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CHAPTER} 

INTRODUCfION 

Function of ferredoxin-NADP+ oxidoreductase in the liner photosynthetic 

electron transport system 

In the oxygenic photosynthesis, the photosynthetic reaction involves the electron now from 

H
2
0 to NADr+ and all of the electron carriers exist in chloroplasts of higher plants. Most 

electrons generated in the photosynthesis are transported to Fdox ' Fd is a Mr of 11 kDa 

protein, containing [2Fe-2S] cluster as a reaction center and interacts with a number of Fd

dependent enzymes such as FNR (EC 1.18.1.2), NiR (Ee 1.7.7.1), GOGAT (Ee 1.4.7.1), 

sulfite reductase (Ee 1.8.7.1), Fd-thioredoxin reductase (EC 1.18.1.-) and stearoyl ACP 

desaturase (EC 1.14.99.6) as the central molecule for distributing electrons. 

FNR is a monomeric Oavoenzyme with Mr of 35 kDa which contains a single, 

noncovalently bound FAD as a prosthetic group (Sheriff et al. 1980). FNR catalyzes the final 

step of the liner photosynthetic electron transport system by mediating primarily the electron 

transfer from Fdn:d to NADr+ with formation of NADPH necessary for biosynthetic pathways. 

For the production of NADPH, excited electrons from PS I reduce the one electron carrying 

protein Fd (Shin and Amon 1965). FNR acts as a transducer between one electron carriers 

(Fd) and two electron acceptors (NADP+), exploiting the capacity of its prosthetic group (FAD) 

to be reduced to the semiquinone level by the first electron and then sequentially reduced to the 

dihydroquinone by the second electron, thus pairing the electrons for hydride transfer to 

NADr+ (Carrillo and Vallejos 1982; Batie and Kamin 1984): 

2Fd red + NADP+ + H+ -- 2Fd
oll 

+ NADPH 

In addition to this role in NADP+ photoreduction, FNR is able to catalyze in vitro the 

oxidation of NADPH by suitable electron acceptors like potassium ferricyanide (diaphorase 

activity) or Fd
oll 

couple to cytochrome c reduction. 

Function of ferredoxin- N AD P+ oxidoreductase in the cyclic photosyn thetic 

electron transport system 

Photooxidation of cytoChrome b6 which is a specific component of cyclic electron flow (Bohme 

and Cramer 1972) appears to involve a number of components common to both cyclic and 
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linear electron transport (Bbhme 1975). Purified FNR showed NADPH-cytochromef 

reducta.<;e activity (Zanetti and Forti 1969) and moreover, addillon of an antibody against FNR 

inhibited cyclic electron photophosphorylation in intact chloropla<;Lo;; (Forti and Zanetti 1969). 

The studies using antibodies against spinach Fd and FNR ao;; specific inhibitors of electron 

transfer reactions indicated that Fd antibody inhibited cytochrome b6 photoreduction, but the 

FNR antibody had no effect on cytochrome b6 reduction (Bbhme 1977). These resulL<; indicate 

that FNR is likely to involve in cyclic electron now around PS I and points to a central role for 

the enzyme in the modulation photosynthetic electron now. Therefore, FNR may playa key 

role in the regulation of cyclic/linear electron now and then modIfy the NADPHJATP ratio in 

chloroplasts (Mills et al. 1979). 

Relationship between ferredoxin-NADP+ oxidoreductase and photosystem I 

FNR was believed to be bound on the stromal side of the thylakoid membrane in the vicinity of 

PS I (Bbhme 1977; Carrillo and Vallejos 1982), because FNR bound to Fd (Zanetti and Mcrati 

1987; Zanetti et aI. 1988) and represented the branching point between linear and cyclic electron 

transport. Two pools of FNR appeared to exist in vivo, a loosely bound pool which was 

easily removed from the membrane by a low salt wash and a more tightly bound pool (30-60% 

of the total enzyme) which required several extensive low salvEDT A washes and/or addition of 

detergents (e.g. 3-(3-cholamidopropyl) dimethylammonio-l-propanesul phonate) for its removal 

(Matthijs et al. 1986). Two distinct FNR pools were postulated, but at present no conclusive 

data are available demonstrating the existence of two functionally distinct FNR species in 

photosynthetic tissues. In addition, FNR is mainly located within the nonappressed stromal 

thylakoid membrane which contains most of the PS I to interact with Fd to transfer electrons for 

NADP'" reduction. 

The PS I is a membrane-bound pigment protein complex which catalyzes light

dependent electron transfer from plaslocyanin to Fd. The PS I complex of higher plants 

contains 12 different polypeptide subunits denoted PS I-A to PS I-L. The isolation of a highly 

active PS I complex from barley contained the core polypeptide, light-harvesting complex I as 

well as bound FNR. Cross-linking experiment with 3,3' -dithiobis(sulfosuccinimidyl) 

propionate and N-ethyl~3-l3-(dimethylamino)propyl]carbodiimide observed a specific 

interaction between the PS J-E subunit and FNR, suggesting that the PS I-E subunit had an 

important role in the binding of FNR to the PS I complex (Andersen et al. 1992). On the other 

hand, 20% of the total FNR was located in the appressed granallamellae (Vallon et al. 1986), 

which contain most of the PS II. 
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Transportation of ferredoxin-NADP+ oxidoreductase into chloroplasts 

FNR is encooed in nuclear genome and in common with other nuclear-encoded chloroplast 

proteins, it is synthesized in the cytoplasm as a higher molecular weight precursor and imported 

into chloroplast<; after translation. The transit peptide is processed for posttranscriptional 

regulation to the mature protein (Grossman et al. 1982). Molecular chaperones are a class of 

cellular proteins that play roles in the transport, folding and assembly of certain other 

polypeptides, but they are not components of the final oligomeric structures (Ellis 1987). The 

members of the family of Hsp70 were proposed to be molecular chaperons (Gething et at. 

1992). Recently, cDNAs encoding a homologue of Hsp70 were isolated in higher plant<; (Ko 

et aL 1992; Marshall et al. 1992). lmmunoprecipilation studies indicated that pea FNR 

imported into chloroplasts in vitro could interact with antisera raised against the homologue of 

Hsp70 from pumpkin chloroplasts and against GroEL from Escherichia coli, which was a 

bacterial homologue of Cpn60. These results suggest that homologues of Hsp70 and Cpn60 in 

chloroplast<; may sequentially assist in the maturation of newly imported FNR in an ATP 

dependent manner (Tsugeki et aI. 1993). 

ATP dependent post translational modification of ferredoxin-NADP+ 

oxidoreductase 

Protein phosphorylation of thylakoid protein is now a widely established phenomenon (Benett 

1984; Ranjeva et al. 1987). Mainly PS II associated proteins were identified as being 

phosphorylated, including light-harvesting complex II (Benett 1977), D1 and 02 (Marder et al. 

1988) and a 9-kDa protein (Hird et al. 1986). It was indicated that FNR was also 

phosphorylated by the studies incubating with [32p]ATP and purified FNR in pea leaves. 

Phosphoamino acid analysis using two dimensional electrophoresis showed that FNR could be 

phosphorylated on a Ser residue in the dark and on Ser and Thr residues in the light (Hodges et 

aI. 1990). The diaphorase activity of phosphorylated FNR was not changed with a 

preincubation ATP. Perhaps phosphorylation of FNR plays a role in the interaction between 

FNR and thylakoid membrane, but physiological function is not clear. 
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Function of specific amino acid residues and three dimensional structures of 

ferredoxin-NADp· oxidoreductase 

Many experiments using site directed mutagenesis and chemical modification have been 

reported and the results indicated that specific amino acid residues were essential for FNR 

function. 

]n higher plant, the primary structure of FNR has five Cys in the same positions and all 

of them existed as sulfhydryls (Yao et al. 1985). Spinach FNR has five Cys, four (42, 114, 

132, 137) in the FAD binding domain and one (272) in the NADP+ binding domain. The role 

of the Cys in spinach leaf FNR was investigated by site-directed mutagenesis changing each 

Cys to Ser. The results indicated that FNR-C42S mutant could not assemble as a holoenzyme. 

As for the remaining mutants, only FNR-C272S mutant showed an overall decreased catalytic 

efficiency, whereas FNR-C132S mutant had partially impaired Fd-dependent cytochrome c 

reduction activity but maintained its full diaphorase activity (Aliverti et aI. 1993). 

The location of the binding site with Fd (Zanetti et al. 1988; Jelesarov et aI. 1993), 

NADP-PPi (Porter and Kasper 1986) and NADP+ (Sheriff and Herriott 1981; Porter and 

Kasper 1986) were determined and the amino acid residues essential for FNR function were 

investigated. Chemical modification studies indicated the involvement of Arg at both the 

NADP+ and Fd binding sites of several FNR species (Zanetti et al. 1979; Bookjans and Boger 

1978). Later, the binding sites of spinach FNR for NADP+ and Fd were extensively explored 

by chemical modification and cross-linking studies. Lys-85 and/or Lys-88 were identified to 

playa key role in Fd binding as well as, in general, the N-terminal region of the spinach FNR 

(Zanetti et at. 1988). Lys-116 (Cidaria et al. 1985) and Lys-244 (Chan et al. 1985) were 

proposed to be involved in NADP+ binding. In Anabaena FNR, one Arg was reported to be 

involved in the interaction with NADP'", while a second such residue was apparently required 

for the binding with Fd (Sancho et aL 1990). 

The C-terminal region of FNR is formed by an invariant a-helixloopl ~-strand and 

culminating in a conserved Tyr. Orellano et al. (1993) investigated effect of a conserved Tyr 

by site-directed mutagenesis on pea leaf FNR. The result of the assay for cytochrome c 

reduction indicated that terminal Tyr was essential and its aromaticity was the most important 

factor to the function of the Tyr in catalysis. The presence of the phenol ring at the C-terminal 

position of wild-type reductase was important, but not an absolute requirement for enzyme 

function or FAD assembly. 

The three dimensional structure of spinach FNR was first obtained by X-ray 

crystallography only at low resolution (3.7A). It revealed that the protein was composed of 

two domains. The N-terminal half of the polypeptide chain might form the FAD binding 
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domain and the C-tenninal chain should form NADP'" binding domain (Sheriff and Henion 

1981). Ten years later, the three dImensional structure of spinach FNR was determined by X

ray diffraction at 2.6A high resolution and canied out partial refinement of the model at 20lA 

resolution (Karplus et al. 1991). The results showed that the FAD binding domain (residues 

19 to 161) had an anliparallel ~ barrel core and a single u helix for binding the pyrophosphate 

of FAD. The NADP+ binding domain (residues 162 to 314) had a central five-strand parallel ~ 

sheet and six surrounding helices. 

Purification and the amino acid sequence of ferredoxin-NADP+ oxidoreductase 

protein in photosynthetic tissues 

FNR was first purified from spinach (Shin et al. 1963; Shin 1971) and subsequently isolated 

from other higher plants as well as from eukaryotic algae (Bookjans et al. 1979) and from 

cyanobacteria (Susor et al 1966; Rowel et al 1981 ;Javier et a\. 1988). All FNRs from the 

various sources were found to contain FAD as the redox-active coenzyme. The amino acid 

sequences of the purified FNR were determined from Spirulina platensis (Yao et al. 1984) and 

spinach (Karplus et al. 1984). 

Molecular cloning of ferredoxin-NADP+ oxidoreductase cDNA and gene and 

homology of the deduced amino acid sequence 

The cDNA sequence of precursor FNR was detennined for the enzymes from spinach (Jansen 

et al. 1988), pea (Newman and Gray 1988), ice plant (Michalowski et al. 1989), Cyanophora 

paradoxa (Jakowitsch et al. 1993), Chlamydomonas rein.Jwrdtii (Kitayama et al. 1994), 

Arabidopsis thaliana (Ida et al., unpublished) and broad bean (Lax and Cary, unpublished, 

Accession No. UI4956). On the other hand, the sequence of the FNR structural gene was 

detennined directly from Anabaena sp. pee 7119 (Fillat et al. 1990; 1993), Synecchococcus 

sp. PCC 7002 (Schluchter and Bryant 1992) and Synechocystis sp. (Thor Van, unpublished, 

Accession No. X94297). 

The amino acid sequences of the isolated FNR from Spirulina platensis (Yao et al. 

1984) and spinach (Karplus et al. 1984) are found to have 55% identity. Comparison of the 

deduced amino acid sequences of FNRs shows that homology of the mature protein of higher 

plants is more than 80% identity, but homology of FNRs in higher plants to the enzymes from 

5 



eukaryotic algae and cyanobacteria is low identity (approximately 50% identity) (Sec Table 3-

I). 

Gene expression and regulation of ferredoxin-N ADp· oxidoreductase 

Little is known regarding regulation of the expression of FNR gene in photosynthetic tissues. 

Recently a genomic DNA segment encoding spinach leaf FNR including a 3.4 kb promoter 

sequence was isolated and partial nucleotide sequences of the clone (-811/+756) were 

dctcrmined. Analysis of the promoter region in GUS gene fusions in transgenic tobacco 

demonstrated that two light-responsible elements were located within the first 753 bp. The first 

light-responsible region was located within the first 118 bp upstream of the transcription 

initiation site and the other was the -220/-119 promoter fragment, which was capable of 

conferring light-dependent GUS gene expression on two different minimal promoters. The 

latter fragment bound a transacting factor In gel-shift assays, but the function of the factor are 

still unknown (Oelmtiller et al. 1993). 

Ferredoxin-NADP· oxidoreductase and ferredoxin in non photosynthetic tissues 

In photosynthetic tissues, the nitrogen assimilation enzymes such as NiR and GOG AT located 

in chloroplasts require Fd"'d as an electron donor. 

On the other hand, several investigations showed that NiR and GOGAT were located in 

nonphotosynthetic tissues as well as chloroplasts of photosynthetic tissues (Dalling et al' 1972; 

Oaks and Hirel 1985) and they were found in proplastids from tobacco cultured cell using 

methyl viologen as an electron donor (Washitani and Sato 1977a; b). 

In nonphotosynthetic tissues, the enzymes of the OPPP are located in plastids. It was 

demonstrated that the OPPP acted as the source of reductant for Fd-dependent enzymes CErnes . 

and Fowler 1979; 1983; Suzuki et at. 1985). The close relationship between nitrite reduction 

and the OPPP in pea root plastids was confirmed (Bowsher et al. 1989). However 

these enzymes could not utilize directly NADPH produced by the OPPP (Bowsher et al. 1988; 

Hucklesby et aL 1972). A key regulatory point for the relationship of them may be the energy 

intensive reduction of Fd required for NiR and GOGAT activities (Oaks and HireI1985). Oji 

et at. (1985) demonstrated that an electron carrier and a diaphorase activity (FNR activity) were 

involved in the electron transfer from NADPH to nitrite in plastids from barley roots. 
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Photosynthetic tissues / organs (leaves) 

FNR 
Photon --->PS I ~ Ferredoxin 

L 
-------; ... ~ NADPH 

Nitrite reductase (EC 1. 7. 7. 1) 
Sulfite reductase (Ee l. 8. 7. 1) 
Glutamate synthase (EC 1. 4. 7. 1) 
Thioredoxin reductase (Ee 1. 18. 1. - ) 
Stearoyl ACP desaturase (Be 1. 14. 99. 6) 
Other Fd~dependent enzymes 

Nonphotosynthetic tissues / organs (roots and embryos) 

Oxidative pentose phosphate pathway 

L NADPH FN~ Ferredoxin 

L Nitrite reductase (EC 1. 7. 7. 1) 

Sulfite reductase (EC 1. 8. 7. 1) 

Glutamate synthase (EC 1. 4. 7. 1) 

Other Fd~dependent enzymes 

Figure 1~1. Electron transfer system for Fd-dependent enzymes in higher plants. 

These results suggested that FNR in nonphotosynthetic tissues catalyzes electron transfer from 

NADPH to Fd
olt 

and Fdred acts as an electron donor to Fd~dependent enzymes (Figure 1~1) 

(Changet al. 1991; Hirasawa et al. 1990: Morigasaki et aL 1990c; 1993). This is in contrast to 

FNR in photosynthetic tissues where Fdrcd generated from PS 1 reduces NADP+ (Knaff and 

Hirasawa 1991). 

Ferredoxin in non photosynthetic tissues 

It was shown that higher plants have both tissue~specific and nonspecific Fd isoproteins in 

photosynthetic tissues and that the relative abundance of the isoproteins was regulated by light 

and stage of development (Wada et at. 1985; Green et aI. 1991). The complete amino acid 

sequences of purified Fds from roots of radish (Wada et ill. 1989) and the deduced amino acid 

sequence of a maize roOt Fd cDNA (Hase et at. 1991) have been determined and compared with 

their leaf counterparts, suggesting that they are distinct from the Fds in photosynthetic tissues. 
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It was shown that each unique Fd was present In the different tissues and its expression seemed 

to depend on developmental stage as well a<; environmental conditions (Wada et aI. 1985; 

Kimata and Hase 1989). Studies from several reports revealed that Fds of bean sprouts 

(Hirasawa et aL 1988), radish roots (Wada ct a!. 1989), mesophylJ and bundle sheath cells in 

maize leaf (Kimata and Hase 1989) and spinach roots (Morigasaki et al. 1990a) showed that the 

electron transport activity by monitoring Glu formation and physical properties such as 

absorption spectrum of root Fd were si mil ar to th ose of leaf Fd (Mori gasaki et a!. 1990a). 

Purification of ferredoxin-N ADP+ oxidoreductase from nonphotosynthetic 

tissues 

A nonphotosynthetic FNR was first purified from rice embryos (Ida and Morita 1970a; 197Gb) 

and it was demonstrated that the absorption spectrum of rice embryo FNR was different from 

that of FNR from photosynthetic tissues. 

The studies of FNRs in radish (Morigasaki el a!. 199Gb) and spinach roots (Morigasaki 

et aI. 1990a) demonstrated that the root enzymes resemble their leaf counterparts in activity, 

spectral properties and complex formation, but they differ in amino acid compositions and N

terminal sequences. FNR was also purified from tomato leaves and roots and their cytochrome 

c reduction activity and diaphorase activity were characterized. The results indicated that root 

FNR had a twice higher cytochrome c reduction activity, but a somewhat lower diaphorase 

activity than the leaf counterpart (Green el al. 1991). 

Immunotitration studies of radish root and leaf FNRs by each antiserum showed that the 

anti-root FNR antiserum effectively inhibited the activity of radish root FNR, but not that of the 

leaf enzyme and the anti-leaf FNR antiserum strongly inhibited leaf FNR. Root FNR was 

slightly inhibited by the anti-leaf FNR antiserum but only when a large amount of the antiserum 

was added. And immunoblot analysis of each FNR showed that leaf FNR was detected only 

in leaves, but it was not clear whether rool FNR was located in leaves because the anti-root 

FNR antiserum cross-reacted slightly with purified leaf FNR in radish (Morigasaki et al. 1993). 

Two FNR isoforms were purified from the first foliage leaves of mung bean (Vigna 

radiata) seedlings (lin et al. 1994). Immunoblot analysis and N-terminal amino acid sequences 

showed that one form resembles FNR purified from photosynthetic tissues of higher plants and 

the other resembled to that from nonphotosynthetic tissues. The studies suggest that leaf FNR 

is specifically expressed in leaf, whereas rool FNR is a nonspecialized form which is also 

expressed in photosynthetic tissues of young plants and disappeared from leaves when plants 
mature. 
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The nitrate assimilation systems in higher plants 

Nitrate assimilation is an energy intensi ve and highly regulated process. Nitrate exposure 

causes a rapid and transient increase in the accumulation of mRNA transcripts encoding NR 

(Melzer et al. 1989), NiR (Kramer et al. 1989), GS and GOGA T (Redinbaugh and Campbell 

1993; Crawford and Arst 1993). The primary response to nitrate include only those enzymes 

which act directly in the assimilation of nitrate into amino acids. Several other classes of 

transcript might be expected to be expressed in the primary response. For example, the rapid 

and transient accumulation of a transcript encoding a nitrate transporter in Arabidopsis exposed 

to nitrate, suggests that nitrate transporter genes might also be expressed in the primary 

response to nitrate (Tsay et aI. 1993). 

Transcription factors for nitrate induction in higher plants 

The nitrogen regulatory systems have been studied extensively in lower eukaryotes, for 

example, in Neurospora crassa and Aspergillus nidulans. 

Fungi have provided invaluable guides for studying nitrate assimilation in plants. Just 

as in microorganisms, nitrate is actively transported into plant cells via nitrate transporter (Tsay 

et a1. 1993) and reduced to nitrite by NR which is a metalloflavoenzyme containing Mo 

cofactor. Nitrite was then reduced to ammonium by NiR. Much is known about the structure, 

function and regulation of the NR and NiR structural genes and the enzymes that they encode in 

higher plants (Crawford et al. 1992; Hoff et al. 1992; Pelsy and Caboche 1992; Solomonson 

and Barber 1990). The NR and NiR genes are induced by nitrate and respond to many other 

signals including light and COl' but they do not display the classical ammonium repression seen 

to fungi. 

Recently, nitrate regulatory gene, nit-2 (a regulatory gene of N. crassa) of 

Chlamydomonas, was identified and shown to be necessary for NR gene expression and to be 

repressed itself by ammonium (Fernandez et al. 1989; Schnell and Lefebvre 1993). In higher 

plants, a DNA fragment encoding NIT2-like protein was isolated from tobacco (NicOliana 

tabaccum) by direct PCR method using zinc finger region of nit-2 gene of N. crassa as 5' and 

3' primers and subsequently, a eDNA was cloned using the fragment as a probe (Daniel-Vedele 

and Caboche 1993). The clone, named NtI1-Nt7, encoded a protein of 305 amino acid 

residues and contained a single Cys-X2-Cys-XI7-Cys-X~-Cys type zinc finger DNA binding 
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motif which was similar to the NIT2 protein. The studies of these genes shall not only advance 

the understanding of nitrate assimilation, but also provide useful tools for genetic engineering in 

plants. 

As a first step toward st~dies of nonphotosynthetic FNR eDNA, I report here the isolation and 

characterization of FNR eDNA in rice rooLs and the suggestion of involvement of root FNR in 

the nitrate assimilation pathway. I have also isolated a FNR eDNA from rice leaves. It wa.:; 

reported that the absorption spectrum of rice embryo FNR is different from those of root and 

leaf FNR, suggesting that an unique FNR is expressed in rice embryo (Ida and Morita 1970a; 

1970b). I have isolated a rice embryo FNR eDNA which is neither leaf nor root enzyme in 

gene structure. Genomic Southern hybridization analysis suggested that Ix>th leaf, root and 

embryo FNR gene was single copy gene, respectively. 

Comparison of the deduced amino acid sequences of rice root, embryo and leaf FNR 

indicated that there are extensive homologies (90% identity) between rool and embryo FNRs, 

whereas leaf FNR has only 49% identity with the root and embryo enzymes. Identical amino 

acid residues have been indicated to be involved in the binding to FAD, Fd and NADP+. 

Analysis of the phylogenetic tree and homology of the deduced arnlno acid sequences suggested 

that FNRs from higher plants can be diVided into two groups, photosynthetic and 

non photosynthetic FNRs. Although the amino acid identities of photosynthetic and 

nonphotosynthetic FNR are more than 80% within each group, the homology between them are 

less than 50%. The results suggest that rice leaf FNR and rice root as well as rice embryo 

FNR belong to evolutionary distinct groups. 

Root FNR mRNA was accumulated rapidly after the addition of nitrate to rice seedlings. 

These results demonstrate that the FNR transcript is induced by nitrate in rice roots. Close 

similarities of the general patterns of induction of the FNR transcript to those of NR and NiR in 

root tissues suggest the root FNR is involved in the nitrate assimilation systems. On the other' 

hand, leaf FNR mRNA was accumulated rapidly by exposure of light to rice seedlings. Such 

light dependency of the leaf enzymes suggests that the regulatory systems differ between 

photosynthetic and non photosynthetic tissues. 

The genomic clone corresponding to the rice root FNR eDNA was isolated and 

sequenced. The rice root FNR gene consists of 6 exons interrupted by 5 introns. The 5' 

upstream region of the FNR gene has seven GATA~boxes and three TCC .. GGA domains, 

which are specific binding sites to the transcription factors, NIT2 and NIT4 of N. crassa. 

EMSA experiments indicated thal there are some proteins in the nuclear extracts from both rice 
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leaves and roots, which interact with these specific regions of the 5' upstream region of the root 

FNR gene, suggesting possible occurrence of NIT2- and NIT4-1ike proteins in rice. Absence 

of the interaction of the promoter region lacking GAT A and TCC .. GGA sequences with both 

nuclear extracts from rice leaves and roots suggest those specific sequences are possibly 

involved in the binding to the nuclear proteins in rice. 

--.~----
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CHAYfERD 

CLONING AND CHARACfERIZA TION OF cDNAs ENCODING LEAF, ROOT AND 

EMBRYO FERREDOXlN-NADP OXIDOREDUCf ASES FROM RICE 

II-I Molecular cloning of a cDNA encoding rice leaf ferredoxin-NADP+ 

oxidoreductase 

FNR has been isolated and extensively characterized from a number of plant, algal and 

cyanobacterial sources (Knaff and Hirasawa 1991; Knaff 1996). The enzyme's amino acid 

sequence has been described for spinach (Karplus et al. 1984; Jansen et aI. 1988), pea 

(Newman and Gray 1988) and ice plant (Michalowski et al. 1989) as well as other 

photosynthetic organisms. However, the primary sequences from higher plant FNRs are 

limited to those from the dicots. 

I have isolated a full-length eDNA clone encoding the rice leaf enzyme and sequenced it. 

I report in this Chapter the complete nucleotide sequence of a rice leaf FNR cDNA. 

Materials and Methods 

Purification of rice leaf FNR 

Leaf FNR was purified to homogeneity by butyJ-ToyopearJ and Fd-Sepharose chromatography 

(Shin et al. 1990) for an FNR fraction obtained during the purification of rice leaf nitrite 

reductase (Ida et al. 1989). 

Determination of the amino acid sequences for N-terminal region of the mature 

protein 

Amino acid sequencing was performed according to Hirano (1993). SDS-PAGE of purified 

FNR was performed on 10% polyacrylamide gels. The enzyme was transferred to a PVDF 

membrane presoaked in methanol and stained with 0.5% Ponceau S in 1 % acetic acid for 5 min. 

After staining, the membrane was washed with destaining solution (20% methanol I 5% acetic 

acid) until clear background appeared. The membrane was washed again in water for 5 min 
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and dried up overnight. A red band corresponding to 35 kDa was cut out and subjected 

directly to peptide sequencing for the N-temlinal amino acid sequence by the automated Edman 

degradation with a model 477A gas phase sequencer of Applied Biosystems. 

Screening of the cDNA libl-ary 

A rice leaf cDNA library constructed in lambda gt 11 from poly(A)+ RNA of nitrate-induced 

greening rice seedlings (Terada et al. 1995) was used for screening and cloning of leaf FNR 

eDNA. The library was immunoscreened with an antiserum raised against rice leaf FNR (Aoki 

et aI. 1994). 

Determination of the nucleotide sequences 

The positive clone L9 was digested with Eco RI and subsequently the 1.4 kb insert was 

subcloned into pBS SK+ (Stralagene) according to Hayashi et a1.(l986) using a Takara DNA 

ligation kit and transformed into E. coli strain MVll84. The eDNA insert was digested with 

several restriction enzymes and short inserts were recloned into pBS SK+. For inserts larger 

than 0.4 kb, they were subjected to nested deletion according to Henikoff (1984) using a Takara 

kilo-sequence deletion kit. For this purpose, the plasmid DNA was cleaved with either Apa I 

and Eco RI or Eco RI and Sac II. The DNA was digested with exonuclease III for 0.5 to 5 min 

at 37 "C and trimmed with mung bean nuclease for 1 hat 37"C. The ends were rendered blunt 

with Klenow enzyme and religated to circularize deletion subclones. Both strands of the cDNA 

were sequenced by the dideoxy chain termination method with an Applied Biosystems model 

373A DNA sequencers with use of Taq DNA polymerase and -21MB and M13RP primers 

(Sanger et aI. 1977). 

Computer methods 

Sequence analysis, Mr, GC content, pI and maximum homology (%) were performed by 

DNASIS-Mac v3.5 program (Hitachi Software Engineering Co., Ltd.). Homology alignment 

was done with the Clustal W program. 
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Figure 2-1. Restriction map and strategy of sequencing ~f the rice .Ieaf FNR cDN:A clone. 
The cross-hatched bar represents the mature protein, the white bar IndIcates the transit 
peptide. The sequencing strategy is outlined with arrows. 

Results and Discussion 

The first immunoscreening of the cDNA library provided a large number of JXlsitive plaques. 

After second screening several JXlsitive clones were purified and the longest clone (L9) with a 

1.4 kb insert was chosen for sequencing. The insert of the clone L9 was digested with Eco RI 

and subcloned into pBS SK+. A restriction map of this clone and the strategy used for 

sequencing are shown in Figure 2-1. There is one Hin dIll (1302), Pst I (125), SacI (1003), 

Sac 11 (98) and Sal I (472) restriction enzyme site in this clone. The L9 insert was cleaved with 

these restriction enzymes and short inserts were recloned into pBS SK+. In addition, deletion 

subclones of the leaf FNR eDNA clone were made and all above clones were sequenced. 

Complete nucleotide sequence and the deduced amino acid sequence of the rice leaf 

FNR cDNA clone (L9) are displayed in Figure 2-2. The calculated GC content is 52.8%. The 

cDNA is 1,400 bp long and carries an ORF of 1086 bp and a 81 bp 5' and a 233 bp 3' 

noncoding regions (Figure 2-2). The N-terminal 12 residues of purified rice leaf FNR was 

sequenced. The amino acid sequence, AAAPAKKEKISK, is revealed as shown in Figure 2-

2. In the 3' untranslated region, there are two possible polyadenyJation signals, AATAAT, to 

which the same hexanucleotide lies consecutively. 

The first 58 amino terminal stretch is assigned as a putative transit peptide, as the N

terminus of the isolated protein starts with Ala at position 59. A molecular mass of the deduced 

mature protein is 34,795, the value being in excellent agreement with 35.0 kDa estimated on 

SDS-PAGE for the isolated enzyme. Although it was demonstrated that transit peptides were 
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1 gaattcgcggccgcctcctcctcacacctgcacacacttgcacacttgca 
51 cccaccctctctcctccatccagcaccgaccATGGCCGCCGTCACGGCCG 

1 M A A V T A 
101 CGGCCGTCTCCACCTCCGCCGCTGCTGCAGTCACCAAGGCATCGCCGTCC 

7A A V S V S A A A A V T K ASP S 
151 CCCGCCCACTGCTTCCTGCCATGCCCGCCAAGAACCAGAGCCGCCCACCA 

24 P A H C F L PCP P R T R A A H Q 
201 GCGCGGCCTGCTGCTGCGCGCGCAGGTGTCCACCACCGACGCCGCCGCCG 

41 R G L L L R A Q V 5 T T D A A A 
251 TCGCCGCCGCGCCGGCCAAGAAGGAGAAGATATCCAAGAAGCATGACGAG 

57 V A A A P A K K E K I 5 K K H D E 
301 GGCGTCGTCACCAACAAGTACAGGCCCAAGGAGCCCTACGTCGGCAAGTG 

74 G V V T N K Y R P K E P Y V G K C 
351 CCTCCTCAACACCAAGATCACCGCCGACGACGCGCCCGGCGAGACATGGC 

91 L L N T KIT ADD A P GET W 
401 ACATGGTCTTCAGCACCGAGGGTGAGATCCCCTACAGAGAGGGGCAGTCC 
107 H M V F S T E G E I P Y REG Q S 
451 ATCGGCGTCATCGCCGACGGCGTCGACAAGAACGGCAAGCCGCACAAGCT 
124 I G V I A D G V D K N G K P H K L 
501 CAGGCTCTACTCCATCGCCAGCAGCGCTCTCGGCGACTTCGGCGACTCCA 
141 R L Y S I ASS A L G D F G D S 
551 AGACCGTTTCACTCTGCGTCAAGAGGCTCGTTTACACCAACGACCAGGGA 
157 K T V 5 Lev K R L V Y T N D Q G 
601 GAGATTGTCAAAGGAGTCTGCTCCAACTTCCTCTGTGACTTGAAGCCTGG 
174 E I V K G V C 5 NFL C D L K P G 
651 TTCTGATGTCAAGATAACCGGACCAGTAGGCAAAGAAATGCTCATGCCCA 
191 S D V KIT G P V G K E M L M P 
701 AAGATCCCAATGCTAATATTATAATGCTTGCGACCGGTACTGGTATTGCC 
207 K D P NAN I I M L A T G T G I A 
751 CCGTTCCGCTCATTCTTGTGGAAAATGTTTTTTGAGAAGTATGATGACTA 
224 P FRS F L W K M F F E K Y D D Y 
801 CAAGTTCAATGGTCTGGCTTGGCTCTTCTTGGGAGTCCCAACTAGCAGTT 
241 K F N G LAW L F L G V P T S S 
851 CTTTACTCTACAAGGAGGAGTTTGACAAAATGAAGGCGAAAGCGCCAGAG 
257 S L L Y K E E F D K M K A K APE 
901 AACTTCCGGGTCGATTATGCTGTGAGCAGGGAGCAGACCAATGCTCAAGG 
274 N F R V D Y A V S R E Q T N A Q G 
951 AGAGAAGATGTACATTCAGACCAGGATGGCAGAGTACAAGGAAGAGCTGT 
291 E K M Y I Q T R MAE Y K EEL 

1001 GGGAGCTCCTGAAGAAGGACCACACCTATGTGTACATGTGTGGACTGAAA 
307 W ELL K K D H T Y V Y MeG L K 

1051 GGCATGGAGAAGGGTATTGATGACATTATGGTGTCATTGGCTGCAAAAGA 
324 G M E K G I D DIM V S L A A K D 

1101 TGGAATCGACTGGGCTGATTACAAGAAGCAACTGAAGAAGGGCGAGCAAT 
341 G I D WAD Y K K Q L K K G ·E Q 

1151 GGAACGTGGAAGTCTACTAAttcttccaattttcctcacatctgtttctt 
357 W N V E V Y * 

1201 ttttttcttccatttgtatctgtgtgcacatctgtgcctgtgatcactct 
1251 ataatgttagataggcgtatatatatactgtttgtcatgttggttaaatt 
1301 caagcttcatataagaattactacttatgtctgatccaaatactactatg 
1351 gtcaagtcaagagtaataataataataatgcaatgcgcggccgcgaattc 
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Figure 2-2. Nucleotide and the deduced amino acid sequences of the rice leaf FNR cDNA. 
Sequence in lowercase letters indicates the untranslated region and capital letters represent the 
coding sequence. Italic capital letters represent the deduced amino acid sequence. Possible 
polyadenylation signals are double-underlined. The tennination codon (fAA) is marked with an 
asterisk (*). The N-terininal sequence of the purified protein is underlined. 
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Figure 2-3. Absorption spectra of rice leaf (A), root (B) and embryo (C) FNR 

necessary and sufficient for uptake and processing by chloroplasts, the signals required for the 

recognition and import of proteins by chloroplasts were not clearly defined. The transit peptide 

of rice leaf FNR contains a high proportion of Ala (18 residues) and a single Asp, but no Glu. 

Such salient features are characteristic of the chloroplast transit peptides (Archer and Keegstra 

1990). Although there are a few identical amino acids in the transit peptides, comparison of the 

predicted amino acid sequences of the deduced mature proteins reveals extensive homology to 

other photosynthetic FNRs from higher plants (See Chapter III). 

11-2 Molecular cloning of a cDNA encoding rice root ferredoxin-NADP· 

oxidoreductase 

Flavoprotein enzymes with similar properties to photosynthetic FNRs have been purified and 

characterized from rice embryos (Ida and Morita 1970a; 1970b), roots of radish (Morigasaki et 

al. 1990b), spinach (Morigasaki et at. 1990c), tomato (Green et al. 1991) and bean sprouts 

(Hirasawa and Knaff 1990). Ida and Morita (J970a) demonstrated that the absorption 

spectrum of FNR from rice embryos is different from those of FNRs from photosynthetic 

tissues (Figure 2-3). Nonphotosynthetic FNRs have been implicated in nitrate assimilation in 

nonchlorophyllous tissues where the reverse electron transfer from NADPH to Fd via FNR is 
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thought to occur in order to provide the reducing equivalent for nitrite reduction and glutamate 

synthesis. 
Despite a wealth of information on photosynthetic FNR (Knaff 1996), the structural and 

genetic aspects of the enzyme from nongreen tissues or organs remain obscure. I describe here 

molecular cloning and the complete nucleotide sequence of a cDNA encoding rice root FNR. 

Materials and Methods 

Purification of rice root FNR and determination N~terminal sequence of mature 

protein 

Rice root FNR was purified by the same procedure as used for rice leaf FNR Purified root 

FNR was more than 90% pure and its Mr was estimated to be 35.0 kDa on SDS-PAGE. The 

amino terminal sequence was determined for the protein blotted on a PVDF membrane using an 

Applied Biosystems 477A protein sequencer as described in Chapter II-I. 

Molecular cloning of the rice root FNR cDN A 

A rice root cDNA library was constructed in lambda gt 11 from root tissue of greening 

seedlings that were induced for 90 min with 10 mM nitrate. The eDNA library was 

immunoscreened using the rice leaf FNR polyclonal antibody by standard procedures 

(Sambrook et aI. 1989). After second screening, several positive clones were obtained and the 

clones (R2 and R14) carrying 1.4 kb insert were subcloned into pBS SK+ with Eco RI site 

according to Hayashi et aI. (1986) using a Takara DNA ligation kit and transformed into E. coli 

MV 1184. The cDNA insert was digested with several restriction enzymes and short inserts 

were recloned into pBS SK+. Deletion subclones were generated according to Henikoff 

(1984) using a Takara kilo-sequence deletion kit The R2 and R14 eDNA clones were 

sequenced for both directions using an Applied Biosystems sequencing kit with Taq DNA 

polymerase and -21M13, M13RP primers based on the dideoxy chain termination method 

(Sanger et aI. 1977). 
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Figure 2-4. Restriction map and strategy of sequencing of the ~cc.root FNR cDl'!A clo~e. 
The cross-hatched bar represents the mature protein, the whIte bar IndIcates the tTanslt peptide. 
The sequencing strategy is outlined witl1 arrows. 

Spectral measurements 

Absorption spectrum of purified rice root FNR was recorded with a Shimadzu multiple 

recording spectrophotometer MPF-:2. 

Results and Discussion 

A restriction map of the clone R 14 and the strategy for sequencing are shown in Figure 2-4. 

There is one Bam HI (101), Bgill (99:2), Hin dlIl (1305), Kpn I (1369), Pst I (612) and Sph I 

(189) restriction enzyme site in the clone R 14. The insert was cleaved with these restriction 

enzymes and short inserts were recloned into pBS SK+. In addition, deletion subclones were 

made in both directions and these subclones were sequenced. 

Nucleotide and the deduced amino acid sequences of R14 cDNA are shown in Figure 2-

5. The calculated GC content is 49.3%. The nucleotide sequence comprises 27 bp 5' 

noncoding, 1134 bp coding and 233 bp 3' noncoding regions. In the 3' untranslated region, 

there is a possible polyadenylation signals, ATAAAA. The N-terminal sequence of purified 

rice root FNR was determined up to the 9th residue. The sequence is revealed to be 

SVQQASESK, as shown in Figure 2-5. The cDNA consists of 378 amino acids, of which the 

N-terminal 62 residues is regarded as a transit peptide, because the isolated protein starts with 

the Ser at position 63. Mr of the deduced mature protein is 35,432, the value being in excellent 

agreement with 35.0 kDa estimated on SOS-PAGE for the isolated enzyme. Sizes of the 
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1 gaattcgcggccgcctcaggatcggccATGGCGACCGCCGTTGCGTCCCA 
1 MAT A V A S Q 

51 GGTTGCTGTCTCTGCTCCGGCTGGCTCGGATCGCGGCTTGAGGAGTTCTG 
9 VA V 5 A P A G S DR G L R S 5 

101 GGATCCAGGGTAGCAACAATATTAGCTTTAGCAACAAATCATGGGTTGGC 
25 G I Q G S N N I 5 F S N K S W V G 

151 ACCACATTGGCGTGGGAGAGCAAGGCCACGCGACCGAGGCATGCGAACAA 
42 TTL AWE 5 KAT R P R HAN K 

201 GGTGCTCTGCATGTCAGTTCAGCAAGCGAGCGAAAGCAAGGTTGCTGTCA 
59 V L C M 5 V Q Q A 5 E S K V A V 

251 AGCCTCTTGATTTGGAGAGTGCTAACGAGCCGCCGCTCAACACATACAAA 
75 K P L D L E SAN E P P L N T Y K 

301 CCAAAGGAGCCTTACACCGCCACAATTGTCTCGGTTGAGAGGATCGTAGG 
92 P K E P Y TAT I V 5 V E R I V G 

351 CCCCAAGGCTCCAGGAGAGACATGCCACATTGTTATTGATCATGGTGGCA 
109 P K A P GET CHI V I D H G G 
401 ATGTGCCTTACTGGGAGGGGCAAAGCTATGGCATTATTCCTCCAGGGGAG 
125 N V P Y W E G Q S Y G I I P P G E 
451 AACCCGAAGAAGCCTGGTGCACCACATAATGTCCGTCTTTATTCAATTGC 
142 N P K K P GAP H N V R L Y S I A 
501 ATCTACAAGGTATGGAGATTCATTCGATGGAAGGACCACTAGTTTATGTG 
159 S TRY G D S F D G R T T 5 L C 
551 TGCGCCGTGCCGTTTATTATGATCCTGAAACTGGCAAGGAGGACCCCTCA 
175 V R R A V Y Y D PET G KED P 5 
601 AAAAATGGTGTCTGCAGTAACTTCCTATGTAATTCAAAACCAGGGGACAA 
192 K N G V C S NFL eNS K P G D K 
651 GGTTAAAGTGACAGGTCCGTCAGGCAAAATAATGCTCCTGCCTGAGGAAG 
209 V K V T G PSG KIM L L PEE 
701 ATCCAAATGCAACTCACATCATGATAGCTACTGGCACTGGTGTTGCTCCA 
225 D P NAT HIM I A T G T G V A P 
751 TTCCGTGGCTACCTACGCCGTATGTTCATGGAAGATGTCCCAAAGTACAG 
242 F R G Y L R R M F M E D V P K Y R 
801 ATTTGGTGGCTTGGCCTGGCTCTTCCTTGGTGTGGCTAACACTGACAGCC 
259 F G G LAW L F L G V ANT D S 
851 TTCTCTATGATGAAGAGTTCACAAGCTACCTTAAGCAGTATCCAGACAAT 
275 L L Y DEE F T S Y L K Q Y P D N 
901 TTCAGGTATGACAAAGCGCTAAGCAGGGAGCAGAAAAACAAGAACGCTGG 
292 FRY D K A L S R E Q K N K NAG 
951 CAAGATGTATGTCCAGGACAAGATCGAGGAGTACAGCGACGAGATCTTCA 
309 K M Y V Q D K I E E Y S DEI F 

1001 AGCTCTTGGATGGCGGCGCGCACATCTACTTCTGTGGTTTGAAGGGGATG 
325 K L L D G G ·A H I Y F C G L K G M 

1051 ATGCCTGGGATTCAAGACACCCTCAAGAAAGTGGCGGAGCAGAGAGGGGA 
342 M P G I Q D T L K K V A E Q R G E 

1101 GAGCTGGGAGCAGAAGCTATCCCAGCTCAAGAAGAACAAGCAATGGCACG 
359 S W E Q K L S Q L K K N K Q W H 

1151 TTGAGGTCTACTAGgatctaagtgtccaaggattatgattgttgcgcagt 
375 V E V Y * 

1201 gaaaaagagaaaacaaaacgcatgatctgatgattcttgtagggtggtgt 
1251 aaaatcatcattttttttctgaatatgaatc~~tcacccatgtaat 
1301 tcataagcttctgcatcacatgatgaacgaaaggaagcatgtaacttttg 
1351 cctgtcactattgcagctggtacctttgctgcggccgcgaattc 
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Figure 2-5. Nucleotide and the deduced amino acid sequences of the rice root FNR eDNA. 
Sequence in lowercase letters indicates the untranslated region and capital letters represent the 
coding sequence. Italic capital letters represent the deduced amino acid sequence. Possible 
polyadenylation signal is double-underlined. The termination codon (TAG) is marked with an 
asterisk (*). The N-terminal sequence or the purified protein is underlined. 
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precursor polypeptide and the transit sequence are very close to those of photosynthetic FNRs 

(Jansen et at. 1988; Newman and Gmy 1988; MIchalowski et al. 1989). The R2 cDNA clone 

was also sequenced, but the clone starts from position 47 of the full-length R14 clone, 

indicating that the R2 clone was a partial FNR eDNA. 

After publication of the rice root FNR cDNA sequence, two heterotrophic FNR cDNA 

clones have been isolated from maize roots (Ritchie et al. 1994) and pea roots (Bowsher and 

Knight 1996). A comparison of these three root FNRs revealed an extensive homology 

between them (See Chapter IlI). 

Absorption spectrum of rice root FNR is shown in Figure 2-3. The spectrum is 

characteristic of flavoproteins, but absorption maxima and shoulders at 390, 458 and 485 nm 

are slightly different from those of rice leaf FNR at 394,443,458,485 nm shown in Figure 2-

3, suggesting that FNR expressed in rice roots has a different amino acid sequence from that of 

FNR from rice leaves. 

11-3 Molecular cloning of a cDNA encoding rice embryo ferredoxin-N ADP+ 
oxidoreductase 

The first nongreen flavoprotein enzyme similar to photosynthetic FNR was purified and 

characterized from rice embryos (Ida and Morita 1970a; 1970b), but its protein sequence 

remained to be detennined. It was reported that the absorption spectrum of rice embryo FNR 

is different from that of leaf FNR (Figure 2-3), suggesting that different FNR is expressed in 

rice embryo. I describe in this Chapter an embryo-specific FNR cDNA which is neither leaf 

nor root enzyme in gene structure. 

Materials and Methods 

Molecular cloning of the rice root FNR cDNA 

A rice embryo cDNA library was constructed in lambda ZAP II (Stratagene) from developing 

rice seeds 14 days after flowering. The library was a gift from Professor Kunisuke Tanaka 

Department of Biochemistry, College Agriculture, Kyoto Prefectural University. ' 
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Figure 2-6. Restriction map and strategy of sequencing of the rice embryo FNR cDNA . 
clone. The cross-hatched bar represents the mature protein, the white bar indicates the tranSIt 
peptide. The sequencing strategy is outlined with arrows. 

The cDNA library was screened using a PCR-amplified fr75 bp DNA fragment of 

nuc1eotides from 289 to 1164 of the rice root FNR cDNA clone as a probe. The probe was 

labeled and detected with EeL direct nucleic acid labeling and detection systems (Amersham). 

After second screening, 8 positive phage clones were obtained from which a positive clone (El) 

harboring 1.4 kb insert was transformed into pBS SK- in XLI-blue as a host cell by in vivo 

plasmid excision (Short et aI. 1988; Short and Sorge 1992). The cDNA insert was digested 

with several restriction enzymes and short inserts were recloned into pBS SK+. The El cDNA 

clone was sequenced for both directions using an Applied Biosystems sequencing kit with Taq 

DNA IXJlymerase and -21M13, M13RP primers based on the dideoxy chain termination method 

(Sanger et al. 1977). 

Results and Discussion 

A restriction map of the El clone and the strategy used for sequencing are shown in Figure 2-6. 

There is one Bam HI (1099), Bgl II (241), Hin dIll (1318), Pst I (653) and Xho I (140) 

restriction enzyme site in this clone. The restriction map of the El eDNA clone differs from 

that of the rice root cDNA clone, indicating that the embryo clone carries a different FNR gene. 

The insert was cleaved wi th these restriction enzymes and short inserts were sequenced. 

The rice embryo eDNA clone was identified as a full-length FNR eDNA clone by 

sequencing. Nucleotide and the deduced amino acid sequences of the El cDNA clone are 

shown in Figure 2-7. The calculated GC content of El is 45.2%. The embryo FNR eDNA 

consists of 68 bp 5' noncoding, 1134 bp coding and 192 bp 3 ' noncoding regions. In the 3 ' 

untranslated region, there is a putative polyadenylation signals, AAT AAA (Figure 2-7). 
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1 gaattcgcggccgctcaaaaccctagccaacccctcctcctcctcctctt 
51 cctcgcgatccaccggcgATGGCCTCCGCCCTCGGGGCTCAGGCGTCTGT 

1 MA 5 A L G A Q A S v 
101 CGCGGCGCCCATCGGTGCGGGCGGCTACGGGAGGAGTTCCTCGAGCAAGG 

12 A A PIG A G G Y G R 5 S S S K 
151 GTAGCAATACTGTTAACTTCTGCAACAAATCATGGATTGGAACCACATTA 

28 G S N T V N FeN K S WIG TTL 
201 GCATGGGAAAGCAAGGCCCTAAAATCAAGGCATATGAACAAGATCTTTTC 

45 AWE S K A L K S R H M N KIF S 
251 CATGTCCGTTCAACAAGCAAGCAAAAGCAAAGTTGCTGTAAAACCTCTGG 

62 M S v Q Q ASK 5 K V A V K P L 
301 AATTGGATAATGCGAAGGAGCCACCCCTTAACTTATACAAACCAAAGGAG 

78 E L DNA K E P P L N L Y K P K E 
351 CCTTACACAGCCACAATTGTCTCAGTCGAAAGGCTTGTAGGCCCTAAAGC 

95 P Y TAT I V 5 V E R L V G P K A 
401 TCCTGGTGAAACATGCCATATTGTTATTGATCATGGTGGCAATGTTCCAT 
112 P GET CHI V I D H G G N V P 
451 ACTGGGAAGGACAAAGTTATGGTGTCATTCCTCCAGGAGAGAACCCGAAG 
128 Y W E G Q S Y G V I P P G E N P K 
501 AAACCTGGTTCCCCAAATACTGTCCGGCTCTATTCTATTGCATCTACTAG 
145 K P G S P N T V R L Y S I A S T R 
551 GTACGGTGATTCTTTTGATGGAAAGACTGCCAGTTTGTGTGTTCGTCGTG 
162 Y G D S F D G K T A 5 Lev R R 
601 CTGTTTATTATGATCCTGAAACTGGAAAAGAAGACCCCACAAAGAAAGGT 
178 A V Y Y D PET G KED P T K K G 
651 ATCTGCAGTAATTTCCTATGCGACTCTAAACCAGGCGACAAAGTTCAGAT 
195 I C S NFL CDS K P G D K V Q I 
701 AACAGGCCCCTCAGGCAAAATCATGCTTCTACCTGAGGATGATCCAAATG 
212 T G PSG KIM L L P E D D P N 
751 CAACCCATATCATGATTGCTACTGGCACTGGTGTTGCTCCCTACCGTGGC 
228 A T HIM I A T G T G V A P Y R G 
801 TATCTACGTCGTATGTTCATGGAGGATGTCCCAAGTTTCAAGTTTGGTGG 
245 Y L R R M F M E D V P S F K F G G 
851 TCTGGCTTGGCTATTTCTAGGTGTTGCTAACACTGATAGCCTTCTGTATG 
262 LAW L F L G V ANT D S L L Y 
901 ATGAAGAGTTCACAAACTACCTTCAGCAGTATCCAGACAATTTCAGGTAT 
278 DEE F T N Y L Q Q Y P D N FRY 
951 GATAAAGCACTAAGTAGGGAACAGAAGAATAAGAATGGTGGAAAGATGTA 
295 D K A L S R E Q K N K N G G K M Y 

1001 TGTGCAGGACAAGATTGAAGAGTACAGCGATGAAATTTTTAAACTTTTGG 
312 V Q D K lEE Y S DEI F K L L 

1051 ATGGCGGTGCACATATCTACTTTTGTGGTTTGAAGGGTATGATGCCAGGG 
328 D G G A H I Y F C G L K G M M P G 

1101 ATCCAGGACACACTCAAGAGAGTAGCTGAGCAAAGAGGTGAGAGTTGGGA 
345 I Q D T L K R V A E Q R G E S W E 

1151 GCAGAAGCTGTCGCAGCTCAAAAAGAACAAACAATGGCACGTGGAGGTTT 
362 Q K L S Q L K K N K Q W H V E V 

1201 ACTAAgttactaaaaagcacgggctgtgattttgtgattgttttgcagcg 
378 Y * 

1251 agttgaaacataaaacagtaaaaagcgatgattctcgttgcattgtaaaa 
1301 ttgtcaatcttattcataagcttctgcttgacatggtgaataaaatgaag 
1351 catatgctaattttgacttaaaaaaaaaaagcggccgcgaattc 
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Figure 2-~. Nucleotide an~ th.e deduced amino acid sequences of the rice embryo FNR eDNA. 
Seq~ence In lowercase. letters indicates the untranslated region and capital letters represent the 
coding seque.nee .. Itah~ capital letters r~present the deduced amino acid sequence. Possible 
poly~enylatJon slgnalls.double-underlmed. The termination codon (TAA) is marked with an 
asterisk (*). The N-termtnal sequence of the purified protein is underlined. 
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The coding region encodes 378 amino acid residues. Since the ORF contains the same 

sequence, SVQQAS, as that of the rice root FNR mature protein, the first N-terrninal62 amino 

acid residues were assigned as a putative transit peptide. The deduced Mr of the mature protein 

is 35,407. Sizes of the embryo precursor polypeptide and the transit sequence are the same to 

those of rice root FNR. pI of rice embryo FNR mature protein is 7.68. 

Although the physiological function of rice embryo FNR is unknown at present, the 

embryo-specific expression of a NR gene in rapeseed (Fukuoka et aI. 1996) suggests that rice 

embryo FNR is involved in nitrate assimilation in the tissue as in the case of root-specific 

enzyme in rice (Aoki and Ida 1994), maize (Ritchie et al. 1994) and pea (Bowsher and Knight 

1996) roots. Another possible function of embryo FNR is to generate Fdrcd required for fatty 

acid desaturation during seed maturation and/or germination. 
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CHAPTERm 

STRUcrURALAND PHYLOGENEfIC ANALYSIS OF RICE FERREDOXIN-NADP+ 

OXJDOREDUcr ASE cDNAs 

Photosynthetic FNR was first purified from spinach leaves (Shin et al. 1963) and subsequently 

isolated from a large number of higher plants, eukaryotic algae (Bookjans et al. 1979) and 

cyanobacteria (Susor et al 1966; Rowel et al 1981; Javier et al. 1988; Knaff 1996). The ami no 

acid sequences of FNRs were determined for Spirulina plalensis (Yao et al. 1984) and spinach 

(Karplus et al. 1984). Recently a number of the primary structures of FNRs have been 

deduced from the corresponding gene structure. I have compiled the sequence data available up 

to date and used them for structural and phylogenetic analysis of the enzyme from higher plants, 

green algae, cryplophyle (Cyanophora paradoxa) and cyanobacteria More recently FNR 

cDNAs have been cloned from tobacco cultured cells and heterotrophic tissues of several higher 

plants including my own cDNA clonings of rice root and embryo FNRs as described in Chapter 

II. 

The amino acid sequences of these FNRs are compared and analyzed for classification 

and evolutional relationships by the construction of a phylogenetic trce based on the amino acid 

sequence homology. 

Materials and Methods 

Computer analysis 

Homology alignment and calculation of homology (%) of the primary structure of FNR were' 

done using the Clustal W program (Tompson et al. 1994) and maximum homology (DNASIS

Mac v3.5), respectively. A phylogenetic tree was constructed using the Clustal W program 

and the Tree.View ppe program based on the amino acid sequences of the mature proteins. 
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Figure 3-1. Comparison of the predicted amino acid sequences of FNR cDNAs from 
rice roots. embryos and leaves. The N-terminus of the mature protein of each FNR is 
indicated by arrowhead. Gray boxes show identical amino acid residues to rice root 
FNR protein. Dashes (-) indicate gaps introduced to maximize alignment The 
location of FAD binding site (###). ferredoxin binding site (---). and NADP+ binding 
site (+++) are marked under the alignment of the sequence_ Assignment of the 
residues involved in the binding sites was followed to Karplus et al. (1991) and 
lelesarov et al. (1993). 

Results and Discussion 

Comparison of the deduced amino acid sequences of rice root, embryo and leaf FNR is shown 

in Figure 3-1. Although there are less identical amino acids in the transit peptides (57%), 

comparison of the predicted amino acid sequences of the mature proteins revealed an extensive 

homology between rice root and embryo FNRs amounting to 90% identity. Rice embryo FNR 
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shows higher identities to the root enzyme than to the leaf protem, homology between the 

embryo and leaf enzyme is 49% in the mature protein and 28% in the tmnsit peptide. In 

addition, homology between the leaf and the root enzyme is 49% in the mature protein and 28% 

in the transit peptide. Despite the lack of apparent homologies in the transit sequences, there 

are a number of highly conserved segments in the mature proteins from rice roOL, embryo and 

lcaf FNRs. These identical runino acid residues have been indicated to be involved in the 

binding to FAD (100%), Fd (66.7%) and NADP+ (87.5%) (Figure 3-1). Even if these 

residues differ between three FNRs, they are essentially the same, because they are analogous 

amino acids. Significant degree of similarity between rice embryo and root FNR is a[so 

recognized in the nucleotide sequence of the 3' untmnslated regions (Aoki and Ida 1994; Aoki et 

a1. 1996). These data are consistent with the presence of enzymatically and immunologically 

distinct FNR in photosynthetic and non photosynthetic tissues (Morigasaki el al. 1990b; 1990c). 

Sequence alignment of the mature proteins of FNRs from higher plants, cyanobacteria, 

green algae and Cyanophora IS shown in Figure 3-2. The amino acid residues involved in the 

binding to FAD, Fd and NADP' are also highly conserved in FNRs whose sequence are 

available at present (Figure 3-2). 

Homology (%) of FNR mature proteins from higher plants, cyanobacteria, green algae 

and Cyanop/wra is shown in Table 3-1. Rice leaf FNR are extremely homologous to the 

other photosynthetic enzyme in higher planL';. For example, identity of rice leaf FNR to the 

enzyme from ice plant, pea, spinach, broad bean and Arabidopsis rhaliana shows 85%, 84%, 

81 %,82% and 82%, respectively (Table 3-1). Similarities found among the higher plant FNR 

sequences suggest that their structural gcnes are highly conserved irrespective of the dicots and 

monocots plants (Figure 3-2). 

Although overall sequence identities show only 49 to 51 % homology in the mature 

protein among rice root FNR and the other photosynthetic enzymes, comparison of the deduced 

protein sequence of rice root FNR with the other nonphotosynthetic enzymes revealed extensive 

homology in higher plants. The mature protein of rice root FNR has 88%,92% and 85% 

identity with the tobacco cultured cells, maize root and pea root enzymes, respectively (Table'3-
1 ). 

Homology (%) of rice embryo FNR to the enzymes from higher plants, green algae, 

Cyanop/wra and cyanobacteria is shown in Table 3-1. Sequence homology is more 

conspicuous in the mature protein region between rice embryo and other FNRs from 

nonphotosynthetic tissues (88 to 90%) as compared with similarities to FNRs from the 

photosynthetic tissues (49 to 51 %) (Table 3-1). 
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Figure 3-2. Comparison of the mature protein sequences of FNRs from higher plants, green 
algae, Cyanophora and cyanobacteria. Amino acid residues that are identical are blocked. 
Dashes (-) indicate gaps introduced to maximize alignment. The location of FAD binding 
site (###), ferredoxin binding site (---), and NADP+ binding site (+++) are marked below 
the sequence alignmen. The proteins of broad bean, Arabidopsis, Volvox, Chlamydomonas, 
Cyanophora, Anabaena, Synechococcus and Synechocystis FNR have been truncated at the 
termini to mach the start of the spinach leaf FNR mature protein. The proteins of rice 
embryo, maize root, tobacco cultured cells and pea root FNR have been truncated at the 
tennini to mach the start of the rice root FNR mature protein. Each row is the deduced 
amino acid sequence from rice leaf (Oryza sativa, Accession No. 017790, Aoki et al. 1994), 
pea leaf (Pisum sativum, Accession No. M21449, Newman and Gray 1988), spinach leaf 
(Spinacia oleracea, Accession No. X07981, Karpl us et al. 1984; Jansen et at. 1988), broad 
bean leaf (Vielafaha, Accession No. U14956, Lax and Cary, unpublished), ice plant leaf 
(Mesembryanthemum crystallinum, Accession No. X 13884, Michalowski et aL 1989), 
Arabidopsis leaf (Arabidopsis thaliana, Ida et at. unpublished), rice root (Oryza sativa, 
Accession No. D1741O, Aoki and Ida 1994), rice embryo (Oryza sativa, Accession No. 
D87547, Aoki et al. 1996), maize root (Zea mays, Accession No. T18890, Ritchie et al. 
1994), pea root (Pisum sativum, Accession No. X99419, Bowsher and Knight 1996), 
tobacco cultured cells (Nicoliana tabacum, Ida et aI., unpublished), Volvox (Volvox carteri, 
Accession No. U22328, Choi et al., unpublished), Chlamydomonas (Chlamydomonas 
reinhardtii, Accession No. UlO545, Kitayama et al. 1994), Cyanophora (Cyanophora 
paradoxa, Accession No. X66372, Jakowitsch et aL 1993), Anabaena (Anabaena sp. PCC 
7119, Accession No. X72394, Fillat et al. 1990), Spirulina (Spirulina sp., Accession No. 
AOO531, Yao et aL 1984), Synecchococcus (Synechococcus sp. PCC 7002, Accession No. 
J05366, Schluchter and Bryant 1992) and Synechocystis (Synechocystis sp., Accession No. 
X94297, Thor Van, unpublished). 
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Table 3 1 - Sequence homology among FNRs from higher plants, green algae, CyanopilOra and cyanobacteria. 
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Cyanobacterial FNRs has low degrees of homology (lower than 55%) to photosynthetic 

FNRs of higher plants as well as their nonphotosynthetic enzymes. Green algal FNRs show 

somewhat higher sequence identity to the nonphotosynthetic enzymes (59 to 62%) than to the 

photosynthetic enzymes (47 to 50%). Cyanophora FNR resembles photosynthetic FNRs (61 

to 63%) rather than to the nonphotosynthetic enzymes (48 to 50%) (Table 3-1). 

Figure 3-3 shows a phylogenetic tree of FNRs based on the sequence homology of the 

FNR mature proteins from higher plants, green algae, Cyanophora and cyanobacteria 

Sequence similarities can be divided into four separate groups, that is, FNRs from 

photosynthetic tissue of higher plants (group I), non photosynthetic tissue of higher plants 

(group II), green algae (group III) and cyanobacteria (group IV) with the exception of the 

Cyanophora enzyme. Within group I and group II, sequence homology is higher than 80%, 

whereas similarities between group I and group II are lower than 50%. It is interesting [0 

know that green algal FNRs are closer to nonphotosynthetic type FNRs of higher plants (group 

II) than to the photosynthetic tYPe counterpart of higher plants (group I), although green algae 

carry out the oxygenic photosynthesis similar to higher plants. The phylogenetic tree supports 

.the observation that the divergence of photosynthetic type and nonphotosynthetic type FNRs 

started even before the divergence of the monocots and the dicots of higher plants. 
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Phylogenetic analysis suggests that cyanobacterial FNR appeared at first in the course of 

evolution and then divided into the photosynthetic and nonphotosynthetic enzymes 

independently at the time of the emergence of higher plants. 

Group I 
(photosynthetic type 

( cyanobacteria) 

Group III 
Group II 
(non photosynthetic type 

(green algae) 

Figure 3-3. Phylogenetic analysis of FNR based on the amino acid sequences of the 
mature proteins. Aligrunenst of the sequences and detennination of pairwise genetic distance 
were created using the Clustal W program and the construction of the phylogenetic tree was 
made using TreeView PPC program. Sources of the sequence data are given in Figure 3-2. 
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CHAPTER IV 

ESTIMATION OF COpy NUrviBER OFTHE RICE FERREDOXlN~NADP+ 

OXIDOREDUcr ASE GENES 

As described in Chapter II, it was revealed that three FNR cDNAs are expressed in different 

tissues or organs in rice, indicating that rice carries at least three FNR genes in the haploid 

genome. Although copy number of FNR genes has been estimated in some higher planls, a 

single species of FNR cDNA was used as a probe in these experiments which resulted in the 

estimation of a single copy gene for spinach leaf FNR (Newman and Gray 1988) and one or 

two copy genes for pea leaf (OelmUller et al. 1993) and maize rool FNR (Ritchie et aI. 1994). 

Preliminary work indicated that the rice leaf FNR cDNA does not hybridize to the rice 

root FNR cDNA, vice versa, under high stringency conditions. These findings suggested that 

a single species of DNA probes does not reveal whole set of FNR gene copies in a given plant 

species. Differential genomic Southern analysis was conducted 10 ascertain the complexity of 

the FNR gene family in rice with the use of the rice leaf, root or embryo FNR cDNA as a DNA 

probe. The results indicate that there is at least one copy of the FNR genes corresponding to 

each FNR eDNA in rice. 

Materials and Methods 

Isolation of nuclear DNA 

Nuclear DNA was isolated from rice leaves according to Sugiura (1989). Five g of fresh 

leaves were chilled with liquid nitrogen and pulverized to a fine powder. The pulverized tissue 

was mixed gently with 5 ml of 2 x CT AB solution (2% CT AB, 100 mM Tris-HC] (pH 8.0), 

1.4 M sodium chloride and 1 % PVP) at 70 "C to wet thoroughly and incubated for 10 min at 55 

"c. Then the homogenate was extracted with an equal volume of chloroform! isoamyl alcohol 

(24: 1), mixed gently for 30 min, centrifuged for 15 min at 2,800 rpm and recovered the top 

(aqueous) phase. This extraction was repeated once more with 1 x CT AB solution. The 

recovered aqueous phase (10 ml) was mixed with a 1110 volume (1 ml) of 10% CT AB solution 

(10% CTAB and 700 mM sodium chloride) and an equal volume (11 ml) of precipitation buffer 
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(1 % crAB, 50 mM Tris-HCl (pH 8.0) and 10 mM EDT A), mixed well for 30 min by 

inversion, centrifuged for 15 min at 2,800 rpm and removed the supernatant. The pellet was 

resuspend in 5 ml NaCI-TE solution (1 M sodium chloride, 10 mM Tris-HCl (pH 8.0) and 1 

roM EDTA) at 55 DC and nuclear DNA was reprecipitated by adding an equal volume (5 ml) of 

2-propanol and was centrifuged for 10 min at 2,800 rpm. The pellet was washed with 70% 

ethanol, dried and resuspended in 500 }4l pure water. Two mg of genomic DNA was prepared 

from 5 g of rice leaves. 

Genomic Southern hybridization 

Rice nuclear DNA (100 }4g) was digested overnight with 200 units each of Bam HI, Eco RI, 

Pst 1, Sal I and Xho I in a final volume of 100}41. These digested nuclear DNAs were 

subjected to electrophoresis on a 1.2% agarose gel. The gel was soaked in depurination 

solution (250 mM hydrochloric acid) for 10 min, denaturation solution (500 mM scxlium 

hydroxide and 1.5 M scxlium chloride) for 30 min and neutralization solution (500 mM Tris

HCI (pH 7.4) and 1.5 M sodium chloride) for 30 min. Nuclear DNAs were transferred to 

nylon membrane (Hybond-N+, Amersham) with 20 x SSC (3 M sodium chloride and 300 mM 

sodium citrate). The DNA fragment between SaIl and Eco Rl site of the rice leaf FNR cDNA 

(L9) was used as a leaf FNR probe, fragment between Pstl and Eco Rl site of the rice root 

FNR cDNA (R14) was used as a root FNR probe and fragment between Pst I and Bam HI site 

of the rice embryo FNR cDNA (E1) was used as an embryo FNR probe. Hundred ng of each 

fragment was labeled with ECL direct nucleic acid labeling and detection systems (Amersham). 

The membrane was rinsed in 50 ml of 2 x SSC and prehybridised in 10 ml of ECL gold 

hybridization buffer with 5% w/v blocking agent and 500 mM NaCI for 1 hat 42 DC. Then 

labeled cDNA was added to the membrane and incubated for 16 to 20 h. The hybridized 

membrane was washed with 50 ml of 0.2 x SSC and 0.4% SDS three times for 10 min at 55'C 

and twice for 5 min of with 2 x SSe. The signal was generated with 2 ml of detection solution 

I and II mixture for 5 min, removed the solution and finally exposed to an X-ray film. 

Rehybridization 
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Rehybridization methods were done according to Sakal (1991). After detection, the probes 

were removed to wash twice in 50 ml of ) 00 mM sodium hydroxide for I h, rinsed twice in 50 

ml of 2 x SSC and prehybridized again as described above. 

Results and Discussion 

When the leaf FNR probe was used, a single band of about 30,3.3,21 and 16 kb was 

observed in the Bam Ill. Eco RI. Pst I and Sal I digested DNA, respectively. But in the Xho I 

digested DNA, there was a weakly hybridizing band of about 4.7 kb in addition to the strong 

band of about 30 kb (Figure 4-1, A). There are no Bam ill, Eco RI, Pst I, Sal I and Xho [ 

sites in the Sal I-Eco R1 fragment of the leaf FNR cDNA used as a probe. Intensity of the 

bands appeared in the Xho I digest suggests that the leaf FNR gene has a single copy gene in 

rice. However, because of the possible presence of introns in the nuclear genes, the isolation 

of genomic clones will be necessary to substantiate this suggestion. Copy number of the leaf 

FNR gene has been estimated for pea (Newman and Gray 1988) and spinach (Oelmtiller et al. 

1993) using their corresponding cDNAs as probes, respectively. These results indicated that 

only a single band was observed in each digest, suggesting that the leaf FNR eDNA does not 

hybridize to the nonphotosynthetie FNR genes. These experiments also suggest that there are a 

single copy gene for spinach leaf FNR and one or a few copy genes for pea leaf FNR. 

On the other hand, when the root or embryo FNR probe was used, more than one band 

appeared in each digest. When the root FNR cDNA was used, there were three bands in the 

Bam HI digest (16, 4.0 and 2.7 kb), two bands in the Eco RI digest (5.1 and 2.1 kb), three 

bands in the Pst I digest (5.1, 3.6 and 1.9 kb), a single band in the Sal I digest (28 kb) and a 

single band in theXho I digest (25 kb) (Figure 4-1, B). 

With the use of the embryo FNR probe, there were three bands in the Bam HI digest 

(16,4.0 and 2.7 kb), two bands in the Eco R1 digest (5.1 and 2.1 kb), three bands in the Pst I 

digest (5.1, 3.6 and 1.9 kb), a single band in the Sal I digest (30 kb) and two bands in the Xho 
I digest (20 and 17 kb) (Figure4~1, C). 

The results indicate that most of the positions of several bands are identical in these 

digests with both root and embryo FNR probes, The overlapped positions are as follows: 16, 

4.0 and 2.7 kb in the Bam HI digest; 5,1 and 2.1 kb in the Eco RI digest and 5,1,3,6 and 1.9 

kb in the Pst I digest. The results suggest that the bands observed at the same positions with 

these probes are originated in the same genes. 
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Figure 4-1. Determination of the FNR gene copy number in the rice genome. DNA 
blots were hybridized with the rice leaf (A), root (B) and elnbryo FNR eDNA clone. 
Lane 1 , Bam HI ; lane2, Eco Rl; lane3 , Pst I; lane4, Sal I and lane5. Xho I. 
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Further analysis indicated that intensity of the signals which appeared at the same 

positions was different with the root and embryo probes. In the Bam HI digested DNA, there 

were two weakly hybridizing bands of about 4.0 and 2.7 kb and there was a strongly 

hybridizing band of about 16 kb to the root FNR probe. In contrast, there were three strongly 

hybridizing band of about 16,4.0 and 2.7 kb to the embryo FNR probe. The results suggest 

thalthe band of 16 kb represents the root FNR gene and the bands of 4.0 and 2.7 kb are 

ascribed to for the embryo FNR gene. Appearance of two bands to the embryo FNR eDNA 

probe may be due to the presence of introns in the nuclear genes. 

In the Eco RI digested DNA, there was a weakly hybridizing bands of about 2. I kb and 

there was a strongly hybridizing band of about 5.1 kb to the root FNR probe. In contrast, 

there was a weakly hybridizing band of about 5.1 kb and there was a strongly hybridizing band 

of about 2.1 kb to the embryo FNR probe. The results suggest that the band of 5.1 kb 

represents the root FNR gene and the band of 2.1 kb corresponds to the embryo FNR gene. 

In the Pst I digested DNA, there were two weakly hybridizing bands of about 5.1 and 

1.9 kb and there was a strongly hybridizing band of about 3.6 kb to the root FNR probe. In 

contrast, there was a weakly hybridizing band of about 3.6 kb and there were two strongly 

hybridizing band of about 5.1 and 1.9 kb to the embryo FNR probe. The results suggest that 

the band of 3.6 kb represents the root FNR gene and the bands of 5.1 and 1.9 kb attributes to 

the embryo FNR gene. 

Since there are significant homologies (76%) between the rice root and embryo FNR 

cDNA, each FNR probe may be able to crosshybridize with both FNR gene. The results 

suggest that there are at ] east two nonphotosynthetic type FNR genes in the rice genome and 

these FNR genes are differentially expressed in a tissue-specific manner. 
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CHAPTER V 

INDUCTION OF THE RICE ROOT AND LEAF FERREDOXIN-NADP+ 

OXIDOREDUcr ASE mRNA 

FNR in nonphotosynthetic tissues is thought to catalyze the electron transfer from NADPH to 

Fd
ox

' Fdrcd is used for Fd-dependent enzymes such as NiR and GOGAT which are involved in 

the nitrate assimilation systems. Recently, Bowsher et al. (1993) demonstrated that a protein 

immunoreactive with anti-leaf FNR increases upon nitrate eXJX>sure to pea roots. A four-fold 

increase in the NADPH-dependent FNR activity was observed with an increase in the amount 

of this protein. These results suggest that FNR in npnphotosynthetic tissues is induced by 

nitrate. 

In Chapter II, I have isolated FNR cDNAs from nonphotosynthetic tissue (rice roots 

and embryos) as well as photosynthetic tissues (rice leaves). I have demonstrated that the rice 

root FNR mRNA is induced rapidly and transiently by nitrate. I also demonstrated that the rice 

leaf FNR mRNA is induced by light. 

Materials and Methods 

Plant materials 

Rice seeds were soaked overnight in water and grown hydroponically on 0.1 mM calcium 

sulfate for 10 days at 28 ·C in the dark. Seedlings were treated with 7 mM fXltassium nitrate 

and roots were harvested, or treated by light and leaves were harvested. Roots and leaves 

were placed into liquid nitrogen and stored at -80 DC. 

Denatuation of ribonuclease 

Any water and salt solutions used in RNA preparation were treated with 0.2% DEPC, shaked 

vigorously to get DEPC into solution, incubated overnight at 37·C and autoclaved to inactivate 

the remaining DEPC. Solution containing Tris was not treated with DEPC, because Tris reacts 
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with DEPC to inactivate it. Glassware was baked at 200"C for more than 3 h. Plastic ware 

was soaked in 5% hydrogen peroxide for more than 2 hand autoclaved or dried. 

Total RNA preparation 

Preparation of total RNA were carried out according to Matsui eL aI. (1990). One g of fresh 

rice roots or leaves were rapidly chilled with liquid nitrogen and homogenized in 4 ml of 

denaturing solution (50% guanidine thiocyanate and 25 mM Tri-sodium citrate dehydrate), 28 

,ul of 2-ME and 4OO}l1 of 20% sodium lauryl sarcosinate. The pulverized tissues were 

transferred to a 15 ml polypropylene tube (Coming), vortexed for 2 min, added with 500}l1 of 

water-saturated phenol and 500 }II of chloroform, vortexed for 1 min and centrifuged for 10 

min at 6,000 rpm at 4°C. The top (aqueous) phase was recovered in a new polypropylene 

tube and the aqueous phase was treated again with phenol! chloroform. The aqueous phase 

was precipitated with 10% volume of 3 M sodium acetate (pH 5.5) and 250% volume of 

ethanol and finally centrifuged for 10 min at 2,800 rpm at 4"C. RNA pellet was dissolved in 

6OO}l1 ofTE, transferred to microtube and extracted with water-saturated phenol twice and with 

chloroform once more. The supernatant was blended with an equal volume of 4 M lithium 

chloride anhydride, mixed thoroughly and incubated overnight at 4"C. The mixture was 

centrifuged for 30 min at 15,000 rpm at4 dc. The pellet was washed with 70% ethanol, dried 

and resuspended in 1oo}ll of water. The solution was extracted with chloroform once more 

and precipitated with ethanol again. The pellet was washed with 70% ethanol, dried and 

resuspended in 20,U1 of water. 

Northern hybridization 

Four j4g of total RNA were dot-blotted to a nylon membrane (Hybond-N+, Amersham). The 

membrane was dried, rinsed in 10 ml of 2 x SSC and baked for 2 h at 80°C. The membrane 

was prehybridized in 5 ml of ECL gold hybridization buffer with 5% w/v blocking agent and 

500 mM sodium chloride for 1 hat 42°C. The full-length cDNA clones from rice roots (R14) 

and leaves (L9) were used as probes. Each probe was labeled and detected with EeL direct 

nucleic acid labeling and detection systems (Amersham). The hybridization and detection were 

done as described in Chapter IV. Autoradiograms were scanned with a Shimadzu CS-9000 

dual-wavelength flying-spot scanning densitometer. 
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Figure 5-1. FNR mRNA accumulation after nitrate induction in rice roots. FNR mRNA 
was measured by dot blots hybridized with the Eco RI fragment from clone R14 as described in 
text. 

Results and Discussion 

Rice roots were harvested at 0, 1,2,4, 10 and 24 h after nitrate treatment. The mRNA 

accumulation for rice root FNR was examined with the use of the root FNR cDNA as a probe. 

There was a very low level of the FNR mRNA in the roots grown on N-free solution. 

Addition of nitrate to rice seedlings induced a rapid accumulation of the transcript. The 

induction reached its maximum level in 1 to 2 h after the addition of nitrate (increased over 34-

fold) and decreased rapidly thereafter (Figure 5-1). Maximum level of the transcript was 

reached earlier than that in the leaf tissue and any significant increase in the FNR mRNA was 

not observed when ammonium nitrogen was added as a nitrogen source (unpublished data). 

The general pattern of the accumulation and decline of the FNR transcript is very similar to 

those reported for NR (Melzer et al. 1989) and NiR (Kramer et al. 1989) in barley roots, GS 

and GOGAT in maize roots (Redinbaugh and Campbell 1993). Recently, Fd type protein and 

FNR have been described to be induced in pea root plastids during nitrate assimilation 

(Bowsher et al. 1993). And after completion of this work (Aoki and Ida 1994), Ritchie et aI. 

(1994) reported that the FNR mRNA in maize roots was accumulated specifically in response to 

nitrate, since neither potassium nor ammonium treatment of roots caused the transcript 

39 



--. 
E 
::::I 
E 100 .-
~ 
E 80 4-< 
0 

~ 
"-" 60 < 

~ 40 
0::: 
Z 
~ 20 
] 

0 
24 0 4 8 12 16 20 

Time (h) 

Figure 5-2. FNR mRNA accumulation after light induction in rice leaves. ~ m~A was 
measured by dot blots hybridized with the Eco Rl fragment from clone L9 as descnbed In Lexl 

accumulation. These results demonstrate that the FNR transcript is induced by nitrate in rice 

and maize roots. Furthermore, close similarities of the general induction patterns of the FNR 

transcript to those of NR and NiR in root tissues suggests the concurrent induction of the nitrate 

assimilatory enzymes with nitrate. 

The mRNA expression for rice leaf FNR was examined with the use of the rice leaf 

FNR eDNA as a probe. There was a low level of the leaf FNR mRNA in lO-day old etiolated 

leaves grown on 0.1 mM calcium sulfate. The FNR mRNA transcript was also induced 

rapidly by exposure of light to seedlings. The induction reached its maximum level in 2 h after 

the irradiation of light and decreased gradually thereafter (Figure 5-2). The delay of induction 

compared to the root FNR mRNA might be caused by the time lag of chloroplast formation. 

But the increase in the leaf FNR transcript was lower (about 14-fold) than that of the root FNR 

mRNA. Continuous illumination has been reported to be necessary for the maintenance of 

high levels of FNR development in bean leaves (Haslett and Cammack 1976). Such light 

dependency of the leaf enzyme suggests that the regulatory systems are different between 

photosynthetic and nonphotosynthetic tissues. Perhaps the rice leaf FNR expression is 

regulated by the same way of the other photosynthetic enzymes in chloroplasts. 
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CHAPTER VI 

THE GENOMIC ORGANIZATION OF THE RICE ROOT FERREDOXIN-NADP+ 

OXlDOREDUCT ASE 

As described in Chapter II, three structurally distinct rice FNR cDNAs were isolated from the 

cDNA libraries from different organs or tissues. The deduced amino acid sequences indicated 

that a FNR cDNA found in the leaves corresponds to the photosynthetic FNR and the other two 

FNR cDNAs found in the roots and in the embryos correspond to the nonphotosynthetic 

enzymes. The latter two FNR cDNAs have much less similarities in the deduced amino acid 

sequences to photosynthetic FNR cDNAs of rice and other higher plant leaves. Expression of 

the photosynthetic FNR gene has been shown to be under phytochrome control (Oelmtiller et al. 

1993; Li.ibberstedt et al. 1994; Bowler and Chua 1994; Aoki et al. 1994). I n contrast to the leaf 

gene, the root FNR gene is nitrate-inducible along with the genes involved in the nitrate 

assimilation pathway in the root tissues of higher plants (Melzer et al. 1989; Kramer eL ai. 1989; 

Redinbaugh and Campbell 1993; Aoki and Ida 1994). 

Although a genomic clone encoding the spinach leaf FNR has been described which 

comprises the promoter and partial coding regions of the gene (Oelmtiller et al. 1993), there is 

no report on the genomic structure of a gene whose expression is induced by nitrate in the root 

of higher plants. So, I undertook cloning and sequencing of the genomic clone corresponding 

to the rice root FNR eDNA. 

Materials and Methods 

Bacterial Strains and Plasmids 

E. coli strain P2392 was used for screening of recombinant DNA manipulations. All cloning 

and sequencing procedures were performed with the phagemid vector pBS SK+. 
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Screening of the genomic library 

A rice (Oryza sativa L. cv. Nihonbare) lambda EMB13 genomic library constructed from 

genomic DNA partially digested to about 10 kb fragments with Sau 3AI was a gift from 

Professor Dr. Kunisuke Tanaka, Kyoto Prefectural University. 

The genomic library was screened using the rice root FNR cDNA clone (R ]4) as a 

probe. The probe was labeled and detected with ECL direct nucleic acid labeling and detection 

systems (Amersham) as described in Chapter II. The primary washing solution used for the 

first screening was 0.2 x SSC containing 0.4% SDS. After the first screening, 10 positive 

plaques were obtained from 4 x )05 phage. In the second and the third screening, the primary 

washing solution was changed La 0.1 x SSC containing 0.4% SDS for high stringency. After 

the third screening, 5 positive plaques were obtained which were named GRFNR 5 to 9. Each 

positive clone was digested with several restriction enzymes, subjected to electrophoresis on a 

1.2% agarose gel, transferred to a nylon membrane (Hybond N+, Amersham) and hybridized 

to the probe. All of the 5 clones contained the root FNR gene. 

Clone GRFNR5 was digested with Eco RI and Sac I and the 1.6 kb insert was 

subcloned into pBS SK+ with Eco RI and Sac I site according to Hayashi et aJ. (1986) using a 

Takara DNA ligation kit and transformed into MY 1184. Clone GRFNR5 was also digested 

with Eco RI and Kpn I and the 2.3 kb insert was subcloned into pBS SK+ with Eco R1 and 

Kpn I site and transformed into E. coli MY 1184. In addition, both inserts were digested with 

several restriction enzymes and short inserts were recloned into pBS SK+. Deletion subclones 

were generated using a Takara kilo-sequence deletion kit (Henikoff 1984). All subclones were 

sequenced for both directions using an Applied Biosystems sequencing kit with Taq DNA 

polymerase and -21Ml3, M13RP primers based on the dideoxy chain tennination method 

(Sanger el aI. 1977). 

Primer extension analysis 

Total RNA was isolated from rice roots induced with 10 mM potassium nitrate for 1 has 

described in Chapter Y. An oligonucleotide primer (5'-ATOOCCOATCCfOAGGGAAA-3') 

from positions +47 to +66 from translational start point Met of the rice root FNR gene was 

purchased from Krabou Co., Ltd. The primer was labeled the 5' end with biotin. Double

stranded DNA sequence analysis were performed by the dideoxy chain tennination with Tlh 

DNA polymerase and the oligonucleotide primer using a Toyobo sequence high cycle kit. 
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The 5' end of the rice root FNR mRNA was mapped using the primer extension 

protocol according to Triezenberg (1992). Fifty JAg of total RNA, 10 JAI of hybridization buffer 

(100 mM Tris-HCI (pH 8.3), 15 M potassium chloride and 10 mM EDT A), 4}AI of 6.6 ng/}AI 

oligonucleotide primers and DEPC-lrealed ~O were mixed to a final volume 100 }AI in a 

microcentrifuge tube. The tube was sealed securely and submerged for 90 min at 65 ·C and 

allowed to cool slowly to room temperature for 90 min. The total RNA was precipitated with 

ethanol, !insed with 70% ethanol and mixed with 2]AI of 5 x first strand buffer (250 mM Tris

HCI (pH 83), 375 mM potassIum chloride, 15 mM magnesium chloride), 1 ]AI of 100 mM 

OTT, 1 }AI of 10 x dNTP (2.5 mM each), 5.8 }AI of DEPC-treated H20 and 0.2 ,ul of 200UJ]AI 

superscript™ II reverse lranscriptase (Gibco BRL). The mixture was incubated for 1 hat 42°C 

and denatured the reverse transcriptase for 10 min at 90 0c. RNA degradation was performed 

by adding 0.2]AI of 500 mM EDTA and RNase solution (20 jAg/ml DNase free-RNase A, 100 

JAg/ml salmon sperm DNA, 100 mM sodium chloride) for 1 hat 37 ·C. Finally, 5}l1 of stop 

solution of a Toyobo sequence high cycle kit was added to the mixture and 5 }ll of the mixture 

was applied to electrophoresis. The products were analyzed on a 6% denaturing (8 M urea) 

acrylamide sequencing gel and visualized with a chemilunescent detection kit (Toyobo). 

Results and Discussion 

The rice root FNR gene was isolated by homologous hybridization with the rice root FNR 

cDNA. Five genomic clones named GRFNR 5 to 9 were isolated from 4 x 105 phage of the 

lambda EMB13 genomic library from rice. Southern hybridization analysis and restriction 

maps showed all the clones to be identical. These results and genomic Southern analysis in 

Chapter IV are consistent with the finding that only a single root FNR gene copy is prescnt per 

haploid genome of rice. A representative clone (GRFNRS) was chosen to digest with Sail, 

which gave a 15 kb fragment Further digestion of the DNA with Sac I, Eco RI and Kpn I 

yielded two fragments of 1.6 kb and 23 kb that comprised an entire region of the gene. The 

restriction map of the GRFNRS clone is shown in Figure 6-1. 

Nucleotide and the deduced amino acid sequences of the rice root FNR gene are shown 

in Figure 6-2. The exonlintron boundary follows the AG/GT rule of splice junction 

(Breathnach and Cham bon 1981). The root FNR coding region consists of 6 exons (+ 1/+88, 

+ 186/+242, +558/+893, + 1246/+1465, +1849/+2089 and +2307/+2775) interrupted by 5 

introns (+89/+ 185, +243/+557, +894/+ 1245, + 1466/+ 1848 and +20901+2306). The protein 
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Figure 6-1. Restriction map of the. root fe.rredoxin-NADP+ .oxidoreductase gene of rice. The 
wide bar represents the protein codmg regIOns, the open bar IOtrons, the m~dJUm bar transcnbed 
regions and the narrow bar untranscribed regions. The transcription start site (TS) IS marked 
with a vertical arrow. B, Bam HI; Bg, BgllI; E, Eco RI; H, Hzn dIll; K, Kpn I; P, Pst I; S, Sal 
I; Sc I, Sac I and Sc II, Sac II. 

coding sequence is completely identical with that from the rice root FNR eDNA. The 1st exon 

contains ATG translation start codon. The transit peptide stretches from the 1st to 3rd exon and 

the mature protein is encoded over the 3rd, 4th, 5th and 6th exon. The exons encoding only 

the transit peptide is much shorter (88 and 57 bp) than the remaining exons (336, 220, 241 and 

259 bp). The binding site for Fd is in the 3rd, 4th and 5th exon and FAD binding site stretches 

over from the 3rd to the 6th exons. The NADP+ binding site is located in the 4th, 5th and 6th 

exon and teffilination codon is found in the last coding segment (See Figure 3-1 , for an 

assignment of the functional residues of FNR). 

The transcription start site (TS) was determined by primer extension analysis with a 

synthetic primer complementary to the root FNR gene. The primer extension product was 

compared to the sequence ladders to determine its length. The reverse transcription yielded one 

major extension product of 66 bases (Figure 6-3), indicating that the TS was a nucleotide A that 

locates 64 bp upstream from the methionine initiation cooon (Figure 6-2). 
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gagctcctcatggaggccttga 
tcacatcatgg9gatgtgatcatctgaaacgaagctggctgtttgcaactcatcatatgcctgaagtcaggactcaggactagtccatctgtagttagcc 
taccaaaaggattatacttttagttttacctttaaaaagaaatggcgtgtgccattgaaggataagaaatgtgttggttgtagttaaaaggtactgcttg 
ctatcctgtgatgctgtaaaaatgcaacagaattgcgcagctctctgcacaagtagttctcagcttttggtgaacagtccgaaatggagaaacaaaggta 
aaaacatcagacttacatggctctcttctgtggtgttgcatgacccgattacatttgatgagcatagtaggcccataaaatttgctaccttttggtCctt 
gcctttttttttaattttttttgggtaaatttgcaatgtgatcagtcacatgatggctcattggtgcaagggcaaacatctagccctttgatcacaaagt 
tttttttccccctctatccttaaaaaagttttttttttcgccaagatttgacacattttggcagtaaaatgtccaacagatacacaccggcttgtgcact 
acatgcacacgctgccaactcatgtactgttccaaaaaactaaaaagctaataatatacaagttgtatgtgcatctggctagctccatgggatacatgca 
tctcttcaggccaaaggtgacccttgatgccaccacaaagccatttttatcagcagccatctggagcactcaagctgcagccaccatttctgctagtcaa 
gcaqcca99caacccaaccctctgctgctacctccacctaacccaaaccccctaatctaatcaacatcaaa~~2a:~aaacaaaatctttttttttaa 
attatcaaaccccaaacccaaactctaaaacgaaattactaagcagctaaagcttaaatcaaccccaagag cc ttaatcac9~aaqcagc 
taatagcttaagtcqccccttcc&9cacctcaagaqctcacctcactcctcccccttctctgattctgt~ccccgcctcctcccctcccatctc 
atctcaactcatctcatctcccttctccagatcaaaagacccttgctttccctc8ggatcggccAXGGCGACCGCCGTTGCGTCCCAGgtacgcgccgtc 

MetAlaThrAlaValAlaSerGln 
ctcgcggttttttggatcccctggttgtctgcgctgcgcgatggtgctgagttcBtgggggttcttgtggctgtttctgacacagGTTGCTGTCTCTGCT 

ValAlaValSerAla 
CCGGCTGGCTCGGA7CGCGGCTTGAGGAGT~CCAGgtgcgtggtttggtgcccctgatggtagaacttgcttccttttgggtggaatcctgtg 

ProAlaGlySarAspArgGlyLeuArgSerSerGlyIleGln 
aggattccgcgggcttggattggtcaatgtgtagtaggtggatacaBatctatgggatatatctcagattggttcagtattg8gcgctattgaqagctag 
gcaacgccagatattgctgctgcttgttaattcgatgtgcagatcaattatcagggttcagggttttggtttagtaggctgtttatcctgaattcacagc 
gttcttgaatggt9gtgctaaactatgtgctggatttcattctgtgtgattcctcagGGTA~~AGCTTT~~GGGTTGGCA 

GlySerAsnAsnIleSerPheSerAsnLysSerTrpValGlyT 
CCACf,TI'GGCClTGGGAGAGCAAGGCCACGCGACCGAGGCA!l'GCGl"JU:JlIWGTGC'tCTOCA'rCll'l'CAG'l"l'CAGCAAClCGA.OCGAAAGCAAGGOTCAA 
hrThrLeuAlaTrpGluSerLysAlaThrArgProArgHisAlaAsnLysValLeuCy~etSerVal GlnGlnAlaSerGluSerLysValAl aValLy 
GCCTCTTGA'I"l"l'GGAGAGTGCTAACGAGCCGCCGCTCAAC.ACA!rJU:JIA IU:CAI'II.GGAGCCTTACA.C=CA.U"1'OTCTCGG'rTGAGAGGA'l'CGTAGGC 
sProLeuAspLeuGluSerAlaAsnGluProProLeuAsnThrTyrLysProLysGluProTyrThrAlaThrlleValSerValGluArgIleValGly 
CCCAAOOCTCCAGGAGAGACA'rClCCACAnOTTA'l'TGA'l'C.A'l~GGGAGGGGCAAAGC'A:rGGCATTA!1'TCCTCCAgtaagta 

proLysAlaProGlyGJuThrCysHisIleVallleAspHisGlyGlyAsnValProTyrTrpGluGlyGlnSerryrGlyIleilePropro 
attcctgctttcaatcattttccttgtttaaaatagaacattatgcttatgctttgtcggtttcgttcatagtctatttatctgattggatattgacgat 
tgtctcgttgacactattaattaagaacttacaaagatatagtcggtagtatattaggattatttctgtagacactgtttccaatgttctattcaatggc 
ttaaaattgtaaacctaggtgagaaaacctgctcttgataggagacttgsgtatgtgcacacactattaatacagttccagtggtatctccatgggcatc 
accctcttcactgttctctaaaccctgtgcatttttgcttgttagGGGG&GAACCCGAAGAAGCCTGGTGCACCA~AATGTCCOTCTTTAXTCAATTG 

GlyGluAsnProLyaLysProGlyAlaProHisAsnValArgLeuTyrSerIleA 
~CTACAAGGTATGGAGArTCA'l'TCGA'l'ClGAAGGA.CCACTAI7l"1'TA!1'OTGTGCOCCG'1'GCCG'l"l"I'~A!rGM'CCTGAAAcrGGCAAGGAGGAC=C 

laSerThrArgryrG1YAspSerPheAspGlyArgThrThrSerLeucysValArgArgAlaValTyrryrAspProGluThrGlyLysGluAspProSe 
AAAAAArGGTGTCTGCAOTAACTTCCTA!rGT~CAAGGTTAAAGTGACAGgttagttgatttctttcagcttcagatgaatgcaa 

rLysAsnGlyValCysSarAsnPheLeuCysAsnSerLysProGlyAspLysValLysValThrG 
aggctttgtgagtttcctatgaggttgtttaacttctaattccaagcg9agcaaaattagttgttttagttgcgtttttcctgaaacccacctttggtag 
acaacctatttctgagttcatacataccaacaacaaataaacggttctctgcaacaaaggttccBatagcctctcctctaatatgattatgccccttcta 
caatatgattatcttatcttgctcttttcctttcttactaaagtttgcaatcgcatcttagtttacccttttctttgttagtcatcatgtcctttgtggc 
acatgatggatgccaagtatctcacagtgatttccttctgaacaccagOTCC~OCTCCTGCCTGA~T~GCAACTCA 

lyProSerGlyLysIleMetLeuLeuProGluGluAspPraAsnAJaThrHi 
CA'XCATGATAGCTACTGGCACTGG'l'G'l'TGCTCCA'1"l'CCI7.1'GOC'rACCT~ClTCCCAAAOTACAGAT'l"l'OOTGGCT= 

sIleMetIleAlaThrGlyThrGlyVaLAlaPriPheArgGlyTyrLeuArgArgMetPhBMetGluAspValProLysTyrArgPheGlyGlyLeuAla 
TGGC'.L'CTTCC'l"l'GGT(J'l'TAACACTGACAGCCTTCTCTATClICl'GAAGAGT'TCACAAGCTACCTTAAGCAOl'A!rCCAGAC.AA!rTTCAGgttgctagaca 
TrpLeuPhaLeuGlyVaLAlaAanThrAspSerLeuLeuryrAspGJuGluPheThrSerTyrLeuLysGlnTyrProAspAsnPheAr 
tcatctgtcttgactcttcgtattaattattagtactacatgcatacttggctgsaacagcgccacataatgaacatagatgcctctgtcaactgatgcc 
atcatagaattattgagctttgactttgagagtaccacataaatgagctgtttttgttaagtatattcgtgcatattgctataattgaattgtgttgaat 
ttgtagarATGACAAAGCGCTAAGCAClOGAGCAGAAAAACAAGIICGCTGGCAAaATCl'A!1'C7l'CCAGGACAAGATCGlWGAOTACAGCGACGAGArC'l'TC 

gTyrAspLysAlaLauSerArgGluGJnLysAsnLyaAsnAlaGlyLysMetryrValGlnAspLyslleGluGluTyrSerAspGluIlePhe 
AAGCTCTTGGA1'GGCOOCGCGCACA'lCTACTTCTG'l'GG'l'T'rGAAGClGGA!rGATGCC'rGGGATTCAAGACACCCTCAAGAAA~ 

LySLeuLeuAspGlyGlyAlaHisIleryrPheCysGlyLeuLysGlyMetMetProGlyIleGlnAspThrLeuLysLysVaLAlaGluGlnArgGlyG 
AGAGCTGGGAOCAGAAGCTATCCCAGCTCAAGAAGAACAADCAA!l'OGCACQAGG'l'CTACTAGgatctaagtgtccaagga ttatgat tgt tgcgcag 
luSerTrpGluGlnLyaLeuSerGlnLeuLysLyaAsnLysGlnTrpHiaValGluValryr ••• 
tgaaaaagagaaBacaaaacgcatgatctgatgattcttgtagggtg~atcatcattttttttctgaatatgaatcataaaatcaccca~ 

ttcataagcttctgcatcacatgatgaacgaaaggaagcatqtaactt~gtcactattgcagctggtacc -----

Figure 6-2. Nucleotide sequence of the rice root ferredoxin-NADP+ oxidoreductase gene. 
Sequence in bold capital letters indicate the exons and lower case letters represent the 5' and 3' 
nanking and intron sequences. Numbering of nucleotides begins at the transcription start site 
(designated + 1). The TATA, CAAT and GC motifs are boxed. TGTAA sequences are double
underlined. 
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There is no significant sequence homology in the promoter region between the rice root 

and spinach leaf FNR genes, although the protein sequences are about 50% identical as a whole 

and much higher homologies are conserved in the cofactor binding regions. The lack of 

substantial similarity in the 5' nanking regions between the two genes suggests that the 

transcription regulation might be different between two lypes of the FNR genes. 

Nucleotide sequence of the 5' upstream region of the rice root FNR gene is shown in 

Figure 6-4, A. A TAT A box (TA TAA) and CAA T box (CAA T) are found at -30 and -112 in 

the 5' Jlanking region, respectively, as found in many eUkaryotic promoters. A Sp I-binding 

GC box-like sequence (GGCCGG) is also noticed at -128. 

It is interesting to find that seven GAT A-boxes are located at -940/-937, -899/-896, -

586/-583, -522/-519, -410/-407, -353/-349 and -198/-195 in the root FNR gene (Figure 6-4, 

A). The GAT A motif has been characterized to be the binding site for the transcription factor, 

NIT2, the gene product of N. crassa nit-2 (Feng et al. 1993). Detailed studies demonstrated 

that high affinity NIT -2 binding site of nir-3 gene (the structural gene of NR in N. crassa) 

contains at least two closely spaced GAT A core elements (Chiang and Marzluf 1994a and b). 

NIT2 mediates global nitrogen repression/derepression in N. crassa. 

The promoter region of the root FNR gene contains another possible binding sites, 

TCC..GGA-Iike sequences at three positions (-1118/-1109, -823/-813, -417/-409) (Figure 6-4, 

A). Tec..GGA palindromic sequence has been revealed to be the binding site for the NIT4, 

the gene product of N. crassa nit-4, known as the pathway specific transcription factor of the 

nitrate assimilation pathway in the fungus. But there are 3-5 bp nucleotides between 

TCC..GGA palindrome sequence in the rice root FNR gene in contrast to the nit-3 gene of N. 

crassa in which only 2 bp nucleotides are located between them. It is well established that both 

NIT2 and NIT4 are required to induce the expression of NR and NiR structural genes in N. 

crassa. 

Another characteristic sequence, T -rich or A-rich stretches with at least eight T's or A's 

are present at four positions al697/-679, -6011-594, -572/-563, -211/-203 in the 5' upstream 

sequence of the rice root FNR gene (Figure 6-4, A). This T -rich region is also located at-22/-

13 in the nit-3 gene (Okamoto et al. 1991) and at -399/p381 in the nit-6 gene (structural gene of 

NiR) in N. crassa. (Exley et al. 1993). Although the Tor Aprich regions are suggestive of a 

function in the transcriptional control, their significance is as yet unknown. 
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A FNR gene from rice root (-1122/+99) 
gagc~gccttga 

TCC GOA Ith cbmain 
-1122 

-1100 tcacatcatggggatgtgatcatctgaaacgaagctggctgtttgcaactcBtcBtBtqcctqBaqtcBqgactcBggactagtccBtctgtagttBgcc 
GATAboJ< 

-1000 taccaaBBggBttat.cttttagttttaccttt.BBaaga.atggcqtgtgccBttgaag~ag.BBtgtgttggttgtagttaaaBggtactqctt9 

QATA bo>< --------. 
-~oo c~tgtgatgctgtaa •• atgcaacagaattgcgcBgctctctgc.cBagtagttctcBgcttttggtq.aca~aBBttaa9aaacaaaggta 

TCC .GOA Wt.-dom.m 

-800 aaaBcBtcagacttac.tggttctcttctgtqqtgttgCBtg.cccqattacBtttgatgagc.tBqtBgqcccatBBaatttqctaccttttggtcctt 
T«:h'~ 

-700 gccttttttttta.ttttttttgggtaaatttgcaatgtqatcagtcBcatqBtggctcattggtqcBBgqgcaBacatctBgccctttgatcacaaBg! 
T"",,,,_ tiAfXbOX T"",,,,_ GATAbo>< 

-600 tttttttccccctctatccttaaa.BagttttttttttcgccBagatttgacacBttttggcagtaaaatgtccBBCBgatBcacBccggcttgtgcact 
---- --- --- ~1>Ol< 

-500 acatgcBCacgctgccBBctcatgtBctgttccBBB"BctaBBBagctaataBtBtacaagttgtatgtgcBtctggctagct£9at~atgcB 
GATAbaX TCC (lGAb •• domain 

-400 tctcttcaqqccaaaggtgacccttgatgccaccacaaagccBtttt1!!£BgcBgccBtctggagcBcteBBgctgcBgcCaccattti~~~tcBa 

-300 gcagccaggcaacccaaccctctgctgctacctccacctaaccc88BCcccctaatctaatcaacateaaBBacgaaBaaaacaaaatctttttttttBB 
~bo>< ~~ ~_ 

-200 &t~a.accccaaacccaeactctaaaacqaaattact88qca9ct6aagcttaaatcaaccccaa9a9c~9ttaatcac~taaqcagc 
TATA box 

-100 taataqctt.agtcgccccttccaqcacctca.gagctcacctcactcctcccccttctctgattctgtc~accccgcctcctcccctcccatctc 

atetcaactcatctcatctcccttctccagBteBaaagacccttgctttccctcBggatcggC~GCCaTTGCOTCCCAGgtacgcgccgtc 

H8tAlaThrAlavalAlaS8rGln 

B NiR gene from tobacco (-330/+ 1) 
-330 

-300 

-200 

-100 

cgqatccgagatttgBaBtgaBtgcattgB 
GATA baX G.l.TA baX 

tttc.atttatcaqtcctttaacattaaatcaaBBcctagttagtttttcBtacatacattgatcaattttatgcaaagcgacaaaaatagBtattagta 
G.l.TA box 

acacaacattacatatt.tatctagc.ccatactataatggttggcggctag8ggcagtctgcccttttagccgctagttttgggtgtgaatggccBtcc 
~bax ~bax 

aacgtaBccaaBcat.~tgaccctt.accatgtccaagagtcccctcttaactcttcccaccttgtgc~tagtttccBcactccctcaccg +1 

C NR1 gene from Arabidopsis (-238/+1) 
-238 G.l.T.t.box 

T.fich 'ogion GATAbox ~~;;~:agtBccctcccacOl.iLtJlttgcccacggatcg 
aatccttag.cccgcattttatttttaacttca~gcattagtatttBaaagcaaatatata~ctatgaaataaaaatctcccgccttBaaggcc -200 

-100 C ...... Tbox TATA box 
aaBccttaggatctaggtaggtgggtccctctactcagcgaccacacaaactcacatttg~ttctcctctctcttaatttAttAattattttattta +1 

D NR2 gene from Arabidopsis (-330/+1) 
-330 GATAI>Ol< GATA bo>< 

......... 'ogion ggaBataaccaat gBtagataatBatatat 

tattca.ttgtcatcatttcttagttgacDDDp.aaaetctat t ttte 
aca 9 cgagacgttaaaBgtatttacaaaactactccaacaattcacBtttgt 

tttataaca.atagggacaaaaat ateattttaa c T ...... ,_ CMTbox 
T 9 9 ttattgaataactatgBtcgtttatttttqtcaBacaaatggatggtttatttaattaBgtca 

ATA baX A-r1 ... '9>'1 GATA 
agtcataaqaaaaaat.t.AA.t4qtaagtgt9t<llacnDRftRoattD1I""f:) tc boX 

9 aCBaatggtcccatacgtgtgattcggcac~ttcctaaaagcatac +1 

-300 

-100 

Figure 6-4. Nucleotide sequence of the 51 upstream region of FNR f . ( 
~iR.gene from tobacco (8), and NR1 (C) and NR2 (D) gen~ ro~ nee root A), 
CitatIon is as follows: A (Aoki and Ida 1994) 8 (R ~ene from Arab,dopsis . . Sequence 
1994). ' astogl et al. 1993), C and 0 (Lm et al. 
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GUS gene expression analysis indicated that a -3301+ 1 region of the spinach NiR gene 

promoter directed nitrate-inducible tissue-specific expression in transgenic tobacco (Rastogi et 

aI. 1993). This region contains three GATA-boxes, but no TCe.GGA domain and T-rich 

region as shown in Figure 6-4, B. Lin et al. (1994) also indicated that a -238/+ 1 region of the 

NRJ gene and -330/+ 1 region of the NR2 gene from Arabidopsis directed nitrate-induced CAT 

transcription in transgenic tobacco. The 5' upstream region of NRJ contains three GATA

boxes and a T-rich region, but no TCe.GGA domain (Figure 6-4, C). The 5' proximal region 

of NR2 contains three GATA-boxes, a T-rich region and two A-rich regions, but no 

TCe.GGA domain (Figure 6-4, D). 

It is interesting that several GATA-ooxes wpjch are essential for the nitrate induction in 

N crassa are found in the 5' upstream regions of these nitrate-inducible genes in higher plants 

(Figure 6-4). The existence of a NIT2-like protein named NTLI has been reported in Nieotfana 

plumbiginifolia and its full-length eDNA clone was shown to encode a single zinc-finger DNA

binding domain (Daniel-Vedele 1993) as in the case of the NIT2 of N. crassa (Manluf 1993). 

Thus, it is suggested that NTT2-like transcription factor exists in higher plants and it directs 

nitrate-inducible transcription of the genes in the nitrate assimilation systems. 

Another characteristic sequence, T -rich or A-rich region also exists in the 5' upstream 

regions of the rice root FNR gene, nit-3 (Okamoto et aI. 1991)and niz-6 (Exley et aI. 1993) in 

N crassa and NRl and NR2 in Arabidopsis (Lin et al. 1994) except for the spinach NiR gene 

(Rastogi et al. 1993). 

Several transcription factors which can bind AT-rich region were indicated recently. 

Datta and Cashmore (1989) demonstrated that the phosphorylated transcription factor named 

AT-1 in pea binds to specific AT-rich elements (AT-1 oox) within promoters of certain nuclear 

genes encoding the smaIl subunit of ribulose-1.5-bisphosphate carboxylase and the polypeptide 

components of the light-harvesting chlorophyll alb protein complex. A consensus sequence of 

AA T A TTTTT A IT was deri ved for the AT -1 box. Jacobsen el aI. (1990) demonstrated that 

three different transcription factors recognized short AT -rich DNA sequences were expressed in 

different organs of soybean. One factor (NAT 2) was found to be present in mature nodules, 

another factor (NAT 1) was detected in roots and nodules and the third one (LA T I) was only 

observed in leaves. I t was indicated that the LA T 1 and the NAT 2 bind the core sequence of 

14 bp -TAAA TAATAAAAT AAA in the promoter region of a nodulin gene, N23 by footprinting 

analysis. So, it is suggested that a transcription factor which binds to long stretches of AT-rich 

tracts also exists in higher plants and it directs nitrate-inducible transcription of the genes in 

nitrate assimilation systems .. 

Ritchie et aI. (1994) indicated that the 3' untranslated region (UTR) of the maize root 

FNR cDNA was 50% identical to that of the rice root FNR cDNA and the homologous regions 
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contained the sequence motif, TGT AA. In the 3 1 UTR of the rice root FNR gene, three 

TGTAA motifs are localized (Figure 6-2). A TOT AA motif is found in the 3' UTR of the riee 

embryo FNR eDNA, but no such sequence exists in the 3' UTR of the rice leaf FNR eDNA. 

The results suggest that the TOT AA motif may be located only in the nonphotosynthetic type 

FNR eDNA and the motif might playa role in the cell specificity of gene expression and/or 

nitmte induction. 
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CHAPTER vn 

ANALYSIS OF NUCLEAR PROTEINS WHICH BIND TO THE 5' UPSTREAM REGION 

OF THE RICE ROOT FERREDOXIN-NAD~ Ox] DOREDUcr ASE GENE 

Little is known about the nitrogen regulatory systems in higher plants, but they have been 

extensively studied in the fungi, N. crassa and A. nidulans. Genetic and molecular 

mechanisms responsible for this regulation have been discussed in higher plants (Crawford and 

Arst 1993) and fungi (Marzluf 1981; 1993). The nit-3 gene of N. crassa encodes the first 

enzyme, NR which catalyzes the two electron reduction of nitrate to nitrite in the nitrogen 

assimilation pathway (Marzluf 1981; Solomonson and Barber 1990). The expression of nit-3 

is highly regulated at the level of mRNA content by metabolic signals, nitrogen derepression, 

nitrate induction, the positive acting NIT2 and NIT4 transcription factors (Blakely and Srb 

1962; Fu and Marzluf I 987b; Okamoto et aI. 1991) and the negative acting NMR protein 

(Sorger et a!. 1989). Thus, the nit-3 gene provides an excellent opportunity to examine the 

relationship between transcriptional induction and hypersensitive sites in N. crassa (Brito et aI. 

1993). 

The nucleotide sequence of nit-2 gene was translated to yield a protein containing 1,036 

amino acid residues with a Mr of approximately 1 10 kDa and NlT2 contained a single Cys-X2-

Cys-Xt7-Cys-X2-CyS type zinc finger DNA binding motif (Fu and Marzluf 1987a; 1990a). 

Deletion analysis demonstrated that approximately 21 % of the NlT2 protein at its C-terminus 

could be removed without loss of function (Fu and Marzluf 1990a) and site-directed 

mutagenesis analysis demonstrated that both the single zinc finger motif and the downstream 

basic region of NIT2 protein were critical for its transactivating function in vivo (Fu and 

Marzl uf 1990c). 

The nit-4 gene was isolated and demonstrated to be expressed constitutively to yield a 

very low abundance 3.5 kb transcript and translated to give a protein of 1090 amino acids. 

NIT4 protein consisted of Zn(lI)lCys6 type zinc cluster motif, near its amino acid tenninus 

(Yuan et al. 1991). NIT4 protein also possessed a GIn-rich region and a poly GIn region, both 

of which were near its C-terminus. A NlT4 protein deleted for the poly GIn region was still 

functional in vivo. However, nil-4 function was abolished when both the poly GIn region and 

the GIn-rich domain were deleted. These results suggested that the GIn-rich domain might . . 

function in transcriptional activation (Fu et aI. 1989; Yuan et aI. 1991). 
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It appeared that NIT2 and NIT4 jointly strongly activated nit-3 expression, whereas 

neither factor alone promoted any detectable nit-3 expression (Fu and Marzluf 1987a). The 

physiological significance of NIT2 and NIT4 binding elements of nit-3 gene were estimated by 

analyzing nit-3 mRNA expression of 5' promoter deletion clones and mutation of individual 

NIT2 and NIT4 sites. The results indicated that more than 1 kb upstream of the translational 

start site including two NIT2 and two NIT4 binding sites were required for nir-3 mRNA 

expression (Chiang and Marzluf 1995). 

Another important putative nitrogen regulatory gene, nmr, appears to act in negative 

fashion to repress synthesis of NR and the various other nitrogen metabolic enzymes. In nmr 

mutant strains, nitrogen catabolic genes, e.g., NR was expressed constitutively, even in the 

presence of high concentration of primary nitrogen sources to fully repress synthesis of these 

enzymes (Tomsett et aI. 1981; Dunn-Coleman et al. 1981; Premakumar et al. 1980). The nmr 

gene was isolated (Sorger et al. 1989) and appeared to encode a protein of 488 amino acid 

residues with a Mr of approximately 54.9 kDa (Young et aI. 1990). Recently, a direct 

interaction between the NIT2 and NMR proteins was demonstrated by the use of two different 

experimental approaches, suggesting that NMR carried out its negative regulatory role by 

directory binding to NIT2 and thereby blocking the function of NIT2 by inhibiting its DNA 

binding activity (Xiao et al. 1995). 

It was demonstrated that the FNR mRNA from rice roots was induced by nitrate as 

descri bed in Chapter V and the 5' upstream region of the root FNR gene contain several GAT A

boxes, TCC .. GGA domains and T -rich regions as described in Chapter VI. Thus, these 

findings suggested that the NIT2- and NIT4-like transcription factors exist in higher plants and 

interact with the 5' proximal regions of the FNR gene. I carried out electrophoreic mobility 

shift assay (EMSA) for the nuclear extracts of rice. The results indicated that there are some 

proteins in the nuclear extracts of rice leaf and root, which bind to the 5' upstream regions of 

the rice root FNR gene containing GAT A-box, TCC .. GGA domain and T -rich region. 

Materials and Methods 

Pretreatment of dialysis tubing 

Dialysis tubings were pretreated according to Pohl (1990). Dry dialysis tubing 

(Sankojunyaku) was carefully transferred to 21 of washing solution (100 mM sodium 

bicarbonate containing 10 mM EDT A (pH 7.0»). The whole vessel was placed in a shaking 
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water bath at 60°C. Oentle agitation was continued for 1 h. The incubation was repeated 

with fresh solution and this step was repeated three times. The washing solution was replaced 

with 21 of ion-exchanged and distilled water and the dialysis tubings were washed for 1 h. 

This step was repeated three times. Finally, the tubing was transferred to 1 I of ion-exchanged 

and distilled water including 1 ml chloroform as a preservative and stored at 4°C. 

Preparation of nuclear extracts 

Nuclear extracts were prepared from rice roots and kaves according to Koncz et aI. (1992). 

All experiments were done at 4°C. Total fresh tissues were washed at least three times in 41 

of cold distilled water and hnsed in 21 of nuclei grinding buffer (NOB: 1 M hexylene glycol, 10 

mM PIPES-KOH (pH 7.0), 10 mM magnesium chloride, 0.2% Triton X-100, 5 mM 2-ME and 

0.8 mM PMSF). The tissues were ground with 21 of NOB in a Waring blender and mixed 

gently. The mixture was filtered through 500 pm and 50 pm nylon mesh and the mesh was 

linsed with 500 ml of NOB. The nuclei were sedimented at 2,000 g for 10 min and the pellet 

was resuspended gently in 80 ml nuclei wash buffer (NWB: 500 mM hexylene glycol, 10 mM 

PIPES-KOH (pH 7.0),10 mM magnesium chloride, 0.2% Triton X-100, 5 mM 2-ME and 0.8 

mM PMSF). The mixture was centrifuged 3,000 g for 5 min, removed the supernatant and the 

pellet was resuspended in 20 ml of nuclei lysis buffer (NLB: 110 mM potassium chloride, 15 

mM HEPES-KOH (pH 7.5), 5 mM magnesium chloride, 1 mM OTT, 5 pg/ml antipain and 5 

pglmlleupeptin). Two ml of 4 M ammonium sulfate was added to the mixture in several small 

aliquots with gentle mixing for 30 min and the particulate material was sedimented by 

centrifugation at 100,000 g for 90 min. The protein precipitate was resuspended in NLB, 

adjusted to 0.2-0.5 mg/ml and repeated with ammonium sulfate fractionation to 0.25g/ml. The 

particulate material was sedimented by centrifugation at 10,000 g for 15 min. The pellet was 

mixed in 0.5 m) of nuclear extract buffer (NEB: 70 mM potassium chloride, 25 HEPES-KOH 

pH 7.5,0.1 mM EDT A, 20% glycerol, 1 mM DTT, 5 pglml antipain, 5 pg/mlleupeptin) and 

the mixture was dialyzed 2 h with 4 changes of 500 ml of NEB. The nuclear extract was 

freezed by liquid nitrogen and stored at -80 'c. 

DNA probes for gel retardation assays 

The 5' upstream region (-1122/-131) of the rice root FNR gene was divided in8 fragments and 

the position of each probe was as follows: probe 1 (-4041-131), probe 2 (-668/-405), probe 3 (-
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804/-668), probe 4 (-1122/-805), probe 1 A (-248/-131), probe 1 B (-404/-223), probe 1 C (-

2851-223) and probe NIT4 (-8301-805). Probes I to 7, lA, IB and IC were amplified by PCR 

produce with Taq DNA polymerase using Sal I -Eco RI fragment of the GRFNRS clone (See 

Chapter VI) as a template. Each amplified DNA fragment was purified from agarose-LM 

(Nacalai Tesque). Probe NIT4 was made by annealing two oligonucleotide primers for 90 min 

at 65 DC. Each probe was labeled 3' end with DIG using a DIG oligonucleotide 3' end labeling 

kit (Boehringer Mannheim). 

Gel retardation assays 

EMSA was performed according to Buratowski and Chodosh (1996). Electrophoresis gel was 

a 5% native polyacrylamide gels (37: I acrylamidelN, N'-methylenebis-acrylamide) with 0.5 x 

TBE buffer (1 x TBE: 89 mM Tris, 89 mM boric acid, 2 mM EDT A (pH 8.0». The gels were 

prerun in 0.5 x TEE buffer without recirculation for 60 min at lOY Icm. The nuclear protein 

(316 jig for roots, 93.6 jig for leaves) and 50 ng of DIG-labeled DNA probes were incubated 

for 30 min at 25·C in a buffer containing 12 mM HEPES-KOH (pH 7.9),3.5 mM magnesium 

chloride, 50 mM potassium chloride, 15% glycerol and 2 Jig of poly(dI-dC) before being 

loaded onto the gel. The gels were run in 0.5 x TEE buffer. Probes were transferred to nylon 

membrane (Hybond-N+, Amersham) after electrophoresis and the signals were detected 

according to Nomura and Inazawa (1994) with a DIG DNA labeling and detection kit 

(Boehringer mannheim). 

Results and Discussion 

From 100 g and 242 g of rice leaves and roots, 312 mg and 126.4 mg of nuclear extract were 

prepared, respectively. The DNA-protein interaction buffer was the same as used for nit-3-

NlT2 interaction (Fu and Marzluf 199Gb). Poly(dI-dC) which is 40 fold against probe (50 ng) 

were added in the mixture to prevent nonspecific protein binding. 

Figure 7-1 shows the 5' franking region of the rice root FNR gene. The 5' upstream 

region of the rice root FNR gene was divided into 4 segments corresponding to probes 1 to 4. 

Probe 1 contains two GATA-boxes and aT-rich region. No TAT A-box, CAAT-box and GC

box are localed in probe 1 in order to prevent from binding to the transcription factors such as 

TF-II family. Probe 2 contains three GATA-boxes, a TCC.:GGA domain and two T -rich 
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-1122 -1000 -800 -600 -1 
~-------r~D--U~~&~, ~: ____ ~~~ ____ +-~#~v __ ~1 

~~.---------------------------.. -.----------~.~·'-------~7~ 
pro.be 4 (-1122/-805) 

..... 
Probe NIT4 
( -830/-805) 

probe 3 
( -804/-668) 

-1122 -600 -400 -200 GC-box CMT.box-1 

~I ~~~/~------~:~~-----~I D~-----------SD~--~'11-28~~1-12~?~f~/1 
~~~~ ____________________ ~.~4 ______________________ "~ 

probe 2 (-668/-405) probe 1 (-404/-131) 

probe 1B 
(-404/-223) 

probe 1A 
(-248/-131) 

probe 1C 
(-285/-223) 

Figure 7-1. The 5' franking region of the rice rool FNR gene. The region was divided into 4 segments 
corrcspondina to probesl to 4. Probe ~ was furt?er divided into lA, IE an~ IC. Pro~e !'SIT4 wa~ contained 
in probe 5. U, GATA box (NIT2binding dOlDam); b. . TCC.GGA domam (NIT4 bIDding domam and Q. 
T-rich region. 

regions. Probe 3 contains only a T -rich region. Probe 4 contains two GAT A-boxes and two 

TCC .. GGA domains. EMSA experiments were done to investigate the interaction of these 

segments with the nuclear extracts of rice roots and leaves. The results presented in Figure 7-2 

demonstrated that all of the probes 1 to 4 were interacted with the nuclear extracts of rice roots. 

The results indicated that at least several binding sites of the 5' upstream region (-1122/-131) 

are involved in the interaction with the nuclear extracts of rice roots. Surprisingly, the nuclear 

extracts of rice leaves also contains these proteins, suggesting that these proteins exist in the 

photosynthetic tissues as well as the nonphotosynthetic tissues of rice. Another experiment 

indicate that the interaction with probe 1 and the nuclear extracts of rice leaves is decreased 

when Mg2+ was not added in the reaction buffer (data not shown). These results suggest that 

the nuclear proteins might be expressed constitutively and ubiquitiously in these tissues and 

nitrate signal or sequential signal (for example intercellular cations such as Ca2+, Mg2+ and K+ or 

protein phosphorylation) be able to activate their transcripts. Non-DIG labeled probe competed 

strongly for the nuclear protein binding of all the probes (Figure 7-2). 
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A 
Probe 1 Leaf Root 

P1234PP1234 

Probe 2 Leaf Root 
P1234PP1234 
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Probe 3 Leaf Root 
P1234 P1234 

Probe 4 Leaf Root 
P1234 P1234 
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Pr b lA 
Leaf Root 

P1234PP1234 

Probe IB Leaf Root 
P1234PP1234 
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Probe Ie Leaf Root 
PI234 PI234 

Probe NIT4 Leaf Root 
PI234 PI234 
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B 

Probe 1 

Probe lA 

Probe IB 

Probe Ie 
Probe 2 

Probe 3 

Probe 4 

Probe NIT4 

Nuclear extract 

Leaf 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

Root 
+ 

+ 

+ 

+ 

+ 

+ 

Figure 7-2. A, Electrophoreic mobility shift assay (EMSA) "e,xperiments with 5,' upstr~m 
DNA fragments of the rice root FNR gene. Length and JX>sltlOn of each probe In the 5 
upstream region of the gene are described in Figure 7-1. Lane P, free probe (50 ng); I~ne 1, 
DIG-labeled probes were incubated with 2 ug of poly(dl-dC) and n,uclear extracts ,from, ~ce 
roots and leaves and subjected to polyacrylamide gel electrophoreSIS. An arrow Identifies each 
shifted band. Lanes 2-4, Competition assays, Non-DIG labeled each probe was added as a 
competitor. Oligonucleotide competitors and fold molar excess are described below. Lane 2, 
lane 1 + lO-fold of competitors; lane 3, lane 1 + 30-fold of competitors and lane 4, lane 1 + 60-
fold of competitors in the case of probes 1, IC, 3, 4 and NIT4. On the other hand, lane 2, 
lane 1 + 20-fold of competitors; lane 3, lane 1 + 4O-fold of competitors and lane 4, lane 1 + 80-
fold of competitors when probes IB was used and lane 2, lane 1 + 30-fold of competitors; lane 
3, lane 1 + 60-fold of competitors and lane 4, lane 1 + 9O-fold of competitors in the case of 
probes lA and 2. B, Summary of EMSA experiments: +, probes shifted with nuclear extracts; 
-, probes not shifted. 

Although probe 3 contained neither GA TA-box nor TCC .. GGA domain, the nuclear 

proteins interacted with probe 3, suggesting that there was still another nuclear proteins in 

addition to NIT2- and NIT4-1ike proteins in rice. The T-rich region is a JX>ssible binding site, 

because T-rich region also exists in the 5' upstream region of nit-3 (Okamoto et aI. 1991) and 

nil-6 (Exley et al. 1993) genes of N. crassa and NRl and NR2 gene in A. thaliana (Lin et al. 

1994) and it is detected several transcription factors which can bind AT-rich region (See 
Chapter VI). 

GUS assay experiments of the spinach NiR gene (Rastogi et aI. 1993) and CAT assay 

experiments of two Arabidopsis NR genes (Lin et aI. 1994) indicated that the 5' upstream 

region between -330 and +1 directed nitrate-inducible tissue specific expression the spinach 

60 



NiR gene and two Arabidopsis NR genes in transgenic tobacco. Probe 1 contained -330/+ 1 

region of the root FNR gene, so the region of probe 1 was further divided into two segments, 

one of which contained a GATA-box and a T-rich region (probe lA) and the other carried a 

single GAT A-box (probe IB) (Figure 7-1). EMSA experiments indicated that proteins in the 

nuclear extracts of rice roots and leaves bound to both probes (Figure 7-2). But probe Ie 

which contains no GAT A-box and T -rich region (Figure 7-1) did not react with the nuclear 

extracts of rice roots and leaves (Figure 7-2). The results suggest that at least two binding sites 

exist in -4041+ 131 region of the root FNR gene and probably GAT A-box in both probes plays 

an important role in the binding to the nuclear proteins. 

Probe NIT4 was prepared by annealing two 25 base primers containing a Tec..GOA, 

palindrome sequence in NIT4 binding site (Fu et al. 1995). EMSA analysis for probe NIT4 

indicated that no protein interacted with the nuclear extracts of rice roots, whereas the binding of 

probe NIT4 was observed in the nuclear extracts of rice leaves. The results suggest that there 

is no Tee .. OOA binding proteins in rice roots. Jacobsen et al. (1990) demonstrated that three 

transcription factors recognized short AT -rich DNA sequences expressed in different organs of 

soybean (See Chapter VI). It is interesting that transcription factors have tissue-specific 

expression and control the expression of the enzymes in nitrogen assimilation systems in 

photosynthetic and nonphotosynthetic tissues. 
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CHAPTERVm 

CONCLUSION 

(1) 
Three FNR eDNA clones were isolated from eDNA libraries of rice leaves, roots and embryos 

and their nucleotide sequences were determined. The FNR cDNA from the monocot leaves 

was isolated for the first time. The rice leaf FNR cDNA has similar characteristics in the 

deduced amino acid sequence and Mr to the other leaf FNR cDNAs from higher plants. The 

rice root FNR eDNA was isolated for the first time from the nonphotosynthetic tissues of higher 

plants. The rice embryo FNR cDNA is the first report in plant embryos. 

The rice FNR genes are expressed in a tissue- or organ-specific manner and these gene 

products may be related to specific function of each tissue of rice. Expression of the FNR 

genes may be regulated by different mechanisms such as photoinduction, nitrate induction and 

developmental stage in each tissue in rice. 

(2) 

Comparison of the predicted amino acid sequences of three FNR cDNAs revealed that leaf FNR 

has only 49% identity with the root and embryo counterparts in their mature proteins. On the 

other hand, root FNR has 90% identity with the embryo enzyme, indicating that they are 

analogous enzymes as a heterotrophic FNR. Sequence homology of the transit peptide also 

has this tendency, i.e., the transit peptide of leaf FNR has 28 and 26% identity with that of the 

root and embryo counterparts, respectively, whereas the transit peptide of root FNR has 57% 

identity with that of the embryo enzyme. 

A phylogenetic tree was constructed, based on amino acid sequence homology of FNRs 

whose sequences are available at present. Phylogenetic analysis can divide FNRs into 4 

groups (group I, FNRs from photosynthetic tissues of higher plants; group II, 

nonphotosynthetic tissues; group III, green algae and group IV, cyanobacteria) with the 

exception of Cyanophora FNR Amino acid identities within each group I and group II are 

more than 80%, whereas sequence homology between group I and group II are less than 50%. 

Both group I and II are so highly conserved that their sequence homology within the group can 

not diff erenliate the monocot and dicot FNRs. Group I V has a low identi ty to group I as well 

as to group II, suggesting that cyanobacterial FNR appeared at first in the course of evolution 

and plant FNRs divided independently into photosynthetic and nonphotosynthetic FNR. 
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(3) 

Genomic Southern hybridization analysis suggested that the leaf, root and embryo FNR gene is 

a single copy gene, respectively. When the rice leaf FNR cDNA was used as a probe, a single 

band appeared in 5 different restriction enzymes digests. With the use of the rice root and 

embryo FNR cDNAs as a probe, 1 to 3 bands appeared in each digest possibly due to cross 

hybridization, but their hybridization intensity distinguished whether a given band came from 

the root or em bryo FNR gene. 

(4) 
The root FNR mRNA was induced rapidly after the addition of nitrate in less than I h with 

similar patterns to those known for NR and NiR in higher plant roots, suggesting that rool FNR 

is a member of the nitrate-inducible enzymes in the nitrate assimilation systems in rice roots. 

The leaf FNR mRNA was induced rapidly by light. 

(5) 
A genomic clone encoding the rice root FNR was isolated and the nucleotide sequence was 

determined. Sequence analysis indicated that the root FNR gene consists of 6 exons separated 

by 5 introns. 

Seven GA TA-boxes and three TCC..GGA domains are located in the 5' proximal 

regions of the root FNR gene which are NIT2 and NIT4 binding sites in the NR and NiR genes 

of N. crassa. Another binding site, T-rich region is observed four times in the promoter 

region of the gene which was present in the nit-3 and nit-6 genes encoding NR and NiR in N. 

crassa, respectively. 

(6) 
Some proteins in the nuclear extracts of rice roots interacted with the promoter region of the root 

FNR gene containing GATA-box, TCC..GGA domain and T-rich region (probes 1 to 4). 

These proteins existed also in the nuclear extracts of rice leaves, although the root FNR mRNA 

was not expressed in the photosynthetic tissues. Probe 1 was further divided into two 

segments, probes lA and lB, both of which contained a GAT A-box. EMSA experiments 

indicated that proteins in the nuclear extracts of rice roots and leaves bound to both probes. 

The results suggest that GAT A-box may playa role in the binding to the nuclear proteins. 

Probe IC contained neither GATA-box, TCC..GGA domain norT-rich region. Probe lC

protein complex was not observed in the nuclear extracts of rice roots and leaves. The results 

suggested a possibility of the existence of NIT2- and NIT4-like proteins in rice. 
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Probe NIT4 is a 25 base DNA fragment which contains a TCC .. GGA domain. This 

probe did not interact with the root nuclear extracts, but with the leaf nuclear extracts, 

suggesting that NIT4-like protein exists not only in fungus but also in rice leaves. 

, 
, 
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