
i Identification of the bioactive peptides in the rat brain with the hydra 

bioassay system and analysis of their functions 

===~- --- ---- -

Yasuko Manabe 

2001 

8 1 8 



Identification of the bioactive peptides in 

the rat brain with the hydra bioassay 

system and analysis of their functions 

Yasuko Manabe 

2001 



CONTENTS 

GENERAL INTRODUCTION 

CHAPTER I Construction of screening 

system for bioactive peptides 

with the hydra bioassay 

CHAPTER I I Identification and determination of 

transforming growth factor-beta 

like activity in the rat cerebrospinal 

fluid after exhaustive exercise 

CHAPTER I I I Studies on a bioactive substance 

in rat cerebrospinal fluid after 

stimulation by an aversive 

quinine t a s t e 

Section 1 Identification of a bioactive substance 

. . . 1 

. . . 6 

in rat cerebrospinal fluid after 

stimulation by an aversive quinine taste 

Section 2 

SUMMARY 

using the hydra b i 0 ass a y 

Effect of diazepam binding inhibitor 

on the fluid intake and preference 

in m ice 

ACKNOWLEDGEMENTS 

• •• 3 4 

.. · 5 1 

· · · 6 2 



TBF 
GSM 
PIPES 

TGF-6 
CSF 
CRF 

-I a CSF 
" DBI 

CMCsaline . 
I. p . 
. 
I.C.V. 

FG7142 

ABBREVIA TIONS 

tentacle ball formation 

S-methylglutathione 

piperazine-N ,N'-bis-42-ethanesulfonic acid) 

sodium salt. 

transforming growth factor beta 

cerebrospinal fluid 

corticotropin-releasing factor 

artificial cerebrospinal fluid 

diazepam binding inhibitor 

saline containing 0.5 % carboxymethyl cellulose 

intraperitoneall y 

intracerebroventricularly 

N ~eth y I-B-carboline-3 -carboximide 
! 

I 
) 
i 

l 
:I , 
l 
J 
l 
w 

i 

~) '-,// 
,/ 



GENERAL INTRODUCTION 

Central nervous system is the most important system in the vertebrates. Information 

processing system in the brain is so complicated that it has not been known well yet. We need 

much multidirectional research to elucidate that system. We focused on neurotransmitter, which 

play an important role in the information processing system in the brain. The releasing rate of 

neurotransmitter varies with the external stimulation, and the concentration of neurotransmitter 

in cerebrospinal fluid (CSF) reflect the change of physiological condition. Thus, we tried to 

elucidate the variation of neurotransmitter in CSF in connection with the physiological change. 

However, the stumbling block has been a lack of studying method. There is no way to screen a 

minute amount of bioactive substance in CSF. 

Hydra bioassay system makes it possible to detect peptide-like substances (Hanai, 

1981). This assay utilizes a tentacle ball formation (TBF), a component of the feeding response 

of hydra, elicited by S-methylglutathione (GSM). TBF elicited by GSM was modulated by a 

number of biologically active pep tides in a specific way to individual peptides (Fig. 1), and is 

useful in investigating biologically active peptides in a complex biological sample (Hanai et aI., 

1987; Hanai et aI., 1989; Manabe et aI., 2000). In this assay system, peptides and other 

proteinaceous substances primarily produce the most profound modulation, while catecholamine 

and other low molecular weight neurotransmitter substances have no effect. We applied the 

hydra bioassay system to explore a possible biologically active substance in connection with the 

physiological change. 

Fig. 1 TBF of Hydra. (left) Resting Hydra (not stimulated by GSM). (middle) Hydra 

showed TBF by GSM. (right) The suppression of the TBF by the biologically active peptide. 

At beginning of this study, we tried to construct Hydra bioassay system to deal with 

CSF. Hanai et aI. has already constructed the assay system (Hanai, 1981; Hanai, 1990; Hanai, 

1995; Hanai et aI., 1998). However, the observation of TBF is sensitive to assay condition 

such as temperature, water, and quality of feed. Careful and prompt observation of TBF is 

required to discriminate TBF despite of any assay condition. Thus, we constructed the best 



condition for assay. 

Second, we applied this assay to find a possible biologically active substance relevant to 

fatigue. Perception of fatigue occur within the brain, these fatigue named central fatigue (Bailey 

et aI., 1992; Bailey et aI., 1993; Blomstrand et aI., 1988; Blomstrand et aI., 1989; Davis et aI., 

1997; J akeman, 1998; N ewsholme et aI., 1991). It was proposed in general that the cause of 

this fatigue was related to the increase of serotonin level in the brain. However, fatigue was 

integral phenomenon, hence we assumed that the perception of that was not only the change of 

neurotransmitters (especially serotonin) but also participation of the some factors. We have 

reported that the injection of high molecular weight fraction of CSF from rats after the 

exhaustive physical exercise into the brains of sedentary mice decreased the spontaneous motor 

activity, indicating that a high molecular weight component also may be responsible for the 

decrease in the motor activity of mice (Inoue et aI., 1998). Thus, we tried to identify the 

responsible biologically active component by using the hydra bioassay to test biologically active 

substances. 

Third is a study about relationship between a bitter taste and a substance in the brain. At 

present, dopamine (Mark et aI., 1994; Martel et al., 1996; Schneider, 1989), opioids (Doyle et 

aI., 1993; Levine et aI., 1985; Rideout et aI., 1996) and benzodiazepines (Berridge et aI., 199,5; 

Cooper, 1982; Gray et aI., 1995) affect the palatability of foods, while studies of substances 

released in the brain after stimulation by an aversive taste are quite limited. Thus, we searched 

for a substance released in the brain from CSF of rats after they had experienced a quinine-HCI 

solution using hydra bioassay. 

This study was undertaken to identify the released peptide in CSF that was related to 

physiological change using the hydra bioassay. (1) What is the released substance related to 

fatigue? and (2) Can the sensation of aversive taste explai~ the substance in the brain? 
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CHAPTER I Construction of screening system for 
bioactive peptides with the hydra bioassay 

Introduction 

S-methylglutathione CGSM), a stimulant as potent as the reduced glutathione, elicited 

tentacle ball formation (TBF), a component of the feeding behavior of Hydra, which was 

modified in the presence of various peptides. Of all the components of the Hydra feeding 

behaviors, only TBF was modified in the presence of various peptides. Tentacle ball formation 

has an interesting feature to be sensitively modulated by various biologically active peptides 

including platelet-derived growth factor (Hanai et al., 1987), acidic fibroblast growth factor 

(aFGF) (Hanai et al., 1989). The modulation (mainly suppression) was observed at different 

stimulatory concentrations of GSM. These previous observations were obtained with Hydra 

under different culturing conditions from the present. At present the trypsin treatment of live 

Hydra is required to observe the TBF CHanai and Matsuoka, 1995). It is likely that a subtle 

change in culturing conditions of Hydra affects behaviors elicited by GSM since GSM induces 

so many different, but mutually related behavioral components in Hydra. 

In this study, we report the culture conditions of Hydra, under which TBF occurs 

efficiently as the TBF, and at the same time does the modulation of the response by aFGF and 

other synthetic peptides. Further, we describe a novel effect of TGF-B; it eliminated the 

suppression of the TBF caused by other biologically active substances, while almost all 

substances examined suppressed the TBF. We also examined the effects of TGF-B and closely 

related peptides on the TBF in detail. 

Materials and Methods 

Hydra culture 

Hydrajaponica was cultured as described before (Hanai, 1998). It was fed every two 

days with Artemia naupli (Argentemia Gold, Argent, Redmond, W A), which was hatched in 

solution of 30 gIL common salt (>99% NaCl, Japan Tobacco, Tokyo, Japan) containing 1 nglL 

ZnCl2 and 0.3 gIL LiCI (except for the experiment examining salt compositions, see below) by 

aeration for 1 day at 28-30 0c. A portion of Hydra were transferred to a new bat from the mass 

culture bats for behavioral assay, and cultured for another 4 days before the behavioral test. 

These Hydra were fed on the first and the third day with Artemia naupli which were hatched in a 

solution of 30 gIL common salt supplemented with 4.0 gIL of MgC1206H20 by aeration for 1 

day at 28-30 °C. Hydra, which was fed with Artemia hatched in the media supplemented with 

MgCI2, showed the TBF that was more easily modulated in the presence of peptides. 

6 



Effect of salt composition of Artemia hatching solution 

Artemia were hatched in the solution containing 30 gIL common salt (from Japan 

Tabacco mentioned above), 0.3 gIL LiCI, and one of following metal salts 10 nglL: NaV03 , 

MnCl2"4H20, FeCl386H20, CoCl2-6H20, NiC12·6H20, CuS04
e 5H20, ZnC12 , NaSe03, and 

Na2Mo04 . The effects of the varied concentrations of ZnCl2 were examined in the presence and 

the absence of 0.3 gIL LiCl. The TBF of Hydra fed with Artemia prepared in the specified salt 

solution was examined within 10 hr after trypsin treatment (crystallized, porcine pancreas, 

Wako Pure Chern., Osaka, Japan; 100 pg/ml, 10 min) at GSM concentrations of 0.1 and 10 /-1M 

as described below. In the course of this experiment, Hydra of mass culture were fed with 

Artemia that had been hatched in the common salt solution without any supplements. 

~xamination of conditions of trypsin treatment 

Hydra were treated with trypsin at a concentration specified for 10 min in the buffer, 

mM HEPES, 1 mM NaHC03, and 1 mM CaCl2 (pH 7.7) (HEPES-buffered BC, Hanai et a!., 

1995). After the treatment, Hydra were kept in 1 mM NaHC03 , 1 mM CaC]2 after a brief rinse 

until subject to the behavioral assay. After a specified period of time, 10 Hydra were transferred 

in a 35 mm dish containing 2 ml of PIPES solution (1 mM PIPES, 1 mM CaCI2 , pH 6.2), and 

the response to 10 /-1M GSM was examined in the presence and the absence of 1 pg aFGF 

(TOYOBO, Osaka, Japan) as described below. 

Examination of the TBF 

After a rinse, 10 Hydra were transferred in the 2 ml of PIPES solution (1 mM PIPES, 

1 mM CaCl2 , pH 6.2) containing a test peptide in 1 !-ll of 0.2% PRIONEX (Merck, Darmslat, 

Germany). The dish was placed on the stage of a binocular microscope, which was kept at 20 

DC by circulating temperature-regulated water. After 5 min, a small amount «10 /-11) of 

concentrated GSM solution was applied to stimulate Hydra to a final concentration of 0.1, 0.3, 

3, 10, and 50 /-1M. At these stimulant concentrations, we observed the largest suppression by 

various biologically active substances (Hanai et a!., 1987). After a gentle swirl, the response 

was observed with the binocular microscope (x8); the number of Hydra that showed TBF was 

counted at each minute for lO min. The response was sum of Hydra exhibiting TBF each minute 

from 6 to 10 nun divided by the total number of Hydra. (Hanai and Matsuoka, 1995). 

Rat CSF sampling 

Eight -week old male Sprague-Daw ley rats (Japan Charles Ri vel', Yokohama, Japan) 

were kept in a temperature (22 + 2 DC) and humidity-controlled environment on 12: 12 light-dark 

cycle (on: 1800-0600). Food and water were available ad libitum. Rats were fasted overnight 

the day before the experiment. The rats were anesthetized with pentobarbital and CSF was 
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collected from the cisterna magna. 

All animals received humane care as outlined in the Guide for the Care and Use of 

Laboratory Animals (Kyoto University Animal Care Committee according to NIH #86-23; 

revised 1985). 

Development of modulation by biologically active peptides on the TBF 

Tested peptides were aFGF, basic fibroblast growth factor, platelet-derived growth 

factor (Becton Dickinson Laboware, Bedford, MA), calcitonin gene related peptide (human), 

cholecystokinin tetrapeptide (30-33), cholecystokinin octapeptide (26-33, non-sulfated form), 

corticotropin releasing factor (CRF, human), growth hormone releasing factor (human), 

neuropeptide Y (human), and substance P (human). All synthetic peptides were products of 

Peptide Institute Inc. (Osaka, Japan). 

The effect of TGF~f3 on the TBF 

CRF was used to suppress the TBF because of its availability and stable suppressive 

effect at the highest GSM concentration (50 /-1M). Mixtures of CRF (l ng) and TGF-Bl, -2 or-3 

(1 ng) were added to the Hydra assay medium, and the TBF was observed at 50 /-1M GSM 

concentration. 

The effect of active TGF~l or latent TGF-j31 on the TBF 

Latent TGF-B1 (recombinant human latent TGF-B1, R&D Systems, MN, USA) (1 ng) 

or active TGF-B I( 1 ng) was added to the Hydra assay medium, and the TBF was observed at 

each of the five GSM concentrations. When suppression-eliminating effect was examined at all 

stimulating conditions, we used 1 /-11 of rat CSF diluted to 10
4 

with 0.2 % PRIONEX solution 

as a suppressor of the TBF. Rat CSF, which would contain various biologically active 

substances, was strongly suppressive at each of the five GSM concentrations as observed 

previously (Hanai et al., 1989; Manabe et al., 1999 manuscript in preparation). A mixture of 

latent TGF-BI or active TGF-Bl and diluted rat CSF was also examined. 

embers of TGF~ supelfamily on the TBF 

xamined the effects of TGF-B 1, BMP4 (recombinant, Xenopus laevis, a kind gift 

from Dr. Naoto Ueno) (Nishimatsu et al., 1992), GDNF (human glial derived neurotrophic 

~ .... ~. factor, Alomone Labs Ltd., Jerusalem, Israel), inhibin (human follicular fluid, Biogenesis Ltd., 

. ~,) : 0/ 'V: Poole, England), and activin A (recombinant bovine activin A, Innogenetics NY., Zwijndrecht, 

(,4 !.' ~ 1 Belgium). The stock solutions of these peptides were prepared according to the manufacture's 

directions, and used after dilution with 0.2 % PRIONEX. Peptides (l ng) were added to the 

Hydra assay medium individually, and the TBF were observed at the each of five GSM 

concentrations. 
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Statistics 

All statistical tests were done with use of StatView (SAS Institute Inc., Cary, NC). 

Results 

Effect of metal ions in Artemia-hatching solution on the TBF 

In preliminary experiments, we observed that the salt composition, in which solution 

Artelrlia had been hatched, affected the TBF of Hydra: The common salt from Japan Tabacco 

was better than the reagent grade NaCl. Then we assumed that minor heat-stable components 

contained in the salt had a good effect on the TBF. Metal salts, which were contained in the 

biological tissues as cofactors for transport proteins and enzymes, were examined. 

Various salts were included into the Artemia hatching solution. Multivalent cations such 

as Fe
3
+ or Zn

2
+ effectively potentiated the TBF in response to 0.1 ).lM GSM (Fig. 1). Similar 

capability of these ions was observed in the response to higher concentrations of GSM, though 

the effect was less apparent (data not shown). This effect was stronger when LiCl was also 

included especially at lower concentration of ZnCl2 (Fig. 2). After extensive examinations, 1 

ng/L ZnCl2 and 0.3 gIL LiCI were included in the common salt. Hydra fed with Artemia hatched 

in the solution containing FeCI, tended to show the TBF less modulated by biologically active 

substances (unpublished observation). 
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Fig. 1 Effect of various metal ions included in the Artel1lia hatching solution on the response of TBF of 

Hydra. Specified metal compounds (J 0 ng/L) were included in the Artemia hatching solution (30 giL 

common salt and 0.3 giL Lie!). Hydra was fed with Artemia 2 times every other day before tests: none, 

control response of hydra, which was fed with Artemia hatched in the common salt solution (30 giL) without 

any supplement. Hydra were stimulated by 0.] flM GSM. Values are means ± S.D. (n=3-7). Statistically 

significant from none by Dun net test (*; p<0.05, **; p<O.O]). 
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ZnCl2 ([lg/L) 

Fig. 2 Effect of ZnCl2 and Liel included in the Artemia hatching solution on tentacle ball formation. 

The concentrations of Znel2 were varied in the presence of 0.3 giL Liel (closed circle) or in the absence 

(open circle).Hydra were stimulated at 10 flM GSM. The vertical axis is the response value. Values are, 

means ± S.D.(n=6-8). The group of GSM response in the presence of Lie] is significantly different from· 

that in the absence of Liel (p<0.05, ANOV A, difference of any pair at the same Znel2 concentration was 

not significant by multiple comparisons). 

Development of modulation by biologically active peptides on the TBF 

When Hydra were treated with trypsin at concentrations lower than 1 iJ.g/ml for 10 

min, Hydra developed a new repertory of glutathione-induced behavior, TBF as reported earlier 

(Hanai, 1998; Hanai and Matsuoka, 1995). When the concentration of trypsin was 100 pg/ml, 

this response was sensitively suppressed by acidic fibroblast growth factor for successive more 

than 8 hours (Table 1). When trypsin concentration was 10 pg/ml, the onset of the suppression 

~ retarded a few hours. On the contrary, when the trypsin concentration was 1 ng/ml, the 

~was observed for the first few hours, after that the suppression disappeared. 

~amined the TBF at each of the 5 concentrations in the presence of platelet-derived 

growth factor, aFGF, and basic fibroblast growth factor (Fig. 3). Essentially the same 

suppression was observed for trypsin treated Hydra in the presence of these factors as reported 

earlier in which experiments any treatment of Hydra such as trypsin treatment, was not required 

to observe the TBF because of unknown environmental reasons (Hanai et al., 1987; Hanai et 

al., 1989). Then the sensitivities to the biologically active substances developed by the trypsin 

treatment appear to be equivalent to that observed previously without any treatment. 

We also examined the effect of some synthetic peptides on the TBF. Figure 4 shows the 

suppression for calcitonin gene related peptide, cholecystokinin peptides, CRF, growth 
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hormone releasing factor, neuropeptide Y, and substance P. The TBF was examined in the 

presence of one of these peptides at a concentration of 0.5 ng/m!. The minimum concentration of 

the peptide at which the suppression was observed was 0.5 fg/ml for CRF. The TBF in the 

presence of synthetic peptides also confirms that specific suppression occurs only on the 

response stimulated by specific stimulatory GSM concentrations depending on each of 

individual peptides. 

Table 1 Development of factor-sensitivity of the response in Hydra potentiated by trypsin 

Response 

+aFGF control 

h Average+SD n Average+SD n 

potentiated by 10 pg/ml trypsin 

2 3.52+0.77 5 3.58+0.17 4 

4 3.30+0.48 5 3.60+0.52 4 

6 1.62+0.63 5 3.35+0.37 4 p<0.05 

8 1.38 +0.51 5 3.23+0.24 4 p<O.Ol 

potentiated by 100 pg/ml trypsin 

0.5 2.80+0.41 4 3.58+0.17 4 p<0.05 

1 1.86+0.21 5 3.88+0.25 4 p<0.01 

2 1.86 +0.67 5 3.48 +0.25 4 p<0.05 

5 1.84 +0.40 5 3.55+0.21 4 p<0.05 

8 1.60+0.33 5 3.30+0.08 4 p<O.Ol 

potentiated by 1 ng/ml trypsin 

0.5 2.68+0.64 5 3.63+0.32 3 

1 1.98 +0.37 5 3.53+0.48 4 p<O.Ol 

3 2.38 + 1.00 5 3.30+0.24 4 

5 3.26+0.67 5 3.48+0.49 4 

8 3.42 +0.51 5 3.70+0.32 4 

Statistical analysis was paired t-test (2 tailed). Animals were treated with trypsin at specified 

concentrations for 5 min in BC solution, and then they were kept in BC solution without trypsin for 

specified time (h). Animals were stimulated with 10 ).l M GSM in the presence of 0.1 pg/ml aFGF 

(+aFGF) or in the absence of aFGF (control). 
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The effect of TGF~fJ on the TBF 

CRF suppressed the response to 50 ~M GSM (Fig. 5). But when TGF-B2 was 

included in the medium at the same time, this suppression by CRF was eliminated. Three 

distinct forms of TGF-B have been identified in mammals (TGF-B1, 2, 3) (Massague, 1990). 

The suppression by CRF was eliminated to a similar extent by TGF-Bl, TGF-B2 or TGF-B3, 

and no difference in suppression-eliminating effects was observed among TGF-B isoforms (Fig. 

5) . 

We examined the suppression-eliminating effect of TGF-B1 on other stimulating 

conditions. This time, we used the rat CSF as a suppressor, because CSF was suppressive on 

all the stimulatory conditions (Hanai et al., 1989; Manabe et al., 1999 manuscript in 

preparation).Different TGF-Bl concentrations were required for the suppression-eliminating 

effect to occur depending on the stimulating conditions (Fig. 6): >200 fM for the response at 

O.l).lM GSM; >20 fM at 0.3 ~M GSM; >0.2 fM at 3 ).lM GSM; >20 fM at 10 ~M GSM; >0.06 

fM at 50 ~M GSM. The response to 50 ~M GSM was the most sensitive to TGF-Bl. 

4.'.,...-----------------, 

1 

Control CRF CRF CRF CRF CRF CRF 
+ + + + + 

TGF-B2 TGF-B2 TGF-B2 TGF-B I TGF-f:l3 
(001 pg) (0.1 pg) (I pg) (0.01 pg) (001 pg) 

Fig. 5 The suppression-eliminating effect of isoforms of TGF-B on the CRF 

suppression of the GSM response at 50 fl.M GSM. TGF- BJ, -2 and -3 iso[orms produced 

similar suppression-eliminating effects on the suppression by CRF. Control response 

was observed in the presence of the diluent, 0.2% PRIONEX (1 fl.1). Values are means ± 
S.D.(n=5). **; Significantly different ii'om control by Dunnet test (p<O.OJ). 
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Fig. 6 Concentration-dependent effect of TGF- 13 I at each of the five GSM 

concentrations (representative result). The GSM response was examined in the 

presence of rat CSF and a specified concentration of TGF-I3I. Elimination of GSM 

response suppression was observed at concentrations of TGF-13 higher than 200 1M 

(0.1 flM GSM), 20 fM (OJ 11M GSM), 0.2 tM (3 flM GSM), 20 fM (10 flM 

GSM) and 0.06 fM (50 11M GSM). 

The effect of active TGF-jJl or latent TGF-j31 on the TBF 

Latent TGF-Bl did not suppress the TBF as active TGF-Bl did (Fig. 7). To examine 

the suppression-eliminating effect of latent TGF-B 1, we studied the mixture of latent TGF-B 1 

and rat CSF. When the TBF was examined in the presence of a mixture of active TGF-B 1 and 

rat CSF, the suppression by CSF was greatly reduced (Fig. 8), while latent TGF-Bl was not 

able to eliminate the TBF suppression caused by rat CSF, indicating that latent TGF-Bl was 

ineffective. Apparent stronger suppression on 0.3 11M TBF in the presence of CSF and latent 

TGF-J31 (Fig. 8) may be an artifact derived from different batches of CSF samples in the control 

experiment. 
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TGP- 13 I on the GSM response. The GSM response wm 

observed at each of the five GSM concentrations. Control 

response was observed in the presence of the diluent, 0.2% 

PRIONEX (I ).11). No samples had an effect on the GSM 

response. Values are means ± SEM (n=6-8). 
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Fig. 8 The suppressive activity of CSP, CSP+active TGP-BI (10 pg), CSP+latent TGP-Bl (1 ng) 

on the GSM response. The suppressive activity was expressed as the maximum dilution at which the 

suppression of the GSM response was observed. CSP+latent TGP-Bl gave a similar response to CSP 

alone. Values are means ± SEM (CSP; n=9, active TGP- 13 I; n=6, latent TGP- B I; n=5). *' 

Significantly different from CSP by Dunnet test (p< O.OJ ). 

The effect of members of TGF~f3 supel:/amily on the TBF 

TGF-B alone did not show the suppressive effect on all the TBF examined, while 

TGF-J3 superfamily peptides showed the suppressive effect, that was totally different from the 

effect of TGF-B 1 (Fig. 9). The suppression by these peptides was observed at concentrations 

higher than 5.8 fM (BMP4), l.7 pM and O.17fM (GDNF, 3 ~M GSM and 10 ~M GSM 
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respectively), 0.2 aM (activin), 1.6 x 10-3 aM (inhibin) (Fig. 10). None of TGF-B superfamily 

peptides showed the ability to eliminate the suppression of TBF by rat CSF (data not shown). It 

appears unlikely that a peptide suppresses a component of TBF and the same peptide eliminates 

the suppression of other components of TBF by other peptides. 
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~T ~ 
3.0 .1 ~ ~ 

1. = 
2.5 

2.0 

(b) GDNF 

"T 

(d) Inhibin 

T 
J. 

** ** 

1 

(f) Control 

1.5~--'---'---'---'---'---~---'---'---'---'---'--~ 
0.1 0.3 3 10. 50 0.1 0.3 3 10 50 

GSM C/.lM) 

Fig. 9 The TBF in the presence of a member of the TGF-B superfamily (1 ng). (a) BMP4 (b) GDNF (c) 

activin (d) inhibin (e) TGF-B 1 (f) contro!' The response was observed at each of the five GSM concentrations 

specified in this figure. Control response was observed in the presence of the diluent, 0.2% PRIONEX (I Ill) 

alone. Except for TGF- B 1, members of TGF-B superfamily suppressed the TBF at the specified GS]\! 

concentrations. Vertical axis is response, and horizontal axis is GSM concentration. Values are means ± SEM 

(n=5-6). **: Significantly different from control response by Student's t test (p<O.Ol). 
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Fig. 10 The effect of BMP4, GDNF, activin and inhibin at different concentrations on TBF. BMP4; 

suppression of the TBF at 10 flM GSM was observed at BMP4 concentrations greater than 5.8 fM. 

GDNF; suppression of the TBF at 3 flM and J 0 )JM GSM was observed at GDNF concentrations higher 

than J.7 fM and 0.17 1M, respectively. Activin; suppression of the TBF at 50 flM GSM was observed at 

activin concentrations higher than 0.2 aM. Inhibin; suppression of the TBF at 50 )J M GSM was 

observed at inhibin concentrations higher than J.6 x 10,3 aM. 
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Discussion 

In this study, the conditions for the TBF were examined in detail. Hydra, which fed 

with Artemia hatched in the salt solution supplemented with ZnClz' showed the strong TBF after 

the trypsin treatment. The TBF was modulated by a number of biologically active peptides under 

an appropriate condition of the trypsin treatment. 

Direct inclusion of ZnClz into the culturing medium was poisonous to Hydra at higher 

concentrations or ineffective at lower concentrations (unpublished observations). It was 

effective only when ZnClz was given through food though we did not examine ZnCl2 levels in 

Artemia. It is noteworthy that Zn deficiency leads to hypogeusia in human (Atkin-Thor et aI., 

1978), though no reason is conceivable for an apparent common requirement of Zn both in 

human and Hydra at present. A Zn-metalloprotein, gustin, from human parotid is reported to be 

carbonic anhydrase IV, and to correlate the loss of taste (Thatcher et aI., 1998). It is also 

interesting to note that incubation of Hydra with bicarbonate solution after trypsin treatment is 

important to observe TBF (unpublished observation). 

A lot of biologically active substances such as nitric oxide (Colasanti 1995; Colasanti, 

1997), arachidonic acid and eicosanoids (Pierobon, 1997) have been reported to modulate ,the 

feeding response of Hydra. The effect of peptides on the TBF is outstanding: Large number of 

biologically active peptides may suppress the TBF in a specific way depending on individual 

peptides. Other peptides that were not examined in this study would also suppress the TBF. On 

the other hand, the low molecular weight classical transmitter substances, such as acetylcholine 

(Erzen and Brzin, 1978), biogenic amines (Hanai et aI., 1984; Ventulini, 1992), and y 

-aminobutyric acid (Concas, 1998) have weak or no effect on the TBF. It appears that Hydra, 

one of the animals with the most primitive nervous system, extensively uses peptides as 

information-transmitting substances. Hydra nervous system has been visualized by a number of 

antibodies to biologically active peptides (GrimmeJikhuijzen and Westafall, 1995). Takahashi et 

ai. (1997) reported abundant peptides from Hydra tissues that were, potentially, biologically 

active. 

The suppression-eliminating effect of TGF-B was unique among peptides examined. 

None of peptides examined including members of TGF-B superfamily showed the similar effect. 

TGF-B isoforms have diverse biological activities including the regulation of cell proliferation 

and differentiation, stimulation of matrix formation, regulation of the cell migration and 

stimulation of adhesion molecule expression (Mass ague et aI., 1992). Furthermore, TGF-B 

plays an important role as a modulator of the immune reaction, a mediator of tissue repair in 

bone formation and remodeling and processing of wound healing (B arnard et aI., 1990; Clark et 

aI., 1998; Grande, 1997; OlKane et aI., 1997). At present, we do not understand why 

mammalian TGF-B causes an effect on the TBF. It is likely that the Hydra, one of the most 

primitive organisms, has a system influenced by primordial TGF-B. This unique effect of 
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TGF-B may be related to a mechanism involved in the suppression of the TBF as well as the 

possible unique structural feature ofTGF-B itself (Schlunegger et al., 1992). 

The sensitive, specific modulation of the TBF by biologically active peptides would be 

useful for the study of these peptides in biological samples. 
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CHAPTER II Identification and detennination of 
transforming growth factor-beta like activity in the rat 

cerebrospinal fluid after exhaustive exercise 

Introduction 

Fatigue is an important sensation for animals to alert the depletion of energy and the need 

of the body to rest. At present, the cause of central fatigue has been proposed to be related to the 

change in monoamines (serotonin, acetylcholine and dopamine) (central fatigue hypothesis; 

Bailey et al., 1992; Bailey et al., 1993; Blomstrand et al., 1988; Blomstrand et al., 1989; Davis 

et al., 1997; lakeman, 1998; Newsholme et al., 1991). Elevated free tryptophan in plasma, the 

precursor of serotonin, during exercise is proposed to result in the increase of serotonin 

synthesis in the brain, which causes the sensation of fatigue. However, several observations 

against this hypothesis have been reported (Pannier et al., 1995; Stensrud et al., 1992; van et 

al., 1995). Recently we reported that the injection of high molecular weight fraction of the 

cerebrospinal fluid (CSF) from rats after the exhaustive physical exercise into the brains of 

sedentary mice decreased the spontaneous motor activity (Inoue et al., 1998), indicating that a 

high molecular weight component also may be responsible for the central fatigue. Furthermore, 

the result in chapter I and all of our studies including the hydra behavioral tests as well as the 

mice behavioral tests suggest that the high molecular weight substance was TGF-B (Inoue et al., 

1999). 

In the hydra behavioral tests, we observed the tentacle ball formation (TBF), a 

component of the feeding response of hydra, to detect biologically active substances such as 

cytokines and growth factors in the CSF. TBF was elicited at five different concentrations of 

S-methyl-glutathione (GSM). Many biologically active substances modulated the TBF 

differently in the presence of GSM at these five concentrations (Hanai et al., 1987; Hanai et al., 

1989). Then, by observing these modulating patterns, we can obtain information about the 

unknown substances in samples containing various peptides (Hanai, et al., 1984; Hanai et al., 

1987; Hanai, et al., 1989; Torii et al., 1993). TBF was modified by many biologically active 

peptides at low concentrations but not by neurotransmitters. Further, the effect of most peptides 

on TBF is suppressive, but that of TGF-B was quite different (chapter I). TGF-B nullified the 

suppressive effect of other peptides on TBF. 

In this study, we focused on the unique effect of TGF-B and examined the amount of 

TGF-B in the CSF using the hydra bioassay, for a detailed investigation of TGF-B-like. activity 

in CSF after exhaustive exercise. 
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Materials and Methods 

Hydra culture and behavioral test 

Hydras (Hydra japonica) were cultured as described chapter I and were pretreated with 

trypsin to potentiate TBF (Hanai et al., 1995 and chapter I). 

TBF was assayed as describe chapter 1 . 

CSF sampling 

Eight-week old male Sprague-Dawley rats (Japan Charles River, Yokohama, Japan) 

were kept in a temperature (22 +2 0c) and humidity-controlled environment on a 12 h lightll2 h 

dark cycle (lights on at 18:00). Food and water were available ad libitum until the day before the 

experiment, when the rats were fasted overnight. For collection of CSF from fatigued rats (Fatg 

CSF), rats were subjected to a series of 8 sessions of swimming (15 min per session), each 

separated by a 5-min resting period, in a forced-swimming apparatus (a current pool) at a 

current of 10 IImin (Matsumoto et al., 1996). A weight (2% of the body weight) was attached to 

the tail from the second session. The rats were anesthetized with pentobarbital and CSF was 

collected from the cisterna magna within 5 min of completing the final exercise session. Control 

CSF was collected from sedentary rats (Sed CSF). 

All animals received humane care as outlined in the Guide for the Care and Use of 

Laboratory Animals (Kyoto University Animal Care Committee according to NIH #86-23; 

revised 1985). 

TBF to Sed CSF, Fatg CSF, Sed CSF+Fatg CSF and Sed CSF+TGF-J31 

The above-mentioned CSF samples, an equal mixture of Sed CSF and Fatg CSF, and a 

mixture of Sed CSF (1 fll) and TGF-131 (10 pg) were subjected to the Hydra behavioral test at 5 

different GSM concentrations. When TBF was suppressed by the original sample, it was diluted 

with 0.2% PRIONEX until the effect disappeared. 

The effect of the l11,ixture of anti-TGF-j3 IgG and Fatg CSF on TBF 

Fatg CSF (450 fll) was incubated with the pan-specific anti-TGF-13 IgG (R&D Systems, 

MN, USA) (4.8 flg) for 1 hr on ice. Normal rabbit IgG (R&D Systems, MN, USA) (4.8 flg) 

was used instead of the anti-TGF-13 IgG in the control experiments. Then, protein A beads 

(Affigel Protein A, Bio Rad, CA, USA) (4.8 fll) were added to this solution. The antigen-IgG 

complex was bound to the beads and was precipitated by centrifugation for 5 sec (10000 rpm). 

The supernatant was subjected to the hydra assay. 

Quantitative analysis 

(1) The standard relationship between TGF-13 and anti-TGF-13 IgG 
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Corticotropin-releasing factor (CRF; human, rat: Peptide Institute, Osaka, Japan) was 

used to suppress the TBF. The TBF at 50 /.1M GSM was examined in the following way. The 

mixture (total volume 30 Jll) of CRF (l fg//.11) in 10 /.11, designated amount ofTGF-B1, -2 or -3 

(R&D Systems, MN, USA) in 10 /.11, and an excess amount of the anti-TGF-B IgG (initial 

concentration 1.24 pg /10 /.11) was preincubated for 10 min on ice. Then 3 !-Ll of the mixture was 

added to the hydra test solution (the PIPES solution). After 5 min of incubation, GSM was 

applied at a final concentration of 50 /.1M and the TBF was observed. This test was repeated 

with the reducing amount of anti-TGF-B IgG maintaining the same amount of CRF and TGF-B 

until the suppression of TBF by CRF was nullified by TGF-B. In this way, we determined the 

minimum amount of anti-TGF-B IgG necessary to overcome the nullifying effect of TGF-B on 

suppressed TBF by CRF. TGF-B2, -B3 at 100, 10, 1, 0.1 and 0.0 1 fg and TGF-Bl at 300, 30, 

3, 0.3 and 0.03 fg were used in this experiment. 

(2) Measurement of TGF-B in the CSF 

CSF (400 /.11) was ultrafiltrated using Microcon-lO (Amicon, Massachusetts, USA) to 

prepare the high-molecular-weight fraction. The retained fraction on the membrane was retrieved 

in 0.1 % BSAIsaline (200 /.11) and diluted x100 with the 0.2% PRIONEX solution. A mixture of 

the diluted sample (10 /.11) and the pan-specific anti-TGF-B IgG (124 ng) was subjected to the 

hydra assay after incubation on ice for 10 minutes. When the suppression of TBF was 

observed, the amount of anti-TGF-B IgG was reduced and TBF was re-examined. This process 

was repeated until the suppression of TBF was nullified. In this way, we determined the 

minimum amount of anti-TGF-B IgG necessary to suppress TBF. From this value we estimated 

the amount of TGF-B in the CSF samples using the relationship between the amount of 

anti-TGF-B IgG and TGF-B determined in the above section (quantitative analysis). 

Statistics 

Statistical significance was analyzed by the one-way analysis of variance (ANOY A). 

Groups were compared by multiple comparisons (Tukey-Kramer test). 

Results 

TBF to Sed CSF, Fatg CSF, Sed CSF+Fatg CSF and Sed CSF+TGF-fll 

The suppressive effect of Sed CSF on the TBF induced by GSM 3, 10, and 50 /.1M was 

more potent than that of Fatg CSF. The effects of the rnixture of Sed CSF and Fatg CSF and the 

mixture of Sed CSF and TGF-B1 were similar to that of Fatg CSF (Fig. 1). These results 

suggest that Fatg CSF contains active TGF-B, eliminates the suppression of TBF by biologically 

active substances, suggesting that active TGF-B appears in CSF after exhaustive exercise 

(chapter I). 
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Fig. 1 Effects of sedentary rat CSF (Sed CSF), fatigued rat CSF(Fatg CSF), a mixture of Sed CSF' 

and Fatg CSF, and a mixture of Sed CSF with TGF-t31 (10 pg) on TBF. The vertical axis is the logarithm 

of the maximum dilution at which suppression of TBF was observed. The higher bar indicates stronger 

suppression of TBF. Values are means±SEM (Sed CSF; n=9, Fatg CSF; n=1O, Sed CSF+Fatg CSF; n=4, 

Sed CSF+ TGF-t3 I; n=6). Significantly different hom sedentary rat CSF (**; p<O.O I, *; 17<0.05). 

The effect of the mixture of the anti-TGF-j3 IgG and Fatg CSF on TBF 

Sed CSF suppressed TBF more strongly than Fatg CSF, but the difference was 

nullified by the addition of anti-TGF-B IgG to the Fatg CSF (Fig. 2). Control IgG did not show 

this effect. This result is another line of evidence supporting our previous conclusion that 

TGF-like activity in the CSF increased after physical exercise (Inoue, et aI., 1999). Thus, we 

quantitatively examined the amount of the TGF-B -like activity in the Fatg CSF using 

anti-TGF-B IgG. 
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Fig. 2 Suppression of TBF by Sed eSF and that by Fatg eSF with and without incubation with 

anti-TGF-S IgG. Fatg eSF incubated with anti- TGF-S IgG showed the suppressive activity nearly equal to 

that of Sed eSF. Suppression of the TBF was examined after stimulation by 50 flM GSM. The vertical 

axis is -log of the maximum dilution (suppression of TBF) .. Values are means ± S.D. (Sed esp, n=9; 

Fatg esF. n=10; Fatg eSF lI-eated with pan-specific anti-TGF-S IgG, n=5; Fatg eSF treated with control 

IgG, n=5). **; Significantly diflerentli-om Sed eSF 0)<0.01). 

Quantitative analysis 

First, we examined the TBF of hydra in the mixture containing 1 fg CRF, 0.01 fg 

TGF-/32 and various amounts of anti-TGF-/3 IgG, by the method described in Materials and 

Methods (Fig. 3). TBF was not suppressed by 0.03 pg or smaller amount of anti-TGF-/3 IgG. 

This means that 0.037 pg anti-TGF-/3 IgG made 0.01 fg TGF-/3 inactive in this system. By the 

same method, the minimum amount of TGF-/3 IgG necessary to inactivate various amounts of 

TGF-/31, -/32 and -/33 in this system were examined. A linear relationship (correlation coefficient 

0.99) was observed between the amounts of TGF-/31, -/32 and -/33 and the amount of 

anti-TGF-/3 IgG necessary to inactivate them, over a wide range of TGF-/3 concentrations from 

0.01 to 100 fg/ml (Fig. 4). 
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coefficient 0.99) was observed between the amount of TGF- S s (abscissa) and that of the pan-specific 

anti-TGF-f3 IgG (ordinate). The values for TGF- f3l, -2, and -3 isoforms were on the same linear line, 

indicating that hydra did not discriminate these different forms of TGF- S. Values are means ± SEM 

(n=3-5). 
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The amount of TGF-fl in CSF 

We determined the amount of TGF-B in Fatg CSF from the minimum amount of 

anti-TGF-B IgG necessary to suppress TBF by the method described above. In Fatg CSF, the 

mean amount of TGF-B was 1.38 pg/ml(range 0.1-9.5 pg/ml) (Table 1). Since all TGF-Bs had 

a similar effect on the TBF as stated above, we can not determine the amount of each individual 

TGF-B. No TGF-B activity was detected in Sed CSF (Table 1) because suppressed TBF in the 

absence of anti-TGF-B IgG. 

Tab leI TGF-13 content of Sed CSF (n=:8) and Fatg CSF (n=:8) estimated by the hydra bioassay. 

Samples TGF-B concentration Standard error 

Sed CSF 

Fatg CSF 

(pg/ml) 

Not detected 

1.38 1.72 

Range 

0.1 -9.5 

The amount of TGF-Lls in Fatg CSF was determined from the linear relationship between the amount of 

the TGF-13 and the minimum amount of the anti-TGF-13 IgG necessary to suppress TBF (Fig. 3). 

Discussion 

We applied TBF to examine the changes in biologically active peptides in the rat CSF 

after exhaustive exercise. TBF was suppressed after exhaustive physical exercise. Sed CSF 

strongly suppressed TBF induced by GSM at all concentrations examined, while the 

suppressive activity of Fatg CSF was weak. Since Fatg CSF mixed with Sed CSF, showed the 

same effect as Fatg CSF, a substance in Fatg CSF was suggested to eliminate the suppressive 

effect of various substances in Sed CSF on TBF. Since the mixture of TGF-B and Sed CSF had 

the same effect as that of Fatg CSF, TGF-B or TGF-B-like activity may increase in CSF after 

exhaustive exercise. Fatg CSF treated with the anti-TGF-B IgG gave a TBF similar to that 

observed with Sed CSF (Fig. 2). In contrast to the effects of TGF-Bs, all other members of the 

TGF-B superfamily that we had examined were observed to suppress the TBF (chapter I). In the 

same study, we also examined the effects of the latent TGF-B on the TBF, and found that only 

active TGF-B nullified the suppression of TBF (chapter I). It is likely that active TGF-B or 

TGF-B-like activity increases in CSF after exhaustive exercise. 

The amount ofTGF-B in Fatg CSF estimated by the hydra bioassay (1.38± 1.72 pg/ml) 

was somewhat different from that previously estimated by a standard TGF-B assay using mink 
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lung epithelial cells (270 + 7.3 pg/ml) (Inoue, et aI., 1999). TGF-B activity in Sed CSF was not 

detected by the hydra bioassay though slightly detected by the mink lung epithelial cell assay 

(Inoue, et aI., 1999). The differences between the activity of TGF-B detected by the hydra 

bioassay and the mink lung epithelial cell assay could be due to the difference in the biological 

traits in the two systems. We have reported that the effect of TGF-B on the TBF of hydra did not 

differ among isoforms (Fig. 2 and chapter I). On the other hand, mink lung epithelial cells are 

reported to have varying sensitivity to the different isoforms of TGF-B (Cheifetz et aI., 1990). 

The discrepancy in the estimated amount of TGF-B in the CSF may be due to different 

sensitivities of these biological systems to the TGF-B isoforms. The hydra assay is sensitive to 

many biologically active substances, so that it may be more susceptible to the assaying 

conditions. Despite the differences in the TGF-B values estimated by these two assay methods, 

both assays showed a lager amount of the TGF-B in Fatg CSF than in Sed CSF. The use of 

CRF in the experiment to determine the relationship between TGF-B and the anti-TGF-B IgG 

may also be in part responsible for the discrepancy. CSF is a complex mixture containing a lot 

of suppressive substances, some of which may interfere with the effect of TGF-B. We tried to 

use Sed CSF instead of CRF to determine the relationship between the anti-TGF-B IgG and 

TGF-B. However the experimental error was large because the suppressive activity of Sed CSF 

often changed after a few cycles of freezing and thawing. 

Higher serum levels of TGF-B have been reported in patients with chronic fatigue 

syndrome (Chao et aI., 1991), and TGF-B-like activity in the CSF of rats is elevated by 

exhaustive exercise (Inoue, et aI., 1999). Although it is unknown whether TGF-B causes fatigue 

or fatigue causes an increase in TGF-B, it appears likely that TGF-B plays a critical role in 

fatigue. 
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CHAPTER III Studies on a bioactive substance in rat 

cerebrospinal fluid after stimulation by an aversive 

quinine taste 

Section 1 Identification of a bioactive substance in rat 

cerebrospinal fluid after stimulation by an aversive quinine 

taste using the hydra b i 0 ass a y 

Introduction 

Taste plays an important role in the regulation of food and fluid intake in animals. 

Dopamine (Mark et aI., 1994; Mmtel et aI., 1996; Schneider, 1989), opioids (Doyle et aI., 1993; 

Levine et aI., 1985; Rideout et aI., 1996), and benzodiazepines (Berridge et aI., 1995; Cooper, 

1982; Gray et aI., 1995) are relevant substances to the palatability of foods. Morphine and 

benzodiazepine agonists enhance not only feeding but also the ingestive reaction by a taste 

reactivity test (Rideout et aI., 1996, Berridge, 1995). Dopamine might be involved in incentive 

motivation of food reward rather than assessment of palatability (Mark, et aI., 1994). ThllS, 

neuroactive substances have been suggested to be involved in the palatable food intake. 

However, studies about the released substances in the brain after stimulation by an aversive taste 

are quite limited. Calcitonin gene-related peptide (CGRP)-like immunoreactivity levels in the 

gustatory insular cortex were increased significantly by strong aversive taste stimuli (Yamamoto 

et aI., 1990). Acetylcholine has been suggested to be released in the insular gustatory cortex 

after the aversive taste stimuli (Shimma et aI., 1995). However, acetylcholine might be mainly 

related to the memory formation of the taste aversion (Miranda et aI., 1999; Yamamoto et aI., 

1998). Thus, little is known about substances released in the brain after the aversive taste 

stimuli, though the aversive taste information may be transmitted via a humoral factor in the 

::Q,carched for a substance released in the brain from cerebrospinal fluid (CSF) of rats 
,/ 

/.// after receiving an unpleasant taste (quinine). We injected CSF obtained from rats which was 

stimulated by an aversive quinine solution into the oral cavity (quinine CSF) into the brain of 

mice to study the humoral transmission of the aversive sensation related to the quinine taste, and 

observed the intake of highly palatable sucrose solution in mice administered with the quinine 

CSF. 

Then, we examined a candidate of the active substance in the quinine CSF using the 

Hydra behavioral test, which utilizes a tentacle ball formation (TBF), a component of the 

feeding response of Hydra, elicited by S-methyl-glutathione (GSM) (Hanai, 1981). TBF elicited 

at five different GSM concentrations showed a specific pattern of modulation for each 
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biologically active substance. The GSM-elicited TBF was modified by many biologically active 

peptides at low concentrations but not by neurotransmitters with a lower molecular weight such 

as catecholamines (Hanai et al., 1987; Hanai et al., 1989; Manabe et al., 2000). This system is 

useful to examine biologically active peptides in a small amount of biological samples (Inoue et 

a1., 1999). In the present study, we compared the modulation of the GSM-elicited TBF by the 

quinine CSF with a panel of known biologically active peptides. We examined affects of a 

substance released in the quinine CSF in mice, and determined a candidate responsible for the 

effects using Hydra behavioral test. 

Experiment 1 

Materials and Me th 0 d s 

CSF sampling 

Eight-week old male Wistar rats (Nihondobutsu, Osaka, Japan) were kept at 22 -+ 2 °C 

in a humidity-controlled environment on 12h lightl12h dark cycle. Food and water were 

available ad libitum until the day before the experiment. Rats were randomly divided into two 

groups: a quinine group and a control group. In the quinine group, rats were implanted with an 

intraoral cannula at least 3 days before i~ection of quinine solution (Shimura et a1., 1995), and 

given quinine-HCl dissolved in distilled water (10.4 M) through the cannula for 20 min after 

fasting overnight. CSF was collected from cisterna magna (quinine CSF) in the rats under 

pentobarbital anesthesia 1.5 hr after the beginning of quinine infusion (Yamamoto et al., 2000). 

Control CSF was collected from non-treated rats after fasting overnight to avoid the influence of 

feeding to the hydra response (Hanai, et a1., 1989) in the same manner. 

CSF injection to mice 

Five-week-old male Std ddY rmce (Japan SLC, Hamamatsu, Japan) were housed 

individually in standard cages (33x 23x12 cm) under controlled conditions of temperature (22 -+ 
2 °C) and 12h Iightl12h dark cycle. Food and water were available ad libitum until the day 

before the experiment. 

For training to drink sucrose solution, after deprivation of water and food for 1 hr 

from the beginning of the dark period, mice were given only 5 % sucrose solution (w/w) for 1 

hr once a day for 3 consecutive days. On the 4th day, rnice were anesthetized with pentobarbital, 

and surgically implanted with a guide cannula at the fourth ventricle. Coordinates were 

anteroposterior:=: - 6.0 mm from bregma, lateral to right :=: 0.2 mm, and dorsoventral :=: -4 mm 

(Franklin and Paxinos, 1997). After surgery, a dummy cannula was placed in the guide cannula 

to prevent occlusion. The sucrose intake training continued for another five days to allow 

recovery from surgery. 
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The effects of both the control CSF and quinine CSF were examined on each mouse. First, 

control CSF (2 )1l) was injected, and then 2 days later, quinine CSF (2 )11) was injected using a 

microsyringe through the cannula over 1 min. The mice were given a 5 % sucrose solution just 

after CSF injection, and the intake during 30 min was determined. 

All animals received humane care as outlined in the Guide for the Care and Use of 

Laboratory Animals (Kyoto University Animal Care Committee according to NIH #86-23; 

revised 1985). 

Hydra culture and behavioral test 

Hydrajaponica was cultured as described previously (Banai, 1998; Banai et al., 1995; 

Manabe, et aI., 2000). The Hydra behavioral test was described previously (Manabe, et al., 

2000). Briefly, ten hydras were incubated with a test sample in a dish containing 2 ml of PIPES 

solution (1 mM PIPES and 1 mM CaC12 , pH 6.2). Then, GSM was added at various final 

concentrations (0.1, 0.3, 3, 10, and 50 )1M) to stimulate the TBF. The number of hydras 

exhibiting TBF was counted each minute from 6 to 10 min after stimulation under a binocular 

microscope (8 x). The response was expressed by the following equation (Banai and Matsuoka, 

1995). Response = Sum of hydras exhibiting the TBF every minutes from 6 to 10 minutc;s / 

Total number of hydras (n=lO). A response value >3.0 was judged to be no suppression of 

activity, while <2.4 was considered to be suppressive. 

The effect of rat CSF after quinine stimuli on TBF 

The CSFsamples were diluted with 0.2% PRIONEX (Merck, Darmstat, Germany) in 

the PIPES solution until no suppressive effect was observed since TBF was suppressed by the 

control CSF which contained various biologically active substances. The suppressive activity of 

a sample was expressed as the maximum dilution at which the suppression of the TBF was still 

observed. 

Further, an equal mixture of quinine CSF and control CSF was SUbjected to the Hydra 

behavioral test. When TBF was suppressed by the original sample, it was diluted with 0.2% 

PRIONEX until the effect disappeared. 

Pronase treatment of CSF and molecular size fractionation 

The quinine CSF (50 )1l) or the control CSF (50 )11) was incubated with 100 )1g of 

pronase (Calbiochem Novabiochem Corp, La Jolla, CA) in 0.1 M PBS in a final volume of 100 

)11 at 37°C for 3 hr. Control reaction mixtures were incubated without pronase. To stop the 

reaction, 0.1 N HCl (80 )11) was added. These samples (1 )1l) were subjected to the hydra assay 

and the TBF was examined at 3 )1M GSM. The quinine CSF was fractionated into low and high 

molecular weight fractions by ultrafiltration membranes, with cutoff molecular weights of 

3,000, 10,000 and 30,000 (Microcon-3, 10, and 30, Millipore Corp, Bedford, MA). All size 
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fracbons were subjected to the Hydra behavioral test. 

Statistics 

All statistical tests were done using StatView (SAS Institute Inc., Cary, NC). The data 

were analyzed by the one-way ANOV A and were followed by the post-hoc Tukey test. 

Comparison in two groups was made using the Student's t-test. 

Results 

The sucrose intake in mice il~jected with CSF 

The sucrose intake of the mice injected with quinine CSF was significantly suppressed 

compared to that of mice injected with control CSF (Fig. 1). When the control CSF was used 

instead of the quinine CSF at the 2nd injection, the intake of the sucrose solution was not 

significantly different from that after the first control CSF injection. This implies that a 

substance in the quinine CSF suppressed the sucrose intake and that this substance also 

participated in the suppression of the intake by quinine. Then, we examined the quinine CSF by 

the Hydra behavioral test. 
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Fig. 1 The effect of injection of rat CSF on 5 % sucrose intake in mice. Control CSF or quinine 

CSF (2 fll) was injected into the fourth ventricle of mice, and the sucrose intake was examined during 

30 min after the injection. Quinine CSF significantly decreased the intake of sucrose solution ( **; 

17<0.05, the paired Hest). Values are means±SEM (n==16). 
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The effect of quinine CSF on TBF 

The suppressive effect of the quinine CSF on TBF was weaker than that of the control 

CSF at 3 ~ GSM (F (2,18)=12.146, p=0.0005) (Fig. 2). We have a lot of observations that 

TBF have been modulated independently by many peptides (Hanai et al. 1987, 1989: Manabe et 

al. 2000) or monoclonal antibodies (Sakaguchi et al., 1991) at different GSM concentrations. 

Then, we analyzed TBF data at each GSM concentration by one way ANOV A followed by 

multiple comparisons. The effects of the mixture of the quinine CSF and the control CSF on 

TBF were similar to that of the quinine CSF (Fig. 2). These results suggested a substance that 

specially nullified the suppressive activity to response to GSM especially at the 3 11M in the 

quinine CSF. 
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Fig. 2 Suppression of TBF by control eSF, quinine eSF, and a mixture of control eSF 

and quinine eSF. The vertical axis is the logarithm of the maximum dilution at which 

suppression of the TBF response was observed. The higher bar indicates stronger suppression of 

the Hydra behavioral response. Values are means ± SEM (n=7). The data were analyzed by the 

ANOVA and the post-hoc Tukey test. **; p< 0.01. 

The effect of CSF pretreated with pronase and molecular size fractionation 

The nullifying effect of the quinine CSF on TBF at 3 11M GSM disappeared by 

pretreatment with pronase (F(3,16)=29.397, p=O.OOOl) (Fig. 3), suggesting that a substance 

responsible for the nullifying effect in the quinine CSF is a peptide. Size-fractionation of the 

quinine CSF revealed the presence of the nullifying activity in the high molecular weight fraction 

larger than 3,000 daltons (Fig. 4 A) but lower than 30,000 daltons (Fig. 4 C). Similar amounts 
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of the activity were found in both fractions above and below 10,000 daltons (Fig. 4 B). Thus, 

the substance in the quinine CSF responsible for the nullification appeared to be a peptide of 

molecular weight about 10,000 daltons. 

We had examined the effect of a number of peptides including CGRP on TBF (Ranai et 

al., 1989, Chapter I), but no peptide showed the same effect to be considered as a candidate. 

Therefore, in the next study, we focused on possible contribution of benzodiazepine receptor 

and its endogenous ligand to the effects of the substance in the quinine CSF since 

benzodiazepines are involved in the palatability of foods (Berridge and Pecina, 1995; Cooper, 

1982; Gray and Cooper, 1995). 
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Fig. 3 Suppression of TBF response after treatment with pronase. After treatment of quinine CSF 

with pronase, the suppressive activity was increased, whereas the treatment of control CSF did not change 

the suppressive activity. Suppression of the TBF response was examined after stimulation with :3 11 M 

GSM. The vertical axis is the logarithm of the maximum dilution at which suppression of the TBF 

response was observed. 0.1 M PBS was used as the buffer. Values are means ± SEM (n==5). The data were 

analyzed by the ANOVA and the post-hoc Tukcy test. **; p< 0.0 I. 
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Fig. 4 Effect of size-fractionation of quinin~ 

CSF on TBF. (A) M.W. 3,000 fractionation (B) 

M.W.IO,OOO fractionation (C) M.W. 30,000 

fractionation. Suppression of the TBF response 

stimulated with 3 f.1 M GSM was examined. The 

vertical axis is the logarithm of the maximum 

dilution at which suppression of the TBF response 

was observed. Values are means ± SEM. The data 

were analyzed by the unpaired t-test . **; p<O.OI. 

Experiment 2 

Benzodiazepines are reported to be related to the increase in the intake of palatable foods 

(Berridge and Pecina, 1995; Cooper, 1982; Gray and Cooper, 1995), although their effects are 

only exogenous. The benzodiazepine receptor is widely distributed in the brain, while an 

endogenous benzodiazepine-like ligand is unknown. Diazepam binding inhibitor (DBI) is the 

only known endogenous ligand to this receptor, which is a 10-kilodalton neuropeptide present 

in the brain of rats and humans (Guidotti, et a!., 1983; Shoyab et a!., 1986). It binds to the 

benzodiazepine binding site on the GABAA receptor complex (Bormann, 1991; Guidotti, 1991), 

and acts as an inverse agonist, which elicits effects opposite to those of benzodiazepines (Costa, 

1991'; Ferrero et aI., 1986; Guidotti et aI., 1983). Injection of DBI into the brain reportedly 
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produced anxiogenic effects in the conflict test (Guidotti, 1991). Further, increases in DB I-like 

ilmnunoreactive compounds have been reported in depressive patients (Ferrero et al., 1988; 

Roy, 1991) and in alcohol-dependent rats (Adinoff et al., 1996; Katsura et al., 1998). Katsura 

et al. (1995) also reported that expression of DBI mRNA was elevated in the brains of 

ethanol-withdrawn mice after its chronic treatment. Taken together, DBI might be related to an 

aversive sensation as a biological active molecule. Since injection of benzodiazepine agonists 

into the brain acts to enhance palatability, a benzodiazepine inverse agonist DBI may be involved 

in the aversive feeling as to taste. Therefore, we examined the affects of DBI on TBF and 

possibility as a candidate for the peptide in the experiment 1. 

Materials and Methods 

Methods for the CSF sampling and injection to mice were presented in the experiment 1. 

Hydra culture and behavioral test were also described in the experiment 1 . 

The effect of DBI on TBF 

We examined the effect of a DBI peptide fragment (Bachem AG, Bubendorf, 

Switzerland) on TBF in the presence of both the DBI fragment (1 fg) and 1 III of the control 

CSF. The DBI peptide fragment is composed of 20 amino acid residues from GIn 51 to Lys 70 

of the human DBI sequence, which has been reported to be biologically active (Dong et al., 

1999). The stock solution of the peptide was prepared with distilled water, and added to the 

TBF assay system after dilution with 0.2% PRIONEX. The control CSF, which contained 

various biologically active peptides, strongly suppressed the TBF induced by GSM at all 

concentrations examined (Hanai, et al., 1989; Inoue, et al., 1999). The sample was diluted with 

0.2% PRIONEX until the suppressive effect disappeared. 

Effect of benzodiazepine receptor preparation 

Benzodiazepine receptor preparation (Research Biochemicals, Inc. (RBI), Natick, MA) 

was dissolved at a concentration of 50 mg/rnl in 0.25 MNaH2P04 buffer (pH 7.4) (Imaizumi et 

al., 1994). The quinine CSF (5 Ill) or the control CSF (5 Ill) and the receptor preparation (20 

Ill) were mixed aIi.d incubated for 1 hr on ice. Control reaction mixtures were incubated without 

receptor preparation. The mixture was filtrated through an ultrafiltration membrane 

(Microcon-30), and subjected to the TBF assay at 3 11M GSM. The sample was diluted with 

0.2% PRJONEX until the suppressive effect disappeared. 

N-Methyl-B-carboline-3-carboximide (FG7142) (RBI), which was bound to the 

benzodiazepine receptor (Cooper, 1986; Cooper et al., 1988), was used to examine the 

specificity of the binding of the substance in the quinine CSF to the receptor preparation. 

FG7142 solution (2 mg/ml, 10 Ill) and benzodiazepine receptor preparation (20 Ill) were mixed 
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and incubated for 15 min on ice. Then, the quinine CSF (5 Ill) was added and incubated for 

another 30 min on ice. The resultant mixture (1 Ill) was subjected to the Hydra behavioral test 

and observed at 3 11M GSM. The sample was diluted with 0.2% PRIONEX until the 

suppressive effect disappeared. 

Flumazenil pretreatment 

The selective benzodiazepine receptor antagonist, flumazenil (a gift from Yamanouchi 

Pharmaceutical Co. Ltd, Tokyo, Japan), was suspended in physiological saline containing 0.5 

% carboxymethyl cellulose (CMC saline). Flumazenil (20 mg/kg) was administered 

intraperitoneally ( i.p.) 20 min before CSF injection and CMC saline was used as control. 

Mice were treated and trained as above (experiment 1). On the first day for injection, CMC 

saline was administered i.p., 20 min before the control CSF (2 ).11) injection through the 

cannula. The sