is similar to that of water near the surfaces of

Si02 , lecithin [Kjellander and Marcelja, 1985bJ, and fully hydroxylated silica [Lee

and Rossky, 1994}. It seems that this behavior is characteristic of water close to a

hydrophilic surface, although there exists some ambiguity because the value of nHB

is reduced only slightly in the case of the Pt(100) surface [Spohr, 1989}. The

average number of hydrogen bonds broken by the crystal surface is 1.6 for

NaCI(OOl) and 2.6 for NaCI(Oll), which are calculated by nHB shown in Figure

3.6. These values are larger than 1. 0 for the hydrocarbon surface given in Section

2.4.3.

The value l1 HB /l1 NN is calculated as shown in Figure 3.7. It exhibits clearly that

the hydrogen-bonding network is disrupted remarkably at the NaCl(Oll) interface,

while the network is destroyed at the NaCI(OOl) interface much less than expected

from the significant decrease of llHB shown in Figure 3.6(a). This is because the

interaction of an H20 with NaCl(01l) is much stronger than the hydrogen bond

between two H
2
0's, while that with NaCI(OOl) is as strong as the hydrogen bond.

On the other hand, l1HB/nNN increases significantly at the hydrophobic surface

although nHB is reduced, as described in Section 2.4.2.

3.3.5 Orientational structure

Definition of oricntational parameters. The results presented above

exhibit that the structure of water near the NaCI surface is influenced greatly by the
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features of the surface. Here the orientational structure of water molecules is

investigated in terms of the distributions of angels (J,I' (JOH' and r/1;H' which are

defined in Figure 3.8 schematically. The definitions of (JII and (JOH are the same as

in Section 2.4.3. 41-1H is defined as the angle between the projection of the HH

vector on the xy plane and the x axis. One- and two-dimensional distributions of

these angles of water molecules in LI and L2 are evaluated. The probability

distributions of P/COS(J,) and PoiCOS(JOH) are shown in Figure 3.9. The

distributions of P,~HH(COS(J'I' cAlli) are shown in Figure 3.10, which are averaged

by considering the symmetric feature of the surfaces, C4" for NaCI(OOI) and C2v

for NaCI(O II). The favorable configurations of water molecules near the surface

are determined from these distributions as illustrated in Figure 3. II, whose

procedure is described below.

Orientational distributions. Figure 3.9 suggests that the molecular

orientations near the NaCI(OO 1) are different from those near the NaCI(O II), as

expected from the difference in the density profile and in the adsorption site of

water molecuies near the surfaces. The distributions of Pil and POH for NaCI(OII)

have sharper peaks than those for NaCl(OOl). This is explained by the strong

interaction between an H20 and the NaCI(OIl) surface (compare Figures 3.1(a)

and (b».

NaCI(Oll) surface. Figure 3.9(b-i) shows that P,l has two maxima at COS(J,I =
1.0 and 0.6. This indicates that L1 is made of two types of "flip-up" molecules

illustrated in Figures 3. 11(b-i) and (b-ii). Here "flip-up" and "flop-down" denote

the molecule pointing the dipole away from and toward the surface, respectively.

The flip-up molecule with COS(J11 = 1.0 (i.e., (Jil = 0°) has the two OH bonds

55° from n. as in Figure 3.II(b-i), because of the internal geometry of an SPC/E

water molecule (see Figure 2.2). This coincides with the peak of POH at cos (JOH =

0.6 shown in Figure 3.9(b-i). The molecule tends to orient the HH vector parallel

-64-



z
Surface
normal

Dipole
vector 81-l

HH 87 'i" ....p Projection of
C1~~~~~~~ ~ ~ HH vector

Figure 3.8. Schematic definition of angles (J~. BOH ' and cfJH". which determine the

orientation of a water molecule on the NaCI crystal surface.
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Figure 3.9. Orientational distributions p/cose.J and POH(COSeOH) of water molecules in

the different layers on the NaCl surface. Angles e
l
• and BOH are defined as in Figure 3.8.

Solid and dotted lines indicate distributions of PI' and POB' respectively. Parts a and b in III

in panel (#1-#2) indicate distributions for surfaces of NaCl(OOI) and NaCI(OIl),

respectively; and parts i and ii in 1/2 represent distributions for adsorbed layers of LI and

L2, respectively, which are defined as in Figure 3.4 and Table 3.4.
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Figure 3.10. Two-dimensional orientational distributions, PIJ.HH(cos81J, lJJHH)' of water

molecules in the different layers on the NaCI surface. Angles 81J and lJJHH is defined as'in

Figure 3.8. The lighter-looking region means the more probable orientation, where the gray

levels in four panels are arbitrary. Parts a and b in #1 in panel (#1-#2) indicate distributions

for surfaces of NaCl(OOI) and NaCI(OII), respectively; and parts i and ii in #2 represent

distributions for adsorbed layers of LI and L2, respectively, which are defined as in Figure

3.4 and Table 3.4. Each distribution is averaged by considering the symmetric feature of the

surfaces, C4y for NaCl(OOI) and Cly for NaCl(OIl).
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Figure 3.11. Favorable configurations of water molecules in the different layers on the

surface. (a-i, a-ii) Ll on NaCl(OOI); (a-iii, a-iv) L2 on NaCI(OOI); (b-i, b-ii) LIon

NaCl(OII); (b-iii, b-iv) L2 on NaCI(OII). In each panel, the bottom picture represents the

projection of a water molecule on the xy plane. The top picture represents the projection of

the water molecule on the plane that is perpendicular to the xy plane and is crossing through

the dashed line drawn in the bottom picture.
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to the y axis, as shown in Figure 3. II (b-i). This is because P HH has a maximum
I'·

at (cos8/" ¢HH) = (1.0, 90°), as in Figure 3.10(b-i).

The other flip-up molecule with cos e/I = 0.60 (i. e., e/,:::: 55°) has the two OH

bonds 0° and 110° from n~, as shown in Figure 3. 11(b-ii), because P
OH

has two

peaks at coseOH = 1.°and -0.3. The molecule tends to orient the projection of the

HH vector parallel to the y axis, which is explained by the maximum of P/
4HH

at

(case/I' cA-lH) =(0.60, 90°).

When Figure 3.9(b-i) is reversed with respect to cose/, = coseOH = 0, it

becomes qualitatively similar to Figure 3.9(b-ii). This indicates that water

molecules in L2 favor two flop-down configurations shown in Figures 3.11 (b-iii)

and (b-iv), which are the inverted configurations of Figures 3. 1l(b-i) and (b-ii)

with respect to the surface plane, respectively. As shown in Figure 3. I I (b-iii), the

flop-down molecule with cos ell:::: -1. 0 orients the HH vector parallel to the x axis,

because P/4HH is maximal at (cosell , rAm) = (-1.0, 0°) as in Figure 3.IO(b-ii). For

the other flop-down molecule with cosell :::: -0.6, P ,4HH around cos e,l =-0.6 does

not depend particularly all ¢Hw This suggests that this water molecule points

toward the surface with one OH bond, around which the other OH bond can rotate

freely, as illustrated in Figure 3.11(b-iv). It is worth noting that p/ I in Figure

3.9(b-ii) and P/4HH in Figure 3.1O(b-ii) have a minor peak around cos8/. = 0.85,

which coincides with the observation that water molecules in L2 near NaCI(OlI)

are adsorbed above Na+'s, as shown in Figure 3.5(b-ii).

N aCl(OO 1) sUlface. Figures 3.1O(a-i) and (a-ii) show that P/4HH has a

maximum at (cos 8/
1
, ¢HH) =(l.0, 0°) (and (1.0,90°» for Ll and at (cos 8/., ¢HH) =

(-1.0, 45°) for L2. Considering the molecular geometry, this maximum

corresponds to the peak of POH at cos 80H :::: 0.6 for Ll and at cos BOH :::: -0.6 for 12

shown in Figures 3.9(a-i) and (a-ii), respectively. From these results, the

favorable configurations for Ll and L2 are depicted in Figures 3.11(a-i) and (a-
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iii), respectively. Note that the complete flip-up and flop-down molecules, whose

dipoles are parallel to nz' are observed near the NaCI(Oll) surface also, apart from

differences in the adsorption position and in the HH vector orientation.

The other maximum of P/I,HH is located at (cos 8/
1
, 1>HH) = (0.25, 45°) for Ll and

at (cosB/
I
, ¢HH) = (-0.80, 0°) (and (-0.80,90°)) for L2. For the flip-up molecule

in Ll, Pali has peaks at cos BaH = 0.4 and -0.3. This indicates that one of the two

H atoms is pointing away from the surface (i. e., cos80H = 0.4) and the other is

pointing toward the surface (Le., cosBOH =-0.3), as illustrated in Figure 3.11(a­

ii). For the flop-down molecule in L2, POH has no sharp peak. However, it is

concluded from the location of the maximum of P,•. liH that two H atoms are

pointing toward the surface, one of which is closer to the surface than the other, as

illustrated in Figure 3.l1(a-iv). Note that these two configurations shown in

Figures 3. 11(a-ii) and (a-iv) are not dominant in the vicinity of the NaCI(Oll)

surface.

Influence of molecular orientations on hydrogen bonds. Hydrogen

bonding is possible between the water molecules with such configurations as

shown in Figures 3. 11 (a-i)-(a-iv), for example, between the molecules shown in

Figures 3. 11(a-ii) and (a-iv). However, hydrogen bonding between the water

molecules in Figures 3.11(b-i)-(b-iv) is apparently impossible. These results will

explain the observation that the hydrogen-bonding network is disrupted near tlle

NaCI(Oll) surface much more ilian near the NaCI(OOl) surface, as shown in

Figure 3.7.

3.3.6 Diffusion

The motion of water molecules in the first three layers is illustrated in Figure 3.5

previously. Here the motion is investigated quantitatively in terms of the self­

diffusion coefficients of water molecules in Ll, L2, L3, and LB. The diffusion
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TAB LE 3.5: Diffusion coefficients of water molecules in the different layers
near the NaCI surfaces (in 10-5 cm2/s).

Waler/NaCI(OO 1)

Layer a Ll L2 L3 LB Ll

Dx 0.13 0.34 1.51 3.06 <0.0 I

D,. 0.12 0.37 1.73 2.51 0.03

Dxy 0.13 0.35 1.62 2.79 0.01

D, <0.01 0.04 0.20 1.79 <0.01

" Ll, L2, L3, and LB are defined as in Figure 3.4 and Table 3.4.

Waler/NaCl(Oll)

L2 L3

0.66 1.95

0.30 0.94

0.48 1.44

0.04 0.24

LB
3.53

2.8..:1­

3.18

2.50

coefficients are calculated by the mean square displacement using Equation (2.16),

as summarized in Table 3.5.

Anisotropic diffusivity. The diffusion coefficients in Ll, L2, and L3 are

reduced significantly compared with that of the bulk water, 2.5 x 10-5 cm2/s, and

anisotropic because of Dx ::: Dy > D,. The diffusivity of water molecules decreases

as they approach the surface. Especially, water in Ll and L2 on the surface is

"solidlike" since the diffusion coefficients are much smaller than that of the fluid

water.

As far as the lateral diffusion coefficient o."}, is concerned, water in Lion the

NaCl(OII) is more solidI ike than that on the NaCI(OOI), as expected from the

difference in the binding energy of a water molecule on these surfaces. On the

other hand, water in L2 on the NaCI(OII) is less solidlike than that on the

NaCI(OOI), altllOugh the binding energy is larger in absolute value for NaCl(Oll)

than for NaCI(OOl). This result can not be explained by the binding energy, but by

the fact that the hydrogen-bonding network near the NaCI(Oll) surface is

disrupted more significantly than that near the NaCl(OOl), as shown in Figure 3.7.

Thus the binding energy and the hydrogen-bonding energy must be taken into

account simultaneously to explain the diffusivity of water molecules near the

surface.
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Influence of interfacial structures on molecular diffusivity. D{ and PI'
in the first three layers are isotropic in the case of NaCI(OOI) because of the

surface symmetry C4 \., while these coefficients are anisotropic in the case of

NaCI(Oll) because of the surface symmetry C21.• At the waterINaCJ(Oll) interface,

D{ in LI is negligibly small because the favorable configurations of water

molecules in LIon NaCl(O I I) do not allow themselves to diffuse along the x axis,

as shown in Figures 3.1 I (b-i) and (b-ii). Dy in L2 is smaller than Dr because the y­

directed diffusion of water molecules in L2 is obstructed by the favorable

configuration shown in Figure 3. 11 (b-iii) and the "ridge" structure along the x axis

of adsorbed water molecules in L1 shown in Figure 3.5(b-i). The similar

anisotropy of the diffusion is observed also for molecules in L3. These results

indicate that the molecular diffusion near the surface is very sensitive to the nature

of the surface.

It is also found that the diffusion coefficients are anisotropic even in LB near

the NaCI(OOl) and NaCI(Ol I) surfaces. This indicates that water in LB does not

display the same dynamical properties as the bulk water, although it has the same

static properties as the bulk water, such as the density in Figure 3.4 and the

hydrogen-bonding network in Figure 3.6.

3.4 Concluding remarks

IvID simulations of waterINaCI(OOl) and water/NaCI(OI1) interfaces are carried

out and the following conclusions are drawn.

(i) Both the (001) and (011) faces of an NaCI crystal without any lattice defect

are stable in water at 298 K, at least within the period of 10 ps.

(ii) Water molecules in LI and L2 near the NaCI(OOI) and NaCl(Ol I) surfaces
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reduce their diffusivity and are regarded as "solidlike."

(iii) A slight difference in the feature between NaCl(OOl) and NaCI(OlI) surfaces

causes a significant change in the water-surface interaction, the number and

structure of adsorbed layers, the adsorption point of water molecules, the

perturbation of the hydrogen-bonding network, and the molecular diffusion

near the surface.

(iv) Water molecules In LB can be regarded as bulk with respect to the static

properties, but the dynamic behavior is still influenced by the existence of the

crystal surface.

Investigations in Chapters 2 and 3 elucidate the basic features of water at

hydrophobic and hydrophilic surfaces. These information is very useful in

simplifying molecular models, by which simulations of the larger and more

complex systems become possible, as is described in Chapter 5.
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4
Ion Adsorption onto Water/NaCI Crystal Interfaces

4.1 Introduction

The behavior of water molecules near the NaCI-crystal surface was examined in

Chapter 3. Succeedingly, the attention is focused on the behavior of solute ions,

Na+ and Ct, approaching the NaCI surface in water. This ionic behavior at the

interface is fundamentally important in understanding not only the crystal growth

but also many industrial processes such as the dispersion of colloidal particles, the

membrane separation, and the electrode reactions.

In this chapter, free energy profiles for Na+ and C/- adsorption onto the

NaCI(OOI) and NaCI(OII) surfaces in water are evaluated using MD simulations.

Discussion yields how stably the ions adsorb on the surface and how the

adsorption is affected by the ionic size and the surface structure. The similar

simulation procedure is also applicable to evaluate the interaction forces between

macroscopic colloidal particles in a fluid, as is described in Chapter 6.

4.2 Methods

All the molecular models, basic cell, and algorithms employed are the same as

described in Section 3.2, unless specified. The different point to note is that one

solute ion is introduced in water between NaCi-crystal surfaces to evaluate the
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solvent-averaged interaction against the surface. The details are described below.

4.2.1 Potential of mean force (PMF)

The following system is considered: 215 water molecules and one solute ion,

either Na+ or cr, are confined between two surfaces of an NaCI crystal. Then,

where is the adsorption pathway of the ion onto the water/crystal interface? To

describe the pathway, let us use the mean force acting on the ion at position r.

F\OI(r), and the potential of mean force (P:MF), W101(r). which are attributable to

the surface and solvent contributions. Because the solid surface used has an

atomistic structure, WI01 depends on the lateral position (x, y) and also on the

perpendicular distance from the nearest wall z'. The most probable path will be

continuous (global) minimum points of WIOI as a function of z', which is written as

r pa1h = (xmin(z'), Ymin(Z'), z'). Hence, the following relation must be satisfied:

aw lot aw lOI

-- =-- = 0 at given z' ,
ax ax

(4.1 )

For simplicity, the notation W I01(Z') or W 101 is used for the PNIF on the most

probable path and the notation F10\z') or F ,ot is used for the mean force.

To calculate W101(Z') satisfying Equation (4.1), the SHAKE method [Spohr,

19931 and the umbrella sampling method [Rose and Benjamin, 1991] were

employed in MD simulations. These methods are sophisticated and the most

reliable, but time-consuming unfortunately.

In this study, W10\z') is evaluated on a pathway for Na+ and 0- adsorption

onto an NaCI surface in vacuum. It is found that the path is the perpendicular line

above an "adsorption site" shown in Figure 3.3 (see Section 4.3.1). A series of

MD simulations are performed, constraining the ion at discrete points on the path
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by asslgnmg the heavy mass [Perera and Berkowitz, 1993]. During each

simulation, the total force on the ion at time step T, F'O\T), is integrated to obtain

the mean force:

F~OI = (F~O!(7:») = _1_ ~ F~ot(T) (~=x y z')
~ s run T T =1 to -'"run

(4.2)

where Trun is the total simulation step. Supposing that Equation (4.2) satisfies

Equation (4. 1), the potential WIOI(Z ') can be obtained by integrating F:.IOI from the

large separation z'o to a given separation z':

WtOI(z') = - f~' ~1~1(z') dz' .
.,

(4.3)

In the same way, the ion-surface interaction force and the potential in vacuum,

F/U!\z') and wsurf(z') can be obtained. The solvent contributions, F/oh'(z') and

WS01V(z'), are calculated by

F
S01V( ') _ Ftot( ') _ Fsurf( I)
:' Z - :' Z :' Z , (4.4)

(4.5)

Note that the PtvIF obtained here is identical to the free energy profile for ion

adsorption in water.

4.2.2 Simulation details

The Na+'s and cr's in the NaCI crystal are fixed at their given positions, as

mentioned in Sections 3.2.4 and 3.3.1. A series of simulations are performed in

the foHowing way:

(i) Starting from the equilibrated water/NaCI crystal system which was calculated

in Section 3.2.4, a water molecule near the center of the water lamina is

replaced by either Na+ or cr such that the ion is perpendicularly above the
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Figure 4.1. Interaction potentials in vacuum, W"", of Na', cr, and H~O above their

adsorption sites on the NaCI crystal surface. which are illustrated in Figure 3.3, In each

panel, the solid line represents the ion-surface interaction: (a-i) Na'-NaCI(OOl); (b-i)

Na'-NaCI(OII); (a-ii) Cr-NaCl(OOI); and (b-ii) Cf-NaCI(Oll). The dotted line represents

the interaction of the H20 above the same adsorption site as that for the ion.
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adsorption site shown in Figure 3.3.

(ii) Since the system is disturbed by inserting the ion, it is equilibrated over 16 ps,

constraining the ion at the given position.

(iii) The force acting on the ion is integrated for 26 ps to obtain the mean force,

using Equation (4.2).

(iv) Then, an external force is assigned to the ion along the -z' direction for 2-4

ps such that it moves to a new position.

(v) In order to equilibrate water molecules around the ion, the system is allowed

to evolve for 4 ps with the ion constrained at the new position.

Repeating the procedure from (iii) to (v), one can obtain the force-distance profile.

The time step used is 2 fs. The temperature is adjusted to 298 K by velocity

scaling at every 200th step. Values of F.,\OI(Z ') and F/01(z ') are confirmed to be

nearly zero within the statistical accuracy. The potential W101(Z ') is calculated using

Equation (4.3) with the trapezoidal rule, in which no smoothing procedure is

employed. A simulation system is usually electroneutral, but the present system is

not. In practice, the non-electroneutrality is negligible when the system employed

is enough large, as in other studies [Spohr, 1993; Heinzinger, 1996].

4.3 Results and discussion

4.3.1 Ion-surface and water-surface interactions in vacuum

It is found that in vacuum an ion, Na+ or cr, adsorbs most stably above a counter

ion of the NaCI(OO 1) surface and above a midpoint of two nearest-neighboring

counter ions of the NaCI(O 11), as illustrated in Figures 3. 3(a) and (b),

respectively. These points are referred to as "adsorption sites."

The interaction potentials in vacuum, wsurf(z'), of Na+, cr, and H20
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perpendicularly above their adsorption sites of NaCI(OOl) and NaCl(011) surfaces

are calculated, as shown in Figure 4. 1. Note that the favorable configuration of an

H20 on the adsorption site is determined from Figure 3. II and the same as in

Figure 3.1. Comparison of wsurf(z') between Figures 4.I(a-i) and (b-i) and

between Figures 4.I(a-ii) and (b-ii) indicates that the NaCl(Ol1) surface interacts

with the adsorbates of Na+, cr, and H~O more strongly than the NaCl(OOI). The

Na+ interacts with the NaCl surface more strongly than the H20 and its stable point

is closer to the surface than that of the H20, in both the cases of NaCl(OOI) and

NaCl(OI1). On the other hand, the Cl- interacts with the surfaces less strongly

than the H:P and its stable point is further apart from the surfaces than that of the

H20. The author emphasizes that the characteristics of water adsorption influence

significantly the free energy profile for ion adsorption, as described below.

4.3.2 Ion-surface interactions in water

The mean force on Na+ and Cl- ions in water, Fz.tot, is calculated as shown in

Figures 4.2 and 4.3, respectively, in which the surface and solvent contributions,

F/urf and F/O)\" are also given. Here the positive and negative values indicate the

repulsive and attractive forces, respectively. The error in the time-averaged value

of (F:.to1 (-r;»run by Equation (4.2), 0((Fz•
I01

( -r;»run)' is estimated by the following

equation [Allen and Tildesley, 1987]:

where

a2(~I~\-r;»)= f- %[~t~t(-r;)_<~l~I(-r;)\unr·
run

(4.6)

(4.7)

Here -r;F is the time step of the force correlation. It is found that the statistical errors

of F.,lol are almost within ±30 kJ/(mol'nm), which is sufficiently smaller than the
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absolute values of F~.IOI. Figures 4.2 and 4.3 show that F/o1v is more significant

than F/Urf in the range of z' =0.4-0.7 nm for NaCl(OOl) and z' =0.3-0.7 nm for

NaCl(Oll). This indicates that solvent molecules play an important role in the

adsorption of solute ions.

By integrating the forces numerically, the energy profiles of W lO t, wsurf
, and

Wsoh' d' F 101 F surf d F soil" F' 2 dcorrespan 109 to :' , ~. ,an " 10 Igures 4. an 4.3, are calculated

as shown in Figures 4.4 and 4.5. Every PMF (= WIDI
) exhibits one or two minima

adjacent to the surface, between which the barrier peak exists. Figures 4.6 and 4.7

illustrate the corresponding configurations of the hydrated ion on near the surface,

which are determined from the PMF's presented here and the density distributions

of water molecules around the ion given elsewhere [Sakakibara, 1997].

1) Adsorption 0 f Na+ ion

Na+-NaCI(OOl). Figure 4.4(a) shows that W101 has two minima at z' = 0.28

and 0.56 nm, which are referred to as the first and second minima, respectively.

These minima correspond to the "direct adsorption" shown in Figure 4.6(a-i) in

which the Na+ is adsorbed directly on the surface, and the "solvent-separated

adsorption" shown in Figure 4. 6(a-ii) in which the Na+ is adsorbed on the surface

interposing a water molecule.

At the first minimum of WIO" both wsurf and wso1v have a minimum. The

magnitude of the minimum of wsurf is deeper than that of wsol
\'. Hence the

stabilization of N a+ in this minimum is mainly due to the solute-surface interaction

and partly due to the solute-water interactions. On the other hand. the second

minimum of Wtol is largely attributable to wsoll', indicating that the solvent­

separated adsorption is caused largely by the solute-solvent interactions.

Comparison between these minimum values of W
ID1 implies that the direct

adsorption is as favorable as the solvent-separated adsorption. Matsui and

Jorgensen [1992] evaluated the free energy profiles for Na+ adsorption onto the
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smooth metal electrode in water and tetrahydrofuran and found that only a single

minimum is observed in both cases, which indicates the solvent-separated

adsorption. This implies that the atomistic structure of the surface plays an

important role in the direct adsorption of an ion.

In order to adsorb directly onto the surface, the Na+ must overcome the barrier

peak of WlOt at z' = 0.41 nm which is completely due to the solute-water

interactions. Figures 4.8(a-i) and (a-ii) display the scatter plots of positions of all

the °atoms in H 20's in Ll and L2 on the surface, when the Na+ ion is fixed in the

first minimum and at the barrier peak of W 10
\ respectively. Here L1 and L2 were

defined previously as in Figure 3.4(a) and the black-looking region means the

probable location of water molecules on the surface. As explained in Section

3.3.3, most water molecules in L1 and L2 are located above Na+ and cr of

NaCI(OOl), respectively.

Figure 4.8(a-i) shows that the water molecules are pulled a little closer to the

solute Na+ and placed above Na+'s of the surface, which are their favorable

positions. This explains why the first minimum of WIO! is deep enough and why

the minimum of wso1v does exist even though it is shallow as shown in Figure

4.4(a). On the other hand, Figure 4.8(a-ii) shows the following features: (i) the

solute Na+ pushes out the water molecule interposed between the surface and itself;

and (ii) the water molecules around the solute Na+ are not placed in their favorable

locations. The former behavior requires the energy corresponding to the binding

energy of an H20 on NaCl(OOl), which is 9 kl/mol as shown in Figure 4.I(a-i).

The latter indicates that the interaction force acts on the Na+ such that the water

molecules recover their favorable adsorption on the NaCI surface. These reflect on

the magnitude of the barrier of Wso1v at z' = 0.41 nm, 15 kl/mol, but the net energy

barrier is reduced to the barrier of Wtol by the solute-surface attraction of wsurf
,

Thus the energy barrier of W,o', i1Gbar
, is determined.
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Figure 4.8. Scatter plots of positions of all the 0 atoms in H20's in LI and L2 on the NaCI

surface, when Na' is fixed in the first minimum and at the barrier peak of PMF shown in

Figure 4.4. Parts a and b in #1 in panel (111-#2) indicate plots for surfaces of NaCl(OOI) and

NaCI(O11), respectively; and parts i and ii in 112 represent plots for the ion fixed in the first
minimum and at the barrier peak, respectively. Positions of the 0 atoms (x, y) are marked

by dots every 0.2 ps for 26 ps and the solute ion is marked by the dashed circle. Outermost

Na·'s and cr's of the NaCI crystal are depicted by small and large circles, respectively.
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Na+-NaCI(Oll). Figure 4.4(b) shows that W101 has two minima at z' = 0.23

and 0.53 nm and the barrier peak at z' =0.33 nm. The direct adsorption at the first

minimum shown in Figure 4.6(b-i) is caused by the solute-surface interaction.

The solvent-separated adsorption at the second minimum shown in Figure 4.6(b­

ii) is caused mainly by the solute-water interactions. The magnitude of these

minima indicates that the solvent-separated adsorption is more favorable than the

direct adsorption.

As mentioned in Section 3.3.3, water molecules in Ll and L2 tend to be

located above a midpoint between two nearest-neighboring Na+'s and cr's of

NaCI(O 11), respectively. Figure 4. S(b-i) illustrates that the water molecules

around the solute Na+ placed in relatively favorable positions; but they are placed

in somewhat unfavorable positions, as in Figure 4.8(b-ii). The former behavior

explains why the solvent contribution of wso1v to the first minimum of WIOl is

negligible, as shown in Figure 4.4(b). The latter indicates that the energy barrier of

wsOI\', which is estimated to be 61 kllmol from Figure 4.4(b), is mostly ascribed to

the energy required to push out a water molecule bound on NaCl(OII), which is

47 kllmol as shown in Figure 4.1(b-i).

Energy barrier for direct adsorption. It is difficult to compare the above

results with the corresponding experimental and simulation data since these data

are hardly available. However, as for the energy barrier, ~Gbar, which is given by

the difference of WIOl between the barrier peak and the second minimum, the value

for Na+ adsorption on the water/Pt(lOO) interface was reported to be about 25

kllmol [Rose and Benjamin, 1991]. The values of ~Gbar for Na+ adsorption on

water/NaCl(OOl) and waterlNaCI(OI1) interfaces obtained in the present

simulations are 11 and 33 kllmol, respectively. The author considers that these

values agree fairly well and the difference is attributable to the detailed

characteristics of the interaction energies among ions, water molecules, and the
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material surfaces. The reason why L\.Gbar for NaCI(O 11) is larger than that for

NaCI(OOI) is mainly because the water molecule which the solute Na+ has to push

out is bound on the NaCl(OII) more strongly than on the NaCI(OOI), as expected

from Figures 4.1(a-i) and (b~i).

2) Adsorption of CI- ion

CI--N aCI(OO 1). Figure 4.5(a) shows that WID1 has two minima at z' = 0.34

and 0.56 nm, which indicate the direct adsorption and the solvent-separated

adsorption illustrated in Figures 4.7(a-i) and (a-ii), respectively. The magnitude of

these minima suggests that the solvent-separated adsorption is more favorable than

the direct adsorption.

Figures 4.9(a-i) and (a-H) picture the density distributions of adsorbed water

molecules on the surface when the cr is fixed in the first minimum and at the

barrier peak (z' = 0.41 nm), respectively. The positions of water molecules around

the solute Cl- do not look to be too far from their favorable positions in both cases.

This implies that the force to recover the favorable adsorption is not too strong.

Then, why L\.Gbar is so high compared with that for the Na+-NaCI system? It is

considered that there are following two contributions in the energy to push out a

water molecule bound on the surface: (i) the contribution of the binding energy of

a water molecule on the surface; and Oi) the geometric contribution which arises

from a combination of the ionic size and the lattice arrangement of the surface. The

binding energy of an HzOon NaCI(OOI) is --43 kJ/mol as shown in Figure 4.1(a­

ii), but only this can not explain the high energy barrier of L\.Gbar
::= 71 kJ/mo!.

Hence the large value of !1Gbar is attributable to the geometric reason that the large

cr must push out the stable water molecule contained in the hollow site, as

illustrated in Figure 4.7(a~ii).

CI--NaCI(Oll). Figure 4.5(b) shows that W ID1 has a minimum at z' = 0.48

nm, but has no minimum in the region of z' < 0.48 nm; that is, the PMF is
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repulsive and direct adsorption of the CI- on the NaCI(Oll) is very unfavorable.

Figure 4.9(b-ii) illustrates the density distribution of adsorbed water molecules

when the cr is fixed at z' = 0.38 nm (W[Ol:::: 108 kl/mol). The point to note is that

a water molecule can not be pushed out to be interposed between the CI- and the

surface. Because the water molecule is adsorbed on the hollow site tightly as

illustrated in Figure 4.7(b-ii), the geometric contribution will be extremely

repulsive. This is the reason why !J..Gbar is remarkably large.

Energy barrier for direct adsorption. The value of !J..Gbar for cr­
NaCl(OOI) is found to be 71 kllmol, which is much larger than the value of 4

kllmol for CI--Pt(lOO) reported by Rose and Benjamin [1991.1. This difference is

explained as follows. In the adsorption of cr on NaCI(OOI), the adsorption sites

of cr and H20 are the same and so a water molecule contained in the hollow site

must be pushed out completely. In the adsorption of CI- on Pt(lOO), water

molecules are pushed just aside, because the cr adsorbs in between the bound

water molecules [Rose and Benjamin, 1991].

3) Adsorption characteristics of Na+ and Cl- ions

The characteristics of Na+ and CI- adsorption are compared and summarized as

follows:

(i) Na+ and cr ions are adsorbed on the NaCI-crystal surfaces either directly

(i. e., direct adsorption) or with a water molecule interposed between the

surface and themselves (i. e., solvent-separated adsorption). The former

adsorption is mainly attributable to the solute-surface interaction and the latter

is entirely due to the solute-water interactions.

(ii) Na+ and cr ions are adsorbed more stably on the surfaces under solvent­

separated conditions in most cases. This agrees with the results given

elsewhere [Sakakibara, 1997.1; even though the ions are placed at the their

direct adsorption points, they move to the points for their solvent-separated
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Figure 4.9. Scatter plots of positions of all the 0 atoms in H20's in LI and L2 on the NaCI

surface, when cr is fixed in the first minimum and at the barrier peak of PMF shown in

Figure 4.5. Plots in panels (a-i) and (a-ii) are obtained through the same procedure as in
Figure 4.8. The plot corresponding to panel (b-i) is not shown because no first minimum is
obtained in this case, and panel (b-ii) represents the plot for the ion fixed at the barrier of

PMF, z' =0.38 nm (W'" =108 kJ/mol).
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adsorption or diffuse into the bulk water.

(iii) The Na+ adsorb directly onto the NaCI surface more easily than the cr, where

the direct adsorption of cr on NaCI(Oll) is impossible. This is due to the

geometric reason that the large cr must push out a stable water molecule

contained in the holIow site.

4.3.3 Solvation of solute ions

The hydration number of the solute ion, llh' is calculated as a function of z' and

shown in Figure 4.10. Water molecules are regarded as belonging to the hydration

shell around the ion if the ion-oxygen distance is less than or equal to 0.30 nm for

an Na+ and 0.40 nm for a cr, which are the distance at the first minimum of the

ion-oxygen pair correlation function in the bulk. Every llh is nearly constant in the

range of z' > 0.7 nm and increases slightly as the solute ion approaches the point

in which the ion is adsorbed under tl1e solvent-separated condition. This increase

is probably because the ion approaches the denser layer of adsorbed water

molecules, as shown in Figure 3.4 previously. But when the ion comes closer to

the surface, llh decreases. This decrease is mainly because the solute ion pushes

out the water molecule on the adsorption site and partly because the ion itself

dehydrates. Comparison of llh between NaCl(OOl) and NaCI(Oll) suggests that

the decreases for NaCI(Oll) are more remarkable than those for NaCI(OOl). This

also explains why the values of t1Gbor for NaCl(Oll) are larger than those for

NaCl(OOl).
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4.4 Concluding remarks

In this chapter, free energy profiles for Na+ and cr adsorption onto the NaCl(OOl)

and NaCI(Oll) surfaces are evaluated using l'v1D simulations and the following

conclusions are drawn:

(i) Na+ and CI- ions are adsorbed on the NaCI-crystal surface either directly (i.e.,

direct adsorption) or with a water molecule interposed between the surface and

themselves (i.e., solvent-separated adsorption).

Oi) Both ions are adsorbed more stably on the NaCI surface under solvent­

separated conditions in most cases.

(iii) In the case of direct adsorption, Na+ adsorbs on the NaCI surface more easily

than cr in which the direct adsorption of CI- on NaCl(Oll) is impossible.

(iv) The solute-surface and solvent-surface interactions are strongly affected by

the lattice arrangement of the surface; hence, the free energy profile largely

depends not only on the size of the solute ion but also on the lattice

arrangement.
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5
Surfactant Adsorption onto Liquid/Solid Interfaces

5.1 Introduction

This chapter focuses on the lV1D simulation of the surfactant aggregation at a

liquid/solid interface. For this purpose, the simple description of water, oil, and

surfactant molecules is given and applied also to the interactions between these

molecules and a solid surface. It is necessary to examine whether this model can

capture the basic characteristics of water/solid interfaces and micellar solutions.

The results given by the simple model simulations are compared in detail with

those by atomistic model simulations, presented in Chapters 2 and 3, and other

studies.

Thereafter, the surfactant aggregation on the solid surface in a micellar solution

is simulated. The mechanism of the adsorption and aggregation of surfactants on

the surface is proposed. How this mechanism is influenced by the concentration

and molecular structure of surfactants is discussed in detail.

5.2 Methods

5.2.1 Simple model for oil/water/surfactant systems

The simple description of an oil/water/surfactant system has been developed by

Telo da Gama and Gubbins [1986] and by Smit [1988; Smit et al., 1990]. The
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starting point of this model is to consider four types of particles, that is, waterlike,

oillike, headlike, and taillike particles, which are referred to as w, 0, h, and t

particles, respectively. The w and h particles are hydrophilic, while the a and t

particles are hydrophobic. By use of these particles, water, oil, and surfactant

molecules are modeled as illustrated in Figure 5.1: a water molecule consists of

one w particle; an oil molecule consists of one 0 particle; and a surfactant molecule

is composed of a headgroup of h particles and a tail chain of t particles, whose

neighboring pairs are connected together by the harmonic potential, utOd
, with

spring length 10 and spring constant k:

(5.1 )

where r is the distance between particles i and j. The values of 10 = ds and k = 1.4

X 104
Eslds

2 are used, where ds and Es are the size and energy parameters for the

Lennard-Jones potential, respectively, as described below. It is confirmed that this

spring is stiff enough to constrain the separations of all the connected particles to

be ds ± 0.02 ds'

In addition to the harmonic potentials, pairs i and j between four species of

particles (w, 0, h, and t) interact each other via the shifted Lennard-Jones (12-6)

potential with energy parameter Ejj' core diameter dij' and cutoff radius R;/UI:

(5.2a)

[(
d. )12 (d. )6]

¢ij(r)=4E;j : - : . (5.2b)

The values of parameters used are as follows: E;JkB =EslkB = 119.8 K and djj = ds

= 0.3405 nm for all interactions, and ms = 39.948 glmol for the mass of all

particles, which correspond to the values for argon.
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Water

Oil

Surfactant

o
•

:w

:0

Figure 5.1. Illustration of the simple models of water, oil, and surfactant molecules.

Symbols w, 0, H, and t denote waterlikc, oillike, headlike, and taillike particles,

respectively. Two surfactants used are displayed.
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TABLE 5.1: Cutoff radius R;t l for Lennard-Jones interactions between four

species of particles, w, h (or H), 0, and t (in unit of ds)

w h (H) 0

w 2.5 2.5 21/6 2116

h (H) 2.5 2.5 (2116) 21/6 21/6

0 2116 2 1/6 ? - 2.5_.:J

2116 21/6 2.5 2.5

To represent the hydrophilicity and hydrophobicity, different values of Rit\

2.5ds and 2 1
/
6ds, are chosen depending on the types of pairs. The intraspecies

interaction includes repulsive and attractive forces using Ru
cul = 2.5ds' while the

interspecies interaction is completely repulsive using Ru
cu, = 2l/6ds (see Figure

5.3). Nonionic and ionic surfactants are modeled using Ri)CUI = 2.5ds and 2l/6ds for

h-h interaction, respectively. In the latter case, only the repulsion exists between

particles of the headgroups, which are designated by H instead of h. This is

analogous to the electrostatic repulsion between charged headgroups of real ionic

surfactants. The values of RuC"l are summarized in Table 5.1. Note that the model

surfactant is flexible compared with a real surfactant whose conformation is

restricted by the bending and torsional angles. Although it is possible to

incorporate the potentials of these angles into the model surfactant, this spoils the

advantage of the simple model, that is, the simplicity.

By connecting different number of particles h (or H) and t in different

arrangement, the simple model can create surfactants with various molecular

architectures. In the present study, two types of the surfactants, H3H~ and H3Hts'

are considered as illustrated in Figure 5. 1, which are different in tail length but the

same in repulsive headgroup.
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5.2.2 Simple model for solid walls

The solid wall, illustrated in Figure 5.2, is represented by the structureless (10-4­

3) potential [Steel e, 1973]:

Z CUI

Z s Wj'

Z
CUI

Z> Wj'

(5.3a)

. [ (d )I 0 ( d)4 d
4 ]2 2 ws ws ws'ljJ(z) :::: 2Jtc wsPwdwsb - -_- - -_- - ,

5 £., t.. 3b(z + 0.61b)3
(5.3b)

where z is the perpendicular distance between the center of a Lennard-Jones

particle and the outermost plane of the solid wall, zwt l is the cutoff separation, Pw

is the number density of atoms in the solid wall, and b is the separation between

lattice planes. cws and dws are the cross-parameters for wall-solution interaction,

which are written by

112
C ws =(c w c s) , (5.4)

The parameters for the graphite surface are used following Steele [1973, 1974]:

Ew/kB =28.0 K,

Pw = 114 nm-J
,

dw = 0.340 nm,

b = 0.335 nm. (5.5)

Using these values, the particle-wall potential given by Equation (5.3b) is

calculated as shown in Figure 5.3.

To represent the hydrophilic and hydrophobic walls, the idea of the simple

model is applied also to the particle-wall interaction; that is, when a particle and a

wall are of the san1e kind, their interaction includes repulsive and attractive forces

using zwt l =00 (i. e., no truncation), but otherwise they interact only through the

repulsion using Zw/U1 = 0.994ds (:::: Zmin)'

When a basic cell with dimensions L.( x L, x L~ is given, a particle located at z
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Pw

Figure 5.2. Schematic of the solid wall represented by the structureless (10-4-3) potential.

The solid wall is a sequence of crystallographic planes separated by distance !!. Pw denotes

the number density of atoms per volume of the solid.

5r------r.-..----.-------,.---------,------,

5

r---PartiCIe-particle

- - - - -\~"'~"::";;"~'~'-'-='-:':':'-:;;'::'-:';:;:'-="-'=-'=-'="----1o

~5

-10 L....-__L-__L-_--Jl....-_--Jl....-_----l

o

(J)
w

-->;
E"
(J)
c
(J)

CO
~c:
2o
a..

123 4
Separation rIds. z/ds

Figure 5.3. Potential energies for particle-particle and particle-wall interactions

represented by Equations (5.2b) and (5.3b), respectively.
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experiences the external potential, uwtl(z), given by the superposition of U
Wj

from

two planar walls, whose outermost planes are positioned at z ::::: -L/2 and +L/2:

u"';/J-{z) = uwJ{z + L./2) + Uw (L./2 - z)'" J... , (5.6)

where the origin of coordinates is taken at the center of the cell. The effective

length of this cell in the z direction is defined as the separation between the points

of z = -L/2 + 2 min and L/2 - Zn~n' where each UWj on the right-hand side of

Equation (5.6) has a minimum.

5.2.3 Driving force of surfactant adsorption on the surface

It is found that the surfactants of H3Ht3 and H3 Htj do not adsorb on the

hydrophilic wall in a waterlike fluid, as far as the potentials described in Section

5.2.2 are used for particle-wall interactions; but the surfactants do adsorb on the

hydrophobic wall. In a real system, the surfactant adsorption on a hydrophilic

surface is promoted mainly by the strong electrostatic head-surface interactions. A

hydrophobic surface interacts weakly with a surfactant through the van der Waals

attraction, but water molecules dislike the hydrophobic tail of the surfactant to

repel it toward the surface; that is, the surfactant adsorption on the hydrophobic

surface is induced by the solvent.

For this reason, the adsorption of model surfactants is promoted by the

following presumption. The H particle centered in the surfactant headgroup, which

is denoted by H', interacts with the hydrophilic wall ten times more strongly than

the other H particles and w particles; that is, the energy parameter for H'-wall

interaction is given by 1DEWs. Although this assumption is very rough, it mimics

the real system in which a charged headgroup of a surfactant interacts with a

hydrophilic surface more strongly than a water molecule (see Appendix A). On the

other hand, no additional force is incorporated into the interactions between the
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TABLE 5.2: Systems of MD simulations

System N° Lx x L,. X L,b Wall Fluid X"u{
e p 1

I 4,000 17.9 x 17.9 x 19.9 Hydrophi lic w 0.00 0.7 1.00

II 4,000 17.9 x 17.9 x 19.9 Hydrophobic w 0.00 0.7 1.00

III 19,652 30.4 x 30.4 x 30.4 HJHtsJw 0.92-15.2 0.7 2.40

IV 19,652 30.4 x 30.4 x 30.4 H)HVw 0.71-12.5 0.7 1.35

V 19,652 30.4 x 30.4 x 32.1 Hydrophilic H)H'tfw 2.66,9.75 0.7 2.40

VI 19,652 30.4 x 30.4 x 32.1 Hydrophilic H)H'tiw 2.07,7.73 0.7 1.35

VII 19,652 30.4 x 30.4 x 32.1 Hydrophobic H)HtJw 2.66,9.75 0.7 2.40

VlIJ 19.652 30.4 x 30.4 x 32.1 Hydrophobic H)Htiw 2.07,7.73 0.7 1.35

" Total number of particles.
/> Dimensions of the basic cell in unit of els.
e Volume fraction of dosed surfactants in unit ofvolume%; thatis, X,urf=(n5lL!V'UrflN) x 100, where
N'Urf denotes the number of sunaclants with n,ilt sites.

surfactant and the hydrophobic walL

5.2.4 Definition of micelles

When a surfactant solution is treated, a micelle is identified as a cluster of

surfactants whose tails are in contact with each other. Two surfactants are

considered to belong to the same micelle if the minimum distance between their tail

sites is less than lAds' According to the clustering procedure [Stoddard, 1978],

neighboring surfactants are found out and then all the surfactants are partitioned

into micelles and free monomers, which are mutually exclusive.

5.2.5 Simulation details

Eight systems are considered as summarized in Table 5.2, which are classified

roughly into the following three systems: (1, II) a waterlike fluid confined within

two planar walls; (III, IV) a bulk surfactant solution; and (V-VIII) a surfactant

solution between walls. When Systems I, II, and V-VIII are simulated, the
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periodic boundary conditions are applied in the nvo directions parallel to the walls.

Systems III and IV are simulated with three-dimensional periodicity. The

dimensions of the cell with tota14,000 or 19,652 particles are chosen such that the

reduced density of the particles, p' (= p dS
3
), is equal to 0.7. The equation of

motion is integrated by the leap-frog method with a time step of /},t = O.00464Lo,

where LO = dsCmshs)1/2. The reduced temperature, j (= kBTlEs)' is kept at the

constant values listed in Table 5.2 by velocity scaling if necessary.

In order to compute the Lennard-Jones interactions benveen a large number of

particles efficiently, the layered link cell (LLC) procedure connecting with the

Verlet neighbor list is employed on the Cray T-94/4128 vector computer

[Rapaport, 1988; Grest et ai., 1989]. In this procedure, the neighbor list for force

calculations is built up as follows: the pairs of interacting particles i and j are found

out according to the link cell (LC) algorithm; subsequently, the identity numbers of

the pairs, (i, j), are sorted systematically using the "layering algorithm" in order to

vectorize all of the force loops. The neighbor list is updated automatically

following Chialvo and Debenedetti [1990]. Internal forces of surfactants given by

Equation (5. I) are computed in the vector fashion using the multi-color method

[Miiller-Plathe and Brown, 1991].

The detailed simulation procedures for Systems I-VIII are given as follows.

Systems I, II: Waterlike fluid between planar walls. 4,000 waterlike

particles at j = 1.00 are equilibrated in tlle cubic cell with a side length of 17.9ds

and the three-dimensional periodicity. Then two planar walls are inserted at z =
±9. 93ds and the periodicity in the z direction is removed. After that, the system is

allowed to re-equilibrate over 4 x 104 time steps by velocity scaling. The

simulation is performed for 1 x 103 time steps without scaling.

Systems III, IV: Bulk surfactant solution. After 19,652 waterlike

particles are equilibrated at the given temperature, some of the particles are
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connected at random by the springs of Equation (5.1) such that a specific number

of surfactants are constructed. But all the particles of the surfactants are still

regarded as w particles to prevent the surfactants from assembling spontaneously,

which are referred to as pseudo-surfactants. For stable computation, the spring

constant k is started from the initial value of 1.4eslds
2 and gradually increased to

the final value of 1. 4 x 104 es/d/ for 3 x 104 time steps. Then the system is

equilibrated over 4 x 104 time steps, in which pseudo-surfactants hardly assemble.

Thereafter, the head and tail particles are treated as H and t particles, respectively,

and the surfactants are allowed to assemble for 1.5 x 105 time steps with

temperature scaling at every 100th step. The equilibrated surfactant solution is

simulated by the successive calculation over 1. 5 x 105 time steps with scaling at

every 200th step.

Through this procedure, which seems to be intricate, the self-assembly of

surfactants becomes possible. The more refined procedure is presented in Section

7.3.2.

Systems V-VIII: Surfactant solution between planar walls. Since the

initial configurations of surfactants may affect the surfactant aggregation under the

limited numbers of molecules, two types of configurations are prepared:

(I) A solvent and pseudo-surfactant mixture between the walls is equilibrated

over 7 x 104 time steps as mentioned above.

(II) The same procedure as Type J is taken except that H' particles of the

surfactants are treated as H particles, where the surfactants have no driving

force of the adsorption and are designated by inert-surfactants.

Note that Type II is available only when the hydrophilic surface is employed.

During these preparations, the pseudo-surfactants neither aggregate anywhere nor

adsorb on the hydrophilic and hydrophobic surfaces in Type I. In the case of Type

II, the inen-surfactants aggregate in the bulklike region and hardly adsorb on the
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hydrophilic surface. Thereafter, the pseudo-surfactants or inen-surfactants

replaced by the true surfactants, they are allowed to both aooreoate and adsorb for
bb b

3 X 105 time steps with scaling at every 200th step.

Simulations starting from the configurations of Types I and II would

correspond to the following conditions:

(I) Surfactant monomers are putted into water on a solid wall, in which the

monomers assemble in the bulk and adsorb onto the wall.

(II) A wall is inserted into an equilibrated surfactant solution, In which the

aggregates fonned adsorb onto the wall.

5.3 Verification of the simple model

First of all, it should be checked whether the simple model used can represent the

basic characteristics of water/solid interfaces and micellar solutions. The former

problem is examined in Section 5.3.1 using Systems I and II and the latter IS

examined in Section 5.3.2 using Systems III and IV.

5.3.1 Waterlike fluids near solid walls

Density profiles. Figure 5.4 shows the density profile of waterlike particles

near the wall, which is hydrophilic for System I and hydrophobic for System II.

About four layers of the particles are formed near the hydrophilic surface, whereas

the hydrophobic surface repels the particles toward the middle region of the cell

such that no distinct layer is formed anywhere. The similar features were observed

also in the atomistic model simulations, as described in Sections 2.4.1 and 3.3.2.

Diffusion coefficients. To probe the motion of particles near the surface, the

fluid lamina is divided into three interfacial layers (LI, 1.2, and L3) and the
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TABLE 5.3: Diffusion coefficients D' a of waterlike particles in the different
layers for Systems I and II

System I (hydrophilic wall) System II (hydrophobic wall)

Layer" LI L2 L3 LB LI L2 L3 LB

D 'c 0.09 0.09 0.11 0.12 0.24 0.14 0.11 0.10,
D 'c 0.08 0.09 0.11 0.13 0.21 0.13 0.1 I 0.10y

D;d 0.01 0.03 0.07 0.11 0.26 0.12 0.10 0.10

(D,Y (;:,().QO) (:::0.00) (:::0.00) (0.12) (:::0.00) (0.01) (0.01) (0.09)

aD' =D!ds(Eslms)II~.

I, The range of Izi in unit of cis is S.4()..... for Ll, 7.42-8.40 for L2, 6.57-7.42 for L3, and 0.00-3.50
for LB (sec Figure 5.4).
c Values are calculated by the mean square displacement.
d Values are calculated by the residence autocorrelation function.

bulklike region (LB), as defined in Figure 5.4 and Table 5.3. The self-diffusion

coefficients of D$ in the direction ~ (= x, y, z) are calculated within these layers

using Equation (2.16), as given in Table 5.3. The values of Dc, which are given in

parentheses, are nearly zero in the thin layers of Ll, L2, and L3, but they are

almost equal to those of Dr and D.,. in LB with a thickness of 3.5ds' This implies

that Equation (2.16) is not appropriate for evaluating the vertical diffusion

coefficient of particles within a thin film, as pointed out in Section 2.4.4.

Alternatively, the residence autocorrelation function lIsing Equations (2.18) and

(2.19) gives the appropriate values of Dc as in Table 5.3.

It is found that the diffusion coefficients of waterlike particles in Ll, L2, and

L3 decrease near the hydrophilic surface compared with those in LB, while they

increase near the hydrophobic surface. This tendency becomes more significant as

the particles are closer to the surfaces. These features are in qualitative agreement

with the results by the atomistic model simulations discussed in Sections 2.4.4 and

3.3.6.

Thus, the results of density profiles and diffusion coefficients manifest that the

simple model used can mimic, at least qualitatively, the water/solid interfaces with
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Figure 5.4. Density profile of waterlike particles near the planar wall. Solid and dOlled

lines represent the profiles near the hydrophilic wall (System I) and near the hydrophobic

wall (System II), respecti vely.
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respect to the static structure and the diffusional motion of layered particles.

5.3.2 Self-assembly of surfactants

Snapshot. A surfactant solution in the bulk is investigated in detail usmg

System III. Figure 5.5 displays a typical snapshot of the H3 H1:;; surfactants in 3.48

vol % solution. Surfactants assemble spontaneously to form micelles, at least

apparently, in which the headgroups are directed outward, while the tail chains are

folded inside to be away from waterlike particles. It is also observed that a few

surfactants are dissolved in the solvent as free monomers.

Aggregate size distributions. For quantitative treatment of a micellar

solution, the size distributions of aggregates are calculated to determine the critical

micelle concentration (CMC). The volume fraction of surfactants in aggregates of

size 11, X(n), is depicted in Figure 5.6 for various values of the dosed surfactant

concentration, X surf' The point to observe is that the distribution has a maximum

and a minimum only when X surf becomes larger than the value of about 3 vol %.

Otherwise the distribution decreases monotonically. This behavior is identical to (i)

the basic assumption in a theory of micelle formation dynamics [Lang and Zana,

1987] and coincides with (ii) the results by other simulations [Larson, 1992;

Rector et al., 1994; Haliloglu and Mattice, 1994; Desplat and Care, 1996] and (iii)

those by the analytical models [Hoeve and Benson, 1957; Wennerstrom and

Lindman, 1979].

Critical micelle concentration. The free monomer concentration X(1) as a

function of X surf is shown in Figure 5.7, where the dotted line indicates the relation

X(1) = X,urf' X(l) is directly proportional to X,urf up to X.urf :::::: 1 vol %, implying

that the surfactants do not form aggregates. This is consistent with the monotonic

decrease of X(n) in Figure 5.6. AtX.urf > 3 vol %, X(1) becomes nearly constant,

from which the CMC is taken to be about 3 vol % for an H3 H1:;; surfactant solution
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Figure 5.5. Typical snapshot of System III at X,url = 3.48 vol %. Dark and light spheres

display the headlike and taillike particles of surfactants, respectively. All solvent particles

are not shown for clarity. The simulation cell is depicted by lines.
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Figure 5.6. Size distributions of surfactant aggregates in System III at various values of

X,uri' X(I1) denotes the volume fraction of surfactants in aggregates of size 11. Dottcd,

dashed, and solid lines represent the distributions at x,;uri = 1.79, 3.48, and 6.73 vol %,

respectively. Each distribution is obtained by averaging over 150 configurations takcn

cvcry I ,OOOtl1 time step.
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Figure 5.7. Free monomer concentration X(I) as a function of the dosed surfactant

concentration X'Uri' Solid and open circles represent the plots for Systems III and IV,

respectively. The dotted line indicates the relation of X(l) = X,ur(' Each plot is obtained in

the same way as in Figure 5.6.
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at T = 2.40. Thereafter X (l) starts to fall at the point of X surf ::::: 9 vol % and

becomes nearly constant again. Similar behavior was reported in other studies and

explained in the way that micelles interact with each other when X rf is above the
su

CMC [Brindle and Care, 1992; Des plat and Care, 1996]. This mechanism

remains, however, to be examined more extensively.

The same features as described above appear in System IV and the CMC of an

H3H13 surfactant solution at T =1. 35 is estimated to be about 2 vol %. In addition

to the "ionic" surfactants of H3H15 and H3H13, "nonionic" surfactant solutions of

h215 (see Table 5.1) are simulated separately. It is found that the CMC of the model

nonionic surfactant solution is much lower than that of the model ionic surfactant

solution. This agrees qualitatively with the behavior of real surfactant solutions.

All the above results confirm that the simple model used can capture, at least

qualitatively, the characteristics of micellar solutions. Note that the temperature is

kept at relatively high values following Smit and co-workers [l993b; Karaborni et

al., 1993, 1994], such that the surfactant solutions have typical aggregate size

distributions and the CMC in the concentration ranges limited by the number of

molecules.

5.4 Results and discussion

In Section 5.4. I, the aggregation of surfactants on the smooth hydrophilic wall is

investioated usino Systems V and VI listed in Table 5.2. The types of surfactants
I:> I:>

used are H
3
H'1:s and H3H'~, which are different in tail length but the same in

headgroup. Two values of the dosed surfactant concentration X surf are chosen as

given in Table 5.2. The results presented are obtained by the simulations using the

ini tial configurations of Type 1 unless specified.
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In Section 5.4.2, the surfactant aggregation on the hydrophobic wall is also

examined using Systems VII and VIII.

5.4.1 Surfactant aggregation on hydrophilic walls

Micellar solutions between hydrophilic walls are examined mainly by graphic

visualization of surfactants. At the end of this section, the mechanism of the

adsorption and aggregation of surfactants is proposed and how the mechanism is

influenced by the concentration and molecular structure of surfactants is discussed

in detail.

1) HJH'ts solution of low concentration

Snapshot in the first stage. Figure 5.8 displays the snapshots of the H3H\

surfactant solution of X sun =:: 2.66 vol % between the hydrophilic walls. As

expected, it is found that surfactants in the initial configurations neither aggregate

anywhere nor adsorb on the surface. Figure S.8(a) shows that some surfactants

are adsorbed on the walls with their headgroups and tail chains pointing toward

and away from the surface, respectively, at 1 x 104 time step. This is because the

hydrophilic surface favors hydrophilic particles more than hydrophobic particles.

Snapshots in the middle stage. At 2.2 x 105 time step, surfactants form a

small aggregate on the surface, which is referred to as the ''2D-aggregate.'' One

may suppose that an aggregate formed in the bulklike region adsorbs directly on

the bare surface to construct the 2D-aggregate; this behavior is called the "direct

aggregate adsorption." However, this 2D-aggregate formation hardly occurs

during the simulation, which starts from the configurations of Type I.

To explore the surfactant aggregation on the surface extensively, the attention

is focused on the surfactants in the rectangular box drawn in Figure 5.8(b) and

their time evolutions are displayed in Figure 5.9. As shown in Figure 5.8(a), free

monomers in the bulklike region adsorb at the unoccupied points of the surface;
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Figure 5.8. Snapshots of System V at Xsurf =2.66 vol %. White and black spheres display

the headlike and taillike particles of surfactants, respectively, and two grid planes represent

the walls. All solvent particles are not shown for clarity. (a) 1 x 10
4

time step; (b) 2.2 x 10
5

time step; (c) 3 x 10
5

time step.
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Figure 5.9. Time evolutions of the H3H'ts surfactants in the rectangular box shown in

Figure 5.8(b). Notice the movement of the surfactant whose headlike and taillike particles

are displayed by the light and dark gray spheres, respectively. (a) 2.05 x 10' time step; (b)

2.08 x 10' time step; (c) 2.13 x 10' time step; (d) 2.14 x 10' time step; (e) 2.16 x 10' time

step; (f) 2.2 x lOs time step.
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this is named the "direct monomer adsorption." In addition to that behavior,

monomers frequently adsorb near the points occupied by the other surfactants

because of the favorable tail-tail interactions; this is named the "tail-induced

monomer adsorption." For example, as shown in Figures 5.9(a) and (b), a free

monomer approaches the surfactant aggregate on the surface to make tail-to-tail

contact This surfactant moves around keeping the tail-to-tail contact during about

5 x ref! time steps, as shown in Figures 5.9(b)-(d). After that, the surfactant puts

the head down to adsorb on the surface and consequently joins into the 2D­

aggregate, as displayed in Figures 5.9(e) and (f).

Another point to observe in Figure 5.9 is that the small 2D-aggregates and the

isolated surfactants fluctuate (or diffuse) transversely on the surface and assemble

by the t:1il-tail attraction to grow into the larger 2D-aggregate shown in Figure

5.9(f); this behavior is called the "surface-diffusion growth."

Snapshot in the last stage. Figure 5. 8(c) shows that after 3 x 105 time steps

most of the surfactants adsorbed on the surface are incorporated into the 20­

aggregates. The 20-aggregates diffuse laterally on the surface, assembling and

splitting repeatedly. This indicates that they are not absolutely stable. Careful

observation of snapshots manifests that surfactants migrate from one 2D-aggregate

to another at the time scale of 1 x 104 steps.

Influence of initial configurations on the surfactant aggregation. The

simulation is performed using the configurations of Type II. This shows that the

20-aggregates are formed by tlle direct aggregate adsorption as well as by the tail­

induced monomer adsorption and the surface-diffusion growtll; the former

mechanism is slower than the latter mechanisms. The reason why the aggregate

adsorption hardly occurs in the simulation of Type I is probably because free

monomers adsorb onto the surface rapidly before they aggregate in the bulklike

region, as expected in Section 5.2.5.

-119-



(a) System V

...--
C
N

C--Z

8

4

XsurF2.66 vol %

XsurF9.75 vol %

OL.-_--'----.::::....-;L.-_---'--~...=:::..Ji.o:::=::..L~_ __.J

12.....---,....---,....-----r-----,,...----r------,

30

XsurF2.07 vol %

XsurF7.73 vol %

(b) System VI

10 20

2D-aggregate size n 20

".............OL...-----L.--:.._-==--_L...-_--'-__....I..-_----J

o

4

8
...--

C
N

C--Z

Figure 5.10. Size distribution of 2D-aggregates on the surface. N(nm) denotes the number

of surfactants in 2D-aggregates of size n:!o. Dotted and solid lines indicate the distributions

at low and high concentrations, respectively. (a) System V; (b) System VI. Each

distribution is obtained by averaging over 50 configurations taken every 1,OOOth time step

of the last 5 x 10' configurations.
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Size dis tribution of 2D-aggregates. To quantify the 2D-aggregates in

equilibrium, their size distribution is evaluated as shown in Figure 5.10. A

surfactant molecule is regarded as adsorbed on the surface only when the distance

between the H' particle and the surface is less than Zmin + 0.5ds. Then the 2D­

aggregates are identified in the same way as described in Section 5.2.4. The

interesting point to note is that the distribution has a minimum and a maximum.

This behavior is found also in the size distribution of aooregates in the bulk as00 ,

shown in Figure 5.6. Similar results were reported by Wijmans and Linse [1997],

where the adsorption of hlOtlo surfactants at the hydrophobic interface was

simulated by the lattice MC method.

2) H3H'ts solution of high concentration

Figure 5.11 displays the snapshots of the H3H\ surfactant solution of Xsurf =

9.75 vol %, which is higher than the last case of X surf = 2.66 vol %. Figure

5.11 (a) depicts the initial configurations of surfactants. At 1 x 104 time step, it is

shown that some surfactants adsorb on the wall, some form micelles in the

bulklike region, and the others are dissolved in the solvent as free monomers.

After 3 x 105 time steps most surfactants are adsorbed on the wall to form 20­

aggregates, which are larger in size and located closer each other, compared with

those at X surf = 2.66 vol % shown in Figure 5.8(c). Figure 5.1O(a) shows the

influence of X surf on the 2D-aggregate size quantitatively. The difference in size

explains the observation that the 2D-aggregates at X sun = 9.75 vol % fluctuate less

on the surface, that is, are more stable compared with those at X surf =2.66 vol %.

Careful observation manifests that the 2D-aggregates are formed by the tail­

induced monomer adsorption, the surface-diffusion growth, and the indirect

aggregate adsorption that differs from the direct aggregate adsorption as follows.

An aggregate, which is formed in the bulklike region. remains fluctuating without

adsorbing directly onto the bare area during 5 x 1frI to I x 104 time steps, because
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Figure 5.11. Snapshots of System V at X,un = 9.75 vol %. Symbols are the same as in

Figure 5.8. (a) 0 time step; (b) 1 x 10' time step; (c) 3 x lOs time step.

-122-



the surface has been already occupied by surfactants in parts. Then a few

surfactants are pulled out of the aggregate to join the 2D-aggregate on the surface

because of the tail-tail attraction; after fluctuating for a while, they adsorb

completely on the surface. The rest of the broken aggregate return to the bulklike

region because of steric repulsion. This adsorption is named the "tail-induced

aggregate adsorption." This behavior of an aggregate is, however, hardly found in

the simulations at the lower concentration of X surf = 2.66 vol %.

3) HJHI~ solutions of low and high concentrations

The aggregation of H3H't:J surfactants with a shorter hydrophobic tail than H3H Its

is examined at X surf = 2.07 and 7.73 vol %. Figure 5.12 shows the snapshots of

the surfactant solutions after 3 x 105 time steps. Figures 5.1O(b) and 5. 12 suggest

that the total number of surfactants on the surface and the size of 2D-aggregates

increase as the dosed suIfactant concentration is higher. Comparison between

Figures 5.1O(a) and (b) indicates that the larger 2D-aggregates are formed as the

surfactant tail is longer. This characteristic is also observable when one make a

comparison between Figures 5.8(c) and 5. 12(a) and between Figures 5.11 (c) and

5.12(b). Inspection of snapshots suggests that the 2D-aggregates of H3 H \

surfactants fluctuate assembling and splitting much more actively than those of

H3H'ts surfactants, although the HJH't.J solutions are lower in temperature than the

H3 H'is solutions. The decreases in size and stability of the H) H \ aggregates are

explained by the weaker attraction between the short tails. Mechanisms of the

adsorption and aggregation are almost the same in both the cases of H3 H'13 and

H3 H'is surfactants at each concentration.

4) Mechanisms of adsorption and aggregation of surfactants

on the hydrophilic surface

Five mechanis ms. On the basis of the present simulations, five mechanisms

of surfactant adsorption and aggregation on the hydrophilic surface are proposed
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Figure 5.12. Final snapshots of System VI after 3 x 10
5

time steps. Symbols are the same

as in Figure 5.8. (a) Xsurr =2.07 vol %; (b) XsUlf =7.73 vol %.
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as illustrated in Figure 5.13, where the frequency of appearance of the

mechanisms decreases from panels (a) to (e). The two mechanisms in Figures

5.13(a) and (e) are promoted by the strong head-surface interactions, while the

rest in Figures 5.13(b)-(d) are induced by the favorable tail-tail interactions.

Hence, the latter three mechanisms are more frequent as the surfactant tail is

longer. The author emphasizes that the two mechanisms shown in Figures 5.13(b)

and (c) are dominant in the surfactant aggregation on the surface and those in

Figures 5. 13(d) and (e) are secondary. The latter two are still less frequent as the

surfactant concentration is lower, because the surfactants hardly aggregate in the

bulk. As the number of surfactants adsorbed on the surface increases, the direct

adsorption of monomers and aggregates shown in Figures 5. 13(a) and (e) is less

frequent.

Aggregation in the bulk and at the interface. Finally, it is considered why

the islandlike aggregates were observed in AFM measurements even though the

concentration of dosed surfactants was much below the CMC [Fukuda, 1996].

Figures 5.6 and 5.IO(a) show that at the low concentration of about 3 vol % (0:::;

CMC), the size distribution of H3H\ aggregates on the surface has a peak at n2D =

4, while the corresponding peak is absent in the bulk. In the case of the H3H'\
solutions near the CMC, the size distributions have peaks neither on the surface

nor in the bulk, as shown in Figure 5. IOCb). These indicate that the solidlliquid

interface is as favorable as the bulk for the H3H \ aggregation, whereas the

interface is more favorable for the H3 H'ts aggregation. Hence, this demonstrates

that the interface becomes more favorable for the surfactant aggregation than the

bulk as the surfactant tail is longer. Supposing that a surfactant has a longer tail

than the surfactants used here, the aggregation can occur at the interface even when

the dosed surfactant concentration is well below the CMC.
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Figure 5.13. Mechanisms of the adsorption and aggregation of surfactants on the

hydrophilic surface. (a) Direct monomer adsorption; (b) tail-induced monomer adsorption;

(c) surface-diffusion growth; (d) tail-induced aggregate adsorption; (e) direct aggregate

adsorption. The frequency of appearance of the five mechanisms decreases from panels (a)

to (e).
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5.4.2 Surfactant aggregation on hydrophobic walls

The simulations are performed using Systems VII and VIII, which are the same

systems as employed in Section 5.4.1, but the wall used here is hydrophobic.

Figures 5.14 and 5.15 display the snapshots of final configurations of Systems

VII and VIII, respectively. It is shown that surfactants are adsorbed on the wall,

laying down their tail chains on the surface and keeping their headgroups away

from the surface. In contrast to this lying adsorption of surfactants, the standing

adsorption is observed at the hydrophilic surface as shown in Figure 5.9.

5.5 Concluding remarks

In this chapter, the simple description of water, oil, and surfactant molecules is

given and applied also to the molecule-wall interactions. Using this simple model,

MD simulations of water/solid interfaces and micellar solutions are perfonned. The

results are compared with those by the atomistic model simulations, presented in

Chapters 2 and 3 and other studies. This demonstrates that the simple model can

capture the basic characteristics of water/solid interfaces and micellar solutions.

Thereafter, the surfactant aggregation on the hydrophilic and hydrophobic

surfaces in micellar solutions is investigated in detail. This study is the first to give

the possible mechanisms of interfacial aggregation of surfactants, which have

never been expected and can not be investigated by the atomistic simulation

because of the lack of computational power.

Thus, the simple model simulation is a powerful tool to reveal the physics

underlying in surfactant solutions. This simulation method can be applied also to

larger and more complex systems, which include surfactants, polymers, and

macroscopic colloidal particles, as is described in next two chapters.
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Figure 5.14. Final snapshots of System VII after 3 x 10
5

time steps. Symbols are the same

as in Figure 5.8. (a) X,urr = 2.66 vol %; (b) X,urf = 9.75 vol %.
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Figure 5.15. Final snapshots of System VIII after 3 x 1.0
5

time steps. Symbols are the same

as in Figure 5.8. (a) X,urr = 2.(n vol %; (b) X,urf = 7.73 vol %.
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6
Surface Forces in Simple Fluids

6.1 Introduction

This chapter presents a new method to evaluate the interaction forces between two

large spheres in a fluid using I'vID simulations. This method is applied to the

system shown in Figure 6.1, in which a pair of spherical structureless

macroparticIes is immersed in a pure simple fluid. The results are compared with

those by other simulations using the grand canonical ensemble (GCE) and by the

integral equation theol)' (lET).

A large system is required to allow solvent particles to locate between the

macroparticIes and exchange themselves with those in the bulk reservoir. This

indicates that the present method consumes much computation time. However, this

method has the following advantages over the GeE simulation and the IEr:

(i) A spherical surface can be introduced in this method, which is more realistic

than a planar wall commonly used in the GCE simulation.

(ii) Detailed features of a fluid film between surfaces are obtained.

(iii) The phase separation of the fluid film and the interface between the phases can

be expressed without any artifact if occur; for example, condensation,

evaporation, and bridging of liquid and vapor.

(iv) This method is easily extended to investigate the surface forces in a mixture

and a complex fluid.

How robust this method is will turn out clearly in next chapter, where the fluid
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Figure 6.1. Illustration of the basic cell including two macroparticles and a large number

of solvent particles. The cell is depicted two-dimensionally for clarity.
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Figure 6.2. Potential energies for particle-particle and particle-macroparticle interactions

represented by Equations (6.1 b) and (6.2b), respectively. r' indicates the distance from the

macroparticle surface, r- r M , as shown in Figure 6.1.

-134-



employed is mixed and complex.

6.2 Molecular models

6.2.1 Simplefluids

The interaction between solvent particles is represented 10 the same way as

described in Section 5.2.1:

( )
_ { lj>(r) - lj>(lts~l),

uss r - 0,

nCUI
r ~ tl:ss '

nCUI
r > tl:ss '

(6.1a)

(6.1 b)

Two types of fluids are employed:

(i) A Lennard-Jones (U) fluid of RssCUt = 2.5ds' where the interparticle

interaction includes the repulsive and attractive forces.

(ii) A soft-sphere (S5) fluid of Rss
CU

[ =2116ds' where the interaction includes the

short-range repulsion only.

The thermodynamic state of the fluid is chosen to be identical to that used in

other simulations [Snook and van Megen, 1980; Magda et ai., 1985) and the IEf

studies [Kjellander and Sarman, 1990, 1991; Sarman, 1990; Kinoshita et. ai.,

1996b]; that is, p' = pdS
3 = 0.5925 and 1 = kBTlEs = 1.2. This is because the

simulation data can be easily compared with the results by these studies.

6.2.2 Solvophilic and solvophobic macroparticles

The shifted (10-4-3) potential is used for particle-macroparticle interaction [Steele,

1973):
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TABLE 6.1: Systems of constrained MD simulations

System Fluid U Macroparticle pair Diameter 4.1 Box length L

I Soft-sphere Solvophobic 1Od;;, 20ds 56.8d;;, 57.6ds

Il Lennard-Jones particle Solvophobic 10d;; 56.8d;;

III Soft-sphere Solvophilic IOds 56.8d;;

IV Lennard-Jones particle Solvophilic IOds 56.8d;;

U The total number of particles N is 108,000 and the thermodynamic state is p' = rxJs3 = 0.5925

and 1 =kDT!f: s =1.2.

(6.2a)

(6.2b)

(6.2c)

where dM is the diameter of the macroparticle and RMScUI is the cutoff distance. Note

that the center of the outennost atoms in the macroparticle is located at separation

rM from the center of the macroparticle. The particle-macroparticle potential shown

in Figure 6.2 is almost the same as the potential for particle-waJI interaction shown

in Figure 5.3. The mass of the macroparticle mMis equal to mSCdM/dsi, where ms

is the mass of the solvent particle.

Two types of macroparticles of dM= lOds (or 20ds) are considered:

(i) A solvophilic macroparticle of R MS
cUI = lOds1 where the particle-macroparticle

interaction includes the repulsion and attraction.

(ii) A solvophobic macroparticle of RM/
Ul = O.987ds• where the particle­

macroparticle interaction includes the short-range repulsion only.
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6.2.3 Systems

In this study, four systems are employed as listed in Table 6.1; a pair of

solvophobic macroparticles in SS and U fluids (Systems I and II) and a pair of

solvophilic macroparticles in SS and U fluids (Systems III and IV).

6.3 Constrained molecular dynamics method

6.3.1 Description of interactions between macroparticles

A system composed of two macroparticles (C and D) and N solvent particles is

considered, as illustrated in Figure 6. 1. MD simulations of the system are

performed keeping the center-to-center separation between the macroparticles. For

this purpose, the following constraint on the macroparticles is incorporated into the

equations of motion:

(6.3)

where R is the fixed separation between macroparticles C and D. This method was

employed for the first time to evaluate the mean force potential of an ion pair in a

polar solvent [Ciccotti et at., 1989].

The forces on macroparticles C and 0 caused by the solvent particles, Fes and

Fos' are calculated during each simulation. The solvent contribution to the

interaction force between the macroparticles, that is, the solvation force pall(R) is

evaluated as a time average using the following expression:

FSa'\R) =t (ueo . (Fes - Fos») I

ueD = (re - rD) lire - ro I·

(6.4a)

(6.4b)

The potential WSO'Y(R) can be obtained by integrating Equation (6.4a) from the
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large separation Ro to a given separation R,

WS01V(R) =~ fR F 501V(R) dR.
Ro

(6.5)

Supposing that the macroparticle is uniformly composed of the U particles of the

number density pdS
3 = 1.0 and only the attraction term of -(4ssds

6 )/1' in Equation

(6.1b) is considered, the potential of the direct macroparticle-macroparticle

interaction, WireR), is given by the analytical formula [Hamaker, 1937]:

= 2(R - dM) / (dM ) 2
S d d + ,

s s

(6.6a)

(6.6b)

(6.6c)

(6.7)

where A is the Hamaker constant The force pifeR) is obtained by differentiating

Equation (6.6a),

Fdir(R) =_ dwdi'(R) =_64A 1
dR 3dM S3(S2_ 4)2 .

Consequently, the total mean force between the macroparticles pot(R) and the

potential Wlot(R) are described as

(6.8)

(6.9)

In this chapter, the above method is applied to the short-range potential

systems as in Table 6. 1. However, the present method is applicable also to long­

range potential systems (e.g., Coulomb systems) if needed.
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6.3.2 Simulation details

Simulations are performed in a system composed of two macroparticles of dM =

10ds (or 20ds) and N = 108,000 solvent particles in a cubic cell with periodic

boundaries. The length of the cell is selected to be 56.8ds (or 57.6ds) such that the

density of the bulk fluid p. is 0.5925. It is confirmed that the basic cell has enough

dimensions to be unaffected by the neighboring image cells. The constraint on

macroparticles C and D by Equation (6.3) is imposed using the SHAKE method

[Ryckaert et aI., 1977]. The equations of motion for the solvent particles and the

constrained macroparticles are solved using the leap-frog algorithm with a time

step of /).t =0.0046410, where 1U =ds(mslfs)lI2. The temperature of the solvent is

kept at 1 = 1. 2 using the Berendsen' s external bath method with a time constant

of 17 = 0.46410 IBerendsen et aI., 1984], while no temperature-control procedure

is incorporated into the macroparticles except the separation constraint. This is

because it is favorable in the calculation of the solvation force to use as few

artificial procedures as possible, which are imposed on the macroparticles. The

force calculation algorithm is the same as explained in Section 5.2.5.

The nearest separation between the macroparticles, R - dM (= R '), ranges from

1. Ods to 5. Ods with increments of O. 1ds and 0.2ds' In each system, a series of

constrained MD simulations are performed as follows:

(i) Two macroparticles of C and D are positioned on a diagonal line of the cell

such that the C-D separation is the largest separation of R" =5. Ods· 108, 000

solvent particles are placed at the face-centered-cubic (fcc) lattice points

excluding the macroparticles' space.

(ii) The system is equilibrated over 5.5 x 10
4

time steps.

(iii) The instantaneous forces of F cs and F DS are computed during 2 x 10
4

time

steps to obtain the solvation force POIV(R) using Equation (6.4).

(iv) Then, external forces are assigned to the macroparticles along the C-D line for
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5 x l~ time steps to reduce the C-D separation by O.lds or O.2ds.

(v) For equilibration of the solvent particles around the macroparticles, the system

is allowed to evolve for another 5 x l~ time steps, keeping the new C-D

separation.

Repeating the procedure from (iii) to (v), one can obtain the force-distance profile.

The statistical errors of the solvation forces are evaluated by the block averaging

method lFlyvbjerg and Petersen, 1989] and found to be less than ±2.0, ±1.4,

±2.8, and ±2.5 (in unit of ksT/ds) for Systems I-IV, respectively. The potential

WS01"(R) is calculated by integrating the values of POh(R), where the trapezoidal

rule is used without any smoothing procedure.

6.4 Results and discussion

In the following sections, Systems I-IV are investigated mainly in terms of the

solvent density profile near the macroparticle surface (gMS)' the solvation force

(poh), and the potential (W SO"'). This is because the direct macroparticle­

macroparticle interaction given by Equation (6.7) is not significant compared with

the solvation force in the present systems.

6.4.1 Influence of macroparticle diameter on solvation force

How the macroparticIe diameter dM affects the solvation force is examined

comparing the results for dM = lOds and 20ds in System I. The solvation force

profiles are given in Figure 6.3, w here the positive and negative values mean the

repulsive and attractive forces. respectively. Figure 6. 3(a) indicates that the force­

distance profiles are qualitatively similar although the amplitude of the oscillatory

behavior is larger in the case of dM = 20ds' However, after both the profiles are
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Figure 6.3. (a) Solvation force in System I (see Table 6.1). (b) Force normalized by the

Derjaguin approximation (see the text), which is corresponding to panel (a). Solid and

dotted lines represent the forces for dM =!Ods and 20ds, respectively.
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multiplied by the factor of dlJtdM on the basis of the Derjaguin approximation

[Derjaguin, 1934], they are almost identical to each other in all the range of the

surface separations, as shown in Figure 6. 3(b). Therefore, it is believed that the

succeeding results of the solvation force obtained using dM = lOds give the

quantitative behavior within the conditions employed in this study, if the force­

distance profiles are nonnalized by the value of dM •

6.4.2 Solvation forces between "solvophobic" macroparticles

A pair of solvophobic macroparticles immersed in 5S and U fluids, that IS,

Systems I and II, are considered. Figures 6.4, 6.5, and 6.6 show the profiles of

g pOly and wso1v respectivelyMS" , .

1) System I - Oscillatory structural force

Figure 6.4 illustrates that the dense layers of solvent particles are formed adjacent

to the surface of the large sphere even in such a soft-sphere system that particle­

particle and particle-macroparticle interactions are repulsive in the short-range

separations. This "packing efficiency" of particles near the surface results from the

minimization of the free energy of the system, that is, the maximization of the

entropy because the enthalpy hardly contributes in the soft-sphere system. It is

emphasized that the packing efficiency which is entirely attributable to the entropy

effect is, more or less, potentially intrinsic to any systems.

When these two surfaces approach each other, the solvation force and the

potential oscillate around the zero value, exhibiting the attraction and repulsion,

and their periodic distances are about solvent diameter ds as shown in Figures 6.5

and 6.6. Hence, this oscillatory behavior is caused by the packing effect After the

solvent particles in the only one layer between the nearest surfaces of

macroparticles are pushed out into the bulk at R' < 1.9ds• the strong attraction acts

between the macroparticles. Then the macroparticles come into contact with each
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Figure 6.4. Reduced density profile of solvent particles near the surface of the solvophobic

macroparticle of dM = lOds. Dotted and solid lines represent the profiles for soft-sphere

(S5) and Lennard-Jones (U) fluids, that is, Systems I and II, respectively.
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other at R' = 1.Ods' which is the most stable state with regard to the free energy as

expected from Figure 6.6.

The above behavior is explained by the following mechanism. In System I

where the enthalpy is negligible, the behavior of the solvent particles shown in

Figure 6.4 are most favorable for the total entropy of such a system that a single

macroparticle exists in the solvent Nonetheless, the solvent particles in the dense

layers near the macroparticle surface are less advantageous in terms of the entropy

than those in the bulk. Hence, if two macroparticles attach to each other, the

solvent particles are pushed out into the bulk, which leads to the increase of the

overall entropy of the system, that is, the decrease of the free energy. Thus the

strong attractive force is induced even in a soft-sphere system such as System I.

These results were also derived from the IEf studies on the similar systems:

hard-spherical macroparticles are immersed in a hard-sphere fluid [Henderson,

1988; Kinoshita et a1., 1996a}. The force-distance profiles by the present

simulation and theoretical studies coincide qualitatively with those by the SFA

experiments: the interaction forces were measured between the molecularly smooth

surfaces of a cleaved mica in the liquid of quasi-spherical nonpolar molecules such

as octamethylcyclotetrasiloxane (OMerS), tetrachloromethane, cyclohexane, and

benzene [Horn and lsraelachvili, 1981; Christenson, 1983, 1986; Israelachvili,

1987,1991}.

2) System 11- Solvophobic attraction

In this system, the attraction is present for solvent-solvent interaction, but absent

for solvent-macroparticle interaction. Figures 6.4, 6.5, and 6.6 show that no

dense layer of the solvent particles is formed near the surface (i. e., the

"dewetting") and the solvation force profile exhibits the strong attraction without

oscillating (i. e., the "solvophobic attraction"). This behavior is different from that

in System 1.
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The similar results have been also reported in the other studies {Berard, 1993;

Kinoshita et al., I996b] and are interpreted as follows. When a large solvophobic

macroparticle intrudes into an attractive potential fluid, favorable bonds between

the solvent particles are disrupted. Accordingly the particles near the macroparticle

surface are reorganized at the sacrifice of the packing efficiency such that the

bonds are broken as few as possible, which leads to the dewetting in this case.

This behavior is advantageous to the bonds, that is, the enthalpy but

disadvantageous to the packing efficiency, that is, the entropy_ These contradictory

contributions are compromised to minimize the free energy. Nevertheless, the

solvent particles near the surface are too unstable to form any dense layer. If the

surfaces approach each other, these unstable particles are pushed out into the bulk,

by which the free energy of the system decreases. Thus the strong and

monotonous attraction is generated between solvophobic surfaces in an attractive

potential fluid.

Figure 6.5 shows that the attraction caused by the solvent is stronger than the

direct macroparticle-macroparticle interaction given by Equation (6.7) in all the

separation ranges.

6.4.3 Solvation forces between "solvophilic" macroparticles

A pair of solvophilic macroparticles immersed in SS and U fluids, that is,

Systems III and IV, are considered and the results are shown in Figures 6.7, 6.8.

and 6.9. It is worth noting that the results for Systems III and IV are almost the

same independent of the fluids employed: SS and U fluids. Comparison between

Figure 6.4 for System I and Figure 6.7 for Systems III and IV indicates that the

solvent density is higher near the solvophilic surface, though the behavior of these

density profiles is qualitatively similar.

Figure 6.8 shows that the solvation forces oscillate with the periodicity of
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Figure 6.7. Reduced density profile of solvent particles near the surface of the solvophilic

macroparticle of dM = lOds. Dotted and solid lines represent the profiles for soft-sphere

(55) and Lennard-Jones (U) fluids, that is, Systems III and IV. respectively.
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The dashed line shows Equation (6.7) and the rest are the same as in Figure 6.7.
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Figure 6.9. Potential of solvation force corresponding to Figure 6.8. The dashed line

shows Equation (6.6a) and the rest are the same as in Figure 6.7.
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about ds because of the packing effect and are steeply repulsive in the short range

of R' < 1. 9ds' where a layer of solvent particles between the surfaces are pushed

out into the bulk. This repulsion is even stronger than the attraction pJi, given by

Equation (6.7). The potentials of wso1v shown in Figure 6.9 suggest that the net

solvation forces are repulsive from the viewpoint of free energy and the surfaces

prefer being separated from each other with interposing more than two layers of

solvent particles. This behavior is attributable to a strong affinity of the

macroparticle for solvent.

The above results for System IV agree well with those by the other studies

[Snook and van Megen, 1980; Magda et ai., 1985; Kjellander and Sarman, 1990,

1991; Sannan, 1990; Kinoshita et aI., 1996b]. It is worth noting that the sign of

solvation forces at the small separation for Systems III and IV is opposite from

that for System I as shown in Figures 6.5 and 6.8, although their solvent density

profiles are the same qualitatively as described above. This discrepancy arises

from the difference in the solvent affinity between the solvophilic and solvophobic

macroparticles.

6.5 Concluding remarks

In this chapter, the author first provides the computational technique to evaluate the

interaction force between large spheres in a fluid using MD simulations. This

method is applied to the relatively simple systems, in which a pair of spherical

structureless macroparticles, either solvophobic or solvophilic, is immersed in a

fluid of two types: an SS or an U fluid. The results agree well with those by the

other simulation and theoretical studies with respect to the solvent density profile

near the macroparticle surface and the solvation force profile between the surfaces.
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The present simulation method requires much computation time compared with

the other methods, because a large system is indispensable to allow solvent

particles to locate between the macroparticles and exchange themselves with those

in the bulk reservoir. As demonstrated in Chapter 7, however, this technique can

be easily extended to simulate the systems of the large spheres immersed in a

mixture and a complex fluid, to which the GeE simulations are hardly applicable.

In the near future, the present method will be extended to simulate long-range

potential systems with the advance of computational power.
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7
Surface Forces in Complex Fluids

7.1 Introduction

The previous two chapters gave the simple description of water, oil, and surfactant

molecules and macroscopic colloidal particles (Chapter 5), and the computational

method to evaluate the interaction force between the colloidal particles in a fluid

(Chapter 6). A combination of these molecular model and evaluation method

enables us to calculate the surface force in a complex fluid composed of water, oil,

surfactants, and polymers.

Recently, Kanda et aI. [1998] measured the interaction forces between

negatively charged surfaces in water-alcohol (methanol, ethanol, and n-propanol)

mixtures using the atomic force microscopy (AFIv1) and reported as follows:

(i) The force-distanse profile is steplike in the short range of the surface

separation when the alcohol weight fraction wale is greater than 0.9. This

steplike behavior will be attributable to the vertical adsorption of alcohol

molecules on the surface, as shown in Figure 7. I(a).

(ii) The adhesion force exhibits the strong attraction at wale:::: 0.9. The magnitude

of this attraction increases with increasing molecular weight of alcohol. The

strong attraction originates possibly in the water bridging between the surfaces,

as shown in Figure 7.1(b).

These experimental results are very interesting, but insufficient and indirect to

support the mechanisms proposed in Figure 7. I.
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Figure 7.1. Schematic drawing of the structure of molecules adsorbed on the interface in

alcohol-water solutions, after Kanda et al. [1998]. (a) The change of the structure of the

adsorbed layer with alcohol concentration. (b) The proposed model for the attractive force

at Wale = 0.9, which is caused by the water bridging between surfaces in the alcohol-rich

medium.
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The aim of this chapter is to elucidate the origin of the strong adhesion force

between the hydrophilic surfaces in alcohol-water mixtures. Using the above

simulation method, the author investigates systematically the interaction forces

between smooth hydrophilic macroparticles in alcohol-water mixtures and

presents the following results:

(i) Structure of the solution near the macroparticle surface.

(ii) Force-distance profile between the macroparticles.

(iii) Adhesion force as a function of the alcohol concentration.

These simulation results are discussed in detail and compared with the

experimental results by AFM [Kanda et ai., 1998]. The author emphasizes that

application of the simulation method employed is not restricted to the present

system.

7.2 Molecular models

7.2.1 Alcohol-water mixtures

The simple models of water and alcohol molecules are illustrated in Figure 7.2: a

water molecule is represented by one w particle; and two types of amphiphiles are

represented by ht and ht3 , which are different in hydrophobic chain length but the

same in hydrophilic headgroup. One can consider ht and ht3 as the coarse models

of methanol and n-propanol, respectively. Note that alcohol molecules are

amphiphilic. The particles w, h, and t interact each other in the same way as

described in Section 5.2.1, but the neighboring particles in the amphiphile are

connected together by Equation (5.1) with t = ds and k = 200e/d/ The

thermodynamic state of an arnphiphile-water mixture is p' =pd/ =0.7 and T =
kBTlfs = 1. O. The average separation of the connected particles is found to be
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Figure 7.2. Illustration of the simple

models of water and amphiphile

(alcohol) molecules. Symbols w, h,

and t denote waterlike, headlike, and

taillike particles, respectively. Two

amphiphiles used are displayed.
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Figure 7.3. (a) Schematic of the macropartide. (b) Particle-macroparticle potential

energy, as a function of the distance from the surface r' (= r - rM)' The macropartic1e is

composed of Lennard-Jones particles, which are uniformly located on the spherical surface

of radius r M = 5ds at density P,.m =2-1"/ds' and in the inner sphere of radius rMIn (= rM - !!.r)

at density P'ol = lids', where !!.r = P,.m1p,·ol = 2-"ds (see the text).
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1.06ds in the present systems.

7.2.2 Hydrophilic macroparticle

Suppose that a macroparticle of diameter dM = lOds (= 2rM ) is composed of U

particles, as shown in Figure 7. 3(a); that is, the U particles are uniformly located

on the spherical surface of radius rM at surface density P
surf

= 2- 113/ds
2 and in the

inner sphere of radius rM
in (= rM - !1r) at volume density Pval = lIds

3
, where !1r =

P,ur!Pvol = 2- 113ds' The particle-macroparticle potential is derived after the

analytical calculation (see Appendix B):

+ TCPvo{i;r~ES{_1[8(~)9_ds(~)B]
3r 30 r ~ r,n r Ln r _ r,n

M M M

where r is the center-to-center separation between the particle and macroparticle.

On the right-hand side of Equation (7.1), the first and second terms indicate the

interactions of a particle with the outermost surface and the inner sphere of a

macroparticle, respectively. Figure 7.3(b) shows the potential energy given by

Equation (7.1), whose profile is similar to that by Equation (6.2b) as shown in

Figure 6.2. The potential has a minimum of -2.72Es at r' = O.992ds' where r'

indicates the distance from the macroparticle surface, r- rM•

To represent a hydrophilic macroparticle, Equation (7.1) is truncated and

shifted using Equation (6.2a) with cutoff distances of RM/U1 = 5ds and O.992ds·

The interaction between particle j and macroparticle M includes the repulsive and

attractive forces using RMt1 = 5ds' when they are of the same kind; otherwise,
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TABLE 7.1: Systems of constrained MD simulations

Syslem Fluid a X b Macropartic1e pair Diameler 4.1 Box length LA

I w 0.00 Hydrophilic lads 53.8ds

II hlJ 1.00 Hydrophilic lads 53.8ds

III hl 1.00 Hydrophilic lads 53.84,

IV hlrW 0.7()-(J.98 Hydrophilic \Ods 53.8ds

V hl-w 0.5()-(J.95 Hydrophilic \Ods 53.8ds

a The lolal number of particles N is 108,000 and lhe thermodynamic stale is p' = rxJs3 = 0.7 and

1" = kBTlt:s = 1.0.

b Volume fraclion of amphiphiles in a fluid; that is, XA = n';"CNA/N, where NAocnotcs the number

of amphiphiles wilh n",< sites.

their interaction is completely repulsive using R Mt 1 = 0.992ds.

The direct macroparticle-macroparticle interaction is not considered here (i. e.,

plir(R) == 0), although it is described by Equation (6.7) approximately. This

treatment is reasonable and hardly influences the results presented below, because

the interaction between the macroparticles is almost attributable to the interaction

caused by the fluid and the direct interaction is not significant, as described in

Section 6.4.

7.3 Constrained molecular dynamics simulations

Table 7.1 shows five systems employed, where a pair of hydrophilic

macroparticles is immersed in water (I), an amphiphilic liquid of ht.J or ht (II, III),

or an amphiphile-water mixture (IV, V). The method and procedure for the

constrained MD simulation are almost the same as explained in Sections 6.3.1 and

6.3.2, respectively. The main different points are described below.
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7.3.1 Methods

The systems are composed of two macroparticles of dM = lOds and 108,000

particles in a cubic cell with three-dimensional periodicity. The length of the cubic

cell is selected to be 53.8ds such that the density of the bulk fluid p' is 0.7. The

temperature of the fluid is kept at 1 = 1. 0, using the Berendsen's heat bath

method with a time constant of 17-= 0.928To [Berendsen etal., 1984], where 1U =

ds(msIEs)If2. A time step of I1t = O.00464To is used, whose value is the same as in

Chapters 5 and 6.

7.3.2 Preparation 0 f dense amphiphilic liquids

When the fluid employed is a simple fluid, it is easy to prepare an equilibrated

sample starting from an arbitrary configuration (e. g., the face-centered-cubic

lattice). This method can not be applied to a dense complex fluid with chain

molecules. For this reason, the modified technique was taken in Section 5.2.5.

But the more sophisticated method is presented below, which is similar to the

method proposed by McKechnie et at. [1992; Clarke, 1995].

1) Pure amphiphilic liquids

First of all, a pure amphiphile fluid is considered, in which the amphiphile consists

of fl sitc particle sites and the number of the amphiphiles employed is NA' The

method for the sample preparation has three steps:

(I) An initial set of coordinates is generated for all the sites of amphiphiles, where

the total number of particles N is equal to flsi1cNA"

(II) These initial configurations are relaxed by a short simulation, but the

amphiphiles are treated as chains composed of soft-spheres.

(III)After the chains are replaced by the amphiphiles, the configurations are

equilibrated sufficiently by the successive long simulation.

For the sake of convenience, the sites in a linear amphiphile are numbered 1, ... ,
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nsile from the end h to the other end t.

Step I. A pair of macroparticles C and D is positioned at a given separation on a

diagonal line of the cell. Mter that, the position of the site 1 in an amphiphile is

determined at random and then the rest sites 2, "', l1si1c are generated following the

line from the site 1 with the random direction; these sites are placed in the space

excluding the macroparticle regions and the separations between the neighboring

sites are set to be l.Ods' The same procedure is repeated such that N A amphiphiles

are constructed. Thus, all excluded volume effects are ignored except the space of

macroparticles. This will lead to a large number of overlaps between the particle

sites.

Step II. In order to implement the stable computation, one has to gently

introduce the excluded volume effects into the amphiphile sites. For this reason, all

the sites are treated as soft-spheres using Equation (5.2) with R;/Ul =2 116ds. The

interaction force between these soft-spheres is constrained to be a constant value of

P' only when they are within a critical separation R" [McKechnie et ai., 1992;

Clarke, 1995]:

_ du~(r) = FU (= _d¢JK') )
= for r ~ R".

dr dr

The modified form of the shifted Lennard-Jones potential is then

(7.2)

(7.3)

where RU must be sufficiently small such that soft-spheres are hardly within this

separation after the short relaxation, but not so small that the large value of P'

causes the unstable computation.

The macropartides are also treated as large soft-spheres. The interaction
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between these macroparticle and a particle is set to be completely repulsive using

Equations (6.2a) and (7.1) with RMt l =0.992ds.

The short relaxation is performed using Equation (7.3) as follows. The value

of R" is decreased from 0.9ds to 0.7ds for 5 x leY time steps using I1t =0.004647:0 ,

The strong spring of k = 1, OOOEslds
2 is used such that no bond connecting the sites

is broken during the introduction process of the excluded volume. The temperature

is kept at r = 1.0 by scaling the particle velocity at each step to remove a large

amount of the thermal energy released. Note that the scaling at every step

corresponds to the use of the heat bath with 17 =0.00464ro (= I1t).

Step III. After the above short relaxation, all the chains of soft-spheres are

treated as the amphiphiles with k =200Es/ds
2 and the large soft-spheres are treated

as the hydrophilic macroparticles. The subsequent relaxation of the amphiphilic

liquids, ht and h1:J, is performed for 2.5 x 104 and 6 x 104 time steps, respectively.

2) Amphiphile-water mixtures

When an amphiphile-water mixture is simulated, all the sites in a specific number

of amphiphiles are replaced by w particles using the equilibrated sample of a pure

amphiphilic liquid, such that the desired number, N w' of w particles are generated,

where N w + nsi,cNA =N. Thereafter, the system is sufficiently equilibrated over 1

x 105--4 X 105 time steps.

7.3.3 Simulation procedures

1) Force-distance profile

The nearest separation between macroparticles, R' =R - dw ranges from 1. Ods to

6.0-8.0ds with increments of O.Ids and O.2ds. In each system, a series of

constrained MD simulations are performed as follows:

(i) The separation between macroparticles C and D is chosen to be the largest

value of R' and the equilibrated fluid is prepared as described in Section 7.3.2.
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(ii) The instantaneous forces of F cs and F DS are computed during 6 x 104~8 X 104

time steps to obtain the force polveR) using Equation (6.4).

(iii) Then, external forces are assigned to the macroparticles along the C-D line for

5 x IcY time steps to reduce the C-D separation by O.lds or 0.2ds'

(iv) For equilibration of the fluid around the macropartic1es, the system is allowed

to evolve for another 5 x 1cY-2.5 x 104 time steps, keeping the new C-D

separation.

Repeating the procedure from (ii) to (iv), one can obtain the force-distance profile.

This profile is evaluated for Systems I-III and for Systems IV and V of X A =0.90.

2) Adhesion force

The force profile exhibits the maximum attraction at the surface separation of R' ;:::

2ds' as is shown in Section 7.4.3. The adhesion forces in Systems IV and V of

various concentrations of X A are computed. The simulation procedure is the same

as described above, but the total number of the simulation steps exceeds 2 x 105
.

7.4 Results and discussion

In Sections 7.4.1 to 7.4.3, Systems I-V are investigated mainly in terms of (i) the

amphiphile and water densities near the macroparticle surface, gMA and gMW' and

(ii) the interaction force between the surfaces, F MM (= polv). Section 7.4.4 deals

with the problem (iii) how the adhesion force is influenced by the concentration

and molecular architecture of amphiphiles.

7.4.1 Surface force in pure water

Figures 7.4 and 7.5 show the density profile of waterlike particles near the

hydrophilic surface and the interaction force between the surfaces, respectively.
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Figure 7.4. Reduced density profile of waterlike particles near the surface of the

hydrophilic macroparticle in System I.
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Figure 7.5. Interaction force between the hydrophilic macroparticles in System I.
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The dense water layers are formed next to the surface. Accordingly the surface

force oscillates with the periodicity of about a water diameter and is steeply

repulsive at the smail separation. The similar behavior is observed in Figures 6.7

and 6.8, where the U solvent used is more fluidlike (p' = 0.5925 and 1 = 1.2)

and the solvent-macroparticle interaction is stronger (compare Figures 6.2 and

7.3(b)).

7 .4.2 Surface forces in pure amphiphilic liquids

1) Pure h4 solution

Density profile. Figure 7.6 shows the density profiles of the center-of-mass

(c.o.m.) and sites 1-4 of amphiphiles near the hydrophilic surface. The profiles of

sites 1-4 have a peak at r' = 0.99ds' 1. 96ds' 2. 84ds' and 3.63ds' respectively,

whose neighboring gaps are roughly equal to the average bond length of 1.06ds;

hence, arnphiphiles are adsorbed almost vertically on the surface with their heads

and tails pointing toward and away from the surface, respectively. This vertical

adsorption of arnphiphiIes agree well with the adsorption model by Kanda et ai.

[19981 (see Figure 7. 1(a)). The profiles of sites 1-4 have another peak at r' =
5.56ds• 4.53ds, 3. 86ds' and 3.01ds' respectively. whose order is opposite to that

in the above case; therefore, arnphiphiles are adsorbed on the first layer of

arnphiphiles, pointing their tails toward the layer, to form an arnphiphile bilayer.

This bilayer formation is explained also by two peaks of the c.o.m. profile.

The average thickness of the bilayer, HI' is defined as the separation between

two major peaks of the site-l profile plus ds which represents the size of two

hemispheres of h particles. HI is evaluated to be 5.6ds. It is worth noting that the

4th sites of arnphiphiles in the second layer, at r' =3.01ds• are located closer to the

surface than those in the first layer, at r' = 3.63ds' This indicates that the

amphiphiles in the second layer penetrate into those in the first layer.
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Figure 7.6. Reduced density profile of amphiphile molecules near the surface of the

hydrophilic macroparticle in System II.
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Figure 7.7. Interaction force between the hydrophilic macroparticles in System II.
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Force-dis tance profile. The interaction force between the hydrophilic

macroparticles across arnphiphiles is shown in Figure 7.7. The force is strongly

attractive around R' =6.8ds, but becomes repulsive at R' :::::: 5.9ds in which the

well-ordered bilayer is formed between the surfaces. The latter distance is referred

to as the "stable separation" in this chapter. The thickness of the stable film, H" is

defined as the stable separation minus ds which represents the net width excluded

by two surfaces. The value of H 2 = 4.9ds is smaller than that of HI = 5.6ds•

indicating that the tail chains of arnphiphiles in one layer enter deeply into the other

layer, compared with the case of the single surface. This behavior is attributable to

the presence of the second surface.

When the surfaces approach closer, the strong repulsion occurs because of the

steric hindrance between the tails of arnphiphiles. The clear steplike force curve as

in the AFM measurements [Kanda et aI., 1998] is not found in Figure 7.7, despite

of the agreement in the vertical adsorption of arnphiphiles on the surface. This is

probably because the amphiphiles used are flexible as pointed out in Section 5.2. 1.

Note that the force-distance profile is not oscillatory within the range of R' ~ 8ds.

2) Pure ht solution

Density profile. Figures 7.8 shows that the site profile has two major peaks

at r' = O.99ds and 3. 91ds for site 1 and at r' = 1.94ds and 2. 84ds for site 2. These

peaks appear in the same way as described in the case of the pure h~ solution. The

c. o. m. profile has two peaks at r' = l.44ds and 3. 24ds. These results indicate that

an amphiphile bilayer with a thickness of HI =3.9ds is formed at the surface.

Force-distance profile. Figure 7.9 shows that the steric repulsion occurs at

the short separation and is weak in strength, compared with that for ht3 shown in

Figure 6. This behavior is attributable to a shorter tail of ht than that of ht3 , The

value of H 2 is evaluated to be 3.3ds and smaller than that of HI = 3.9ds' This

result is similar to that in the case of h~ as described above. In the range of R' <
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Figure 7.8. Same as in Figure 7.6 but in System III.
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Figure 7.9. Same as in Figure 7.7 but in System III.
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4ds' the force oscillates with the periodicity of ds• because the ht dumbbells form a

molecularly-ordered film between the surfaces.

7.4.3 Surface forces in amphiphile-water mixtures

1) h~ solution of 90 vol %

Density profile. The ht3 solution of X A = 0.9 containing 10 vol % water is

employed. Figure 7.10 displays the density profiles of arnphiphile and water

molecules near the surface. The arnphiphile profile is similar to that for X A = 1

shown in Figure 7.6, indicating that the amphiphile bilayer is formed at the surface

even in the presence of water. Water molecules are remarkably concentrated next

to the surface and also located around the point of r' = 6.8ds' which is about ds

away from the peak of the site-I density at r' = 5.7ds; however, they hardly exist

in the region of r' = 2.2-5. Ods. These results suggest that water molecules are

excluded from the hydrophobic interior of the bilayer and located near the

hydrophilic outer-surfaces of the bilayer.

For an arnphiphile-water mixture. HI is defined as the separation between two

major peaks of the water profile plus ds' The value of HI represents the average

thickness of a bilayer of hydrated arnphiphiles and is evaluated to be 6.8ds' It is

worth noting that the c. o. m.• site-I, and site-2 profiles have a shoulder at the point

about ds away from the first peak next to the surface, although no shoulder is

observed in Figure 7.6. This indicates that a specific number of amphiphiles are

adsorbed vertically on the surface, interposing a water molecule between their

heads and the surface, as shown in the inset of Figure 7.IO(b). This solvent­

separated adsorption of amphiphiles was not expected by Kanda et ai. [1998] as in

Figure 7.1 (a).

The number ratio of water and arnphiphile molecules adsorbed on the surface,

PW/A
surf

, is roughly calculated using the values of the first maxima of water and
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Figure 7.10. Reduced density profile of amphiphile and water molecules near the surface

of the hydrophilic macroparticle in System IV of XA =0.90.
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amphiphile profiles:

P
surf (l st maximum of gMW) bulk

= P
W/A (1 . f f . 1) W/A!st maxImum 0 gMA or site

P
bu1k _ I - X A
W/A - ,

X Alnsile

(7.4a)

(7.4b)

where PW/AbUlk represents the water/amphiphile ratio in the bulk. The values of

PW/Asurf and PWI/
u1k are evaluated to be 819 and 4/9, respectively, in which the

absolute number of amphiphiles on the surface is different from that in the bulk.

These values manifest that water molecules are adsorbed on the surface almost as

many as amphiphiles, although the ratio in the bulk PWI/ulk is less than 112. This

behavior indicates that the medium-averaged affinity of the surface for the w

particle prevails against that for the h~ amphiphile, while in the absence of the

medium these affinities are the same as expected from the particle-macroparticle

interactions.

Force-distance profile. The force-distance profile of X A = 0.90 is shown in

Figure 7.11, where the profiles in pure liquids of water (XA = 0) and amphiphile

(X A = 1) are displayed for comparison. The profile of X A = 0.90 is attractive

around R' =7.2dS ! but repulsive in the region of R' =4.4-6.3ds' This behavior is

similar to that in the profile of X A = 1. The stable separation is about 6. 3ds and the

value of Hz is evaluated to be 5.3ds' which is smaller than that of HI = 6.8ds.

The point to note in Figure 7.11 is that the surface force drops steeply at R' =

4.4ds and becomes attractive at R' =3.5ds' Why the force changes suddenly? To

answer the question, the author calculates the densities of water and amphiphile

molecules near the macroparticle pair for the separations of R' =4. Ods and 4.4ds

and displays the contour maps in Figures 7.12 and 7.13. Figure 7.12 shows that

amphiphiles between the macroparticles are pushed out into the bulk and water

molecules enter to bridge the gap between the surfaces instead. This behavior is a
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Figure 7.11. Interaction force between the hydrophilic macroparticles in System IV of XA

= 0.90. The inset represents the net force caused by the water bridging between the

macroparticle surfaces (see the text).
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liquid-liquid phase separation and attributable to the size of the h~ amphiphile

larger than that of the w particle. No similar behavior is observed in Figure 7.13,

where the surface distance is increased by only OAds. These results are the

satisfactory evidence for the prediction that the attractive force at wale = 0.9 is

caused by the water bridging between surfaces, as pictured in Figure 7.1(b)

[Kanda et al., 1998].

Thus, the critical feature of the surface force in Figure 7. 11 is closely related to

the nature of the liquid-liquid phase separation between the surfaces. The water

bridge appears at R' ::::: 4.2ds• by which the minimum length of this bridge is

evaluated to be about 3.2ds. Remember that the water layer on the surface has a

thickness of ds only, as in Figure 7.10(b). These results indicate that the water

bridge appears before the surfaces with a water layer make the direct layer-to-Iayer

contact.

Another point to note in Figure 7.11 is as follows: the surface force in the

range of R' < 3.7ds oscillates with the periodicity of ds• because of the structural

hindrance between the surfaces across water molecules; however, this force is

more attractive than that in pure water. One can roughly evaluate the net bridging

force pr by the following expression:

(7.5)

where FMM(R'; XA) represents the surface force at separation R' in a solution of X A'

The result shown in the inset of Figure 7.11 reveals that pr becomes more

attractive as the surfaces approach closer. This feature reminds the author of the

bridging-force profile given by the analytical expression [lsraelachvili, 1991,

Equation (15.34)]. Main contributions to the strong attraction are considered to be:

(i) the Laplace pressure, resulting from the difference between the inner and outer

pressures of the concave meniscus.

(ii) the force arising from the tangent component of the interfacial tension.
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(iii) the difference in the osmotic pressures between the bulk regIon and the

confined water-rich region, that is, a depletion interaction.

Unfortunately, it is difficult to evaluate these quantities appropriately. because

there is no suitable expression for them.

The surface force becomes most attractive at R' ::: 2. Ids, where the surfaces

are not in contact with each other, but interpose one layer of water molecules. This

feature is different from that in Figure 7. 1(b). The maximum attraction is

investigated in Section 7.4.4 extensively.

2) ht solution of 90 vol %

Density profile. The water and amphiphile densities near the surface are

displayed in Figure 7.14 and the following features are drawn:

(i) A hydrated amphiphile bilayer with a thickness of HI = 5.0ds is formed near

the single surface.

(ii) Water molecules are not excluded from the hydrophobic interior of the bilayer

because of a short tail of the ht amphiphile.

(iii) Water molecules are concentrated next to the surface, in which the number

ratio of PW/Asurf =7.3/9 is about four times lager than that of PW/Abulk =2/9.

Force-distance profile. The force profile is shown in Figure 7.15 and the

characteristics are as follows:

(i) The stable separation is about 4.6ds• by which the value of H 2 is evaluated to

be 3.6ds and smaller than that of HI == 5.0ds'

(ii) The surface force drops at R' == 3.5ds' but this decrease is even less crucial

than that for h!:J shown in Figure 7.11.

(iii) The force profile in the range of R' =2.4-3.5ds is almost identical to that for

pure water.

(iv) The bridging force pt becomes attractive in the short range and is weak in

strength compared with that for h!:J shown in the inset of Figure 7. 11.
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(v) The surface force becomes most attractive at R' =2.0ds'

Careful observation of the contour maps manifests that the water bridging occurs

at R' =3.5ds' but the confined film does not completely separate into two phases

until R' ::5 3. Ids' This non-simultaneous behavior of the bridging and the phase

separation explains the less degree of the force dropping.

7.4.4 Adhesion forces

The surface force in an arnphiphile-water mixture becomes most attractive at R' :::::

2ds' as shown in Figures 7.11 and 7.15. This force is denoted by the adhesion

force, -pd. The values of -pd at various concentrations of X A are computed as

given in Figure 7.16. The adhesion force has a maximum at X A =0.90 for h~ and

at X A = 0.85 for hl As an arnphiphile has a longer hydrophobic tail, the adhesion

force becomes maximum at a larger value of X A and the magnitude of this

maximum is larger. These results agree well with those by the AFM measurements

[Kanda et at., 1998].

For investigation of the mechanism of the adhesion, the attention is focused on

the water adsorbed near the macroparticle pair. The contour maps at around the

maximum of -pd are displayed in Figure 7.17 for h~ and Figure 7.18 for ht The

water density near the macroparticles is reduced from panels (a) to (c) of Figures

7.17 and 7.18, where panel (b) corresponds to the water density at a maximum of

-pd. This indicates that the adhesion force becomes maximal when the

macroparticle pair is moderately wetted by water. Comparison in Figures 7. 17 and

7.18 manifests that the interface between the water meniscus and the amphiphiles

of h1.3 is clearer than that for ht This behavior is expected from comparison in

Figures 7.10 and 7.14. These results explain the stronger adhesion force in the

h1.3-w mixture.
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7.5 Concluding remarks

In this chapter, the interaction forces between hydrophilic macroparticJes in an

alcohol-water mixture are investigated systematically using the simulation methods

given in Chapters 5 and 6. As the results, the following conclusions are drawn.

Pure amphiphilic liquids:

(i) Amphiphile molecules are adsorbed vertically on the hydrophilic surface to

form an amphiphile bilayer.

(ii) The surface force is strongly repulsive at the separation less than about the

thickness of the bilayer.

Amphiphile-water mixtures:

(iii) In the presence of 10 vol % water, a bilayer of hydrated amphiphiles is

formed near the hydrophilic surface, where waterlike particles are remarkably

concentrated.

(iv) When the surfaces approach each other, their interaction force is repulsive,

whose profile is similar to that in a pure amphiphilic liquid. However, the

surface force becomes attractive suddenly at the separation less than the length

of the amphiphile molecule. This behavior is attributable to the liquid-liquid

phase separation between the surfaces, in which amphiphiles are pushed out

into the bulk and waterlike particles enter to bridge the gap between the

surfaces instead.

(v) The adhesion force has a maximum at a higher concentration of X A (::::: 0.9)

and the magnitude of this maximum is larger, as an amphiphile has a longer

hydrophobic tail. The adhesion is largely influenced by the wetting degree of

the macroparticle pair and the sharpness of the interface between the water

meniscus and the amphiphile. The features of the wetting degree and the

interface sharpness depend on the concentration and molecular architecture of
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amphiphiles.

(vi) The above results agree, at least qualitatively, with those by the AFM

measurements [Kanda et al., 1998]. This demonstrates that the present

simulation method is a good tool to investigate the surface forces in a complex

fluid.
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8
General Conclusion

In this dissertation, the microscopic features of the liquid/solid interfaces and the

interaction forces between the macroscopic solid surfaces are investigated

systematically using MD simulations, in which the attention is focused on the

hydrophilic and hydrophobic properties of molecules.

Chapters 2 and 3 deal with water molecules near the hydrocarbon and NaCl­

crystal surfaces, respectively I which are typical hydrophobic and hydrophilic

surfaces. About three strongly adsorbed layers of water molecules are formed near

the hydrophilic surface, where the diffusivity of water molecules is remarkably

reduced. At the hydrophobic interface the icelike structure is formed, but water

molecules near the surface display the high diffusivity to exchange themselves

with those in the bulk, which indicates that the icelike structure induced by the

hydrophobic surface is not necessarily stable.

In Chapter 4, the adsorption of Na+ and cr ions onto the NaCI(OOl) and

NaCI(Oll) surfaces in water are examined in terms of the free energy profiles for

adsorption. It is found that the ions are adsorbed on the NaCI surfaces either

directly (i. e., direct adsorption) or with a water molecule interposed between the

surface and themselves (i.e., solvent-separated adsorption). It is also demonstrated

that the adsorption of the ions largely depends not only on the size of the ions but

also on the lattice arrangement of the surfaces.

In Chapter 5, the adsorption of surfactants onto the hydrophilic and

hydrophobic surfaces in water is investigated. In order to make the simulation
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possible within the limits of the present computational power, the interaction

potentials of water, oil, and surfactant molecules and solid surfaces are simplified

on the basis of the results obtained in Chapters 2 and 3; that is, the interactions are

characterized by only the hydrophilicity and hydrophobicity. Simulating with this

simple model, the detailed mechanism of the adsorption and aggregation of

surfactants on the surface is discovered for the first time. This mechanism has not

been expected and can not be investigated by the atomistic simulation because of

the lack of computational power.

In Chapter 6, the new computational technique to evaluate the interaction

force between macroscopic colloidal particles in a fluid is proposed. This method

is applied to calculate the surface forces in fluids composed of simple solvent

particles. It is found that the present method successfully derives the structural

forces, which are caused by the adsorbed layers of solvent particles near the

sutface. It is also clarified that the structural forces depend largely on the

properties of the solvent and the surface.

In Chapter 7, the interaction forces between hydrophilic sutfaces in aIcohol­

water mixtures are calculated, using a combination of the molecular model and the

evaluation method developed in Chapters 6 and 7, respectively. It is found that the

liquid mixture, which exists stably as a single phase in the bulk, separates into two

phases of water and alcohol near the surfaces when the surfaces approach at the

distance less than the length of the alcohol molecule. Then, the strong attraction

acts between the surfaces because of the water bridging. This attraction becomes

maximum at a higher concentration of the alcohol (::::: 90 volume %) and the

magnitude of this maximum increases as the alcohol molecule has a longer

hydrophobic tail. These results agree, at least qualitatively, with those by the

recent AFM measurements. This demonstrates the reliability and availability of the

present simulation method.
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All these add up to the following conclusions:

(i) It is clarified systematically that the microscopic nature of the hydrophilicity

and hydrophobicity of molecules largely influences the feature of a solidfliquid

interface and the macroscopic property of the interaction force between the

surfaces.

(ii) This dissertation gives a methodology to investigate the macroscopic

properties of a colloidal dispersion system using the molecular information.

The author expects that this study can give the principles to control precisely the

production process of particulate materials.

This dissertation deals mainly with the equilibrium states of solidfliquid

interfaces and surface forces. In actual processes, however, the contribution of a

non-equilibrium field becomes important in addition to these equilibrium features.

Fortunately, the MD method is a good tool to investigate the influence of non­

equilibrium fields such as mass flow and heat flow. In the near future, the author

will start non-equilibrium :MD (NEMD) simulations to elucidate the solid/liquid

interface and the surface force in non-equilibrium states and the further problems

lying in a colloidal dispersion system.
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Appendix A
Electrostatic Analogy for a Simple Model System

The simple models for an oil/water/surfactant system and a solid wall are given in

Sections 5.2. 1 to 5.2.3. The efficiency and reliability of these models are

confirmed in Section 5.3. Then, how dose the simple model system correspond to

a real Coulomb system? To answer the question, Wu et ai. [1992] developed a

concept of frustrating charges and created a theory of surfactant self-assembly.

Here, a simple consideration of the surfactant-wall interactions is given.

The adsorption of an ionic surfactant on a hydrophilic surface is driven by the

strong electrostatic head-surface interaction, which corresponds to the H'-wall

interaction in the simple model system, as described in Section 5.2.3. The rate of

the adsorption depends on the strength of this interaction. Hence, the strength of

the H '-wall interaction is determined by the following consideration.

Suppose that a water molecule and a surfactant headgroup are represented by

the hard-spheres of 0.28 nm diameter with a point dipole of I1wa,cr = 1.85 Debye

and a point charge of qhe>d = +e, respectively, and a hard wall has charge sites of

q . = -e. When the water and the head interact with the char!!e site, their binding
$Lle ....., .......

energies are estimated as follows (see also the literature by Israelachvili [1991 J):

I1watc,q'i'ccos8

41tEor2

Qhcadqsitc

41tEOr

=-1.1 X 10-19 J

=-8.2 x 10-1
9 J

for water-site,

for head~site,

(A.l)

(A.2)

where the dipole orientation of cos 8 =-1 and the separation of r = 0.28 nm are
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used. The head-site interaction is 7.5 times lager than the water-site interaction.

On the basis of this res ult, the energy parameter for H'-wall interaction is

chosen to be ten times stronger than that for w-wall interaction. Although the

above calculation is not completely correlated with the simple model system, the

author thinks that the model used is plausible as far as the possible mechanism of

the adsorption and aggregation of surfactants on the surface is concerned.

-188-



Appendix B
Potentials for Particle-Macroparticle Interaction

The potential function for particle-macroparticle interaction is derived following

Hamaker [1937], who presented the van der Waals attraction between two

macroparticles.

The particle-particle interaction is given by the Lennard-Jones (U) potential:

u(r) = 4£ [( ~)' 2 - (~ YJ . (B. I)

Consider a sphere of radius rM and center 0 and a particle P outside at a distance

OP = r, as shown in Figure 8, 1. Two types of spheres are considered:

(I) the sphere containing the U particles uniformly at volume density Pvol'

(II) the hollow sphere whose surface is uniformly composed of the U particles at

surface density Psun'

Sphere I. The sphere around a will cut out from a second sphere of radius 1

around P a surface ABC, whose area is then

1
0 0

Surface (ABC) = 0 (2nl sine) ide =2ni
2
(1 - cos eo) ,

where 80 is given by

r~ = r2 + [2 - 2ri cos8 .

Equation (8,2) yields

Surface (ABC) = ~[ [r~ - (r -ll] .
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dl

Figure B.1. Schematic of a particle and a macroparticle to derive potential functions for

particle-macroparticle interaction.
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The potential energy of an U particle at P is written down as

up(r) = 1m

., Pval u(l) . ~l [r~ - (1' _l)2] dl.
r-r~l

(B.5)

(B.6)

Carrying out the integration we get u'p as a function of r :

() Jr,Pvala4 C { 1 [ 8rMa8 81'Ma8 a 8 a 8
]

up l' = - + + - ---
3r 30 (r + r M)9 (r - r M)9 (r + r M)8 (1' - r M)8

[
2rMa2 2rMa

2
0

2
0

2
]}

- 3+ 3+ 2- 2'
(r+rM ) (r-rM ) (r+rM ) (r-r

M
)

When the sphere is sufficiently large (rM > 40), Equation (B.6) is approximated by

(B.7)

If the sphere becomes infinitely large (rM = 00) and the distance of P from the

sphere sutface, r - rw is kept to be constant z, Equations (8.6) and (B. 7) are

found to be

u (z) =2rcPval
a3E[2..( a)9 _(a )3] ,

p 3 15 z z
(B.8)

which is identical to the (9-3) potential for particle-wall interaction.

Sphere II. The surface ABC shown in Figure B. 1 has a edge circumference

with a length of 2JtrM sin¢, where ¢ is given by

f = r~ + ,.2 - 2rMr cos¢ .

Differentiating Equation (B.9) with respect to <p we get

d¢ ;= l
dl r Mr sin¢ .

-191-

(B.9)

(B.I0)



The potential energy of an U particle at P is written down as

(8.11)

where Equation (8.10) is used for transformation. Carrying out the integration we

get up as a function of r :

(B.12)

When rM > 40, Equation (8.12) is approximated by

(B.13)

If rM =00 and r- rM !!! z (= constant), Equations (B.12) and (8.13) are found to be

(8.14)

which is identical to the (1 D-4) potential for particle-wall interacti on.
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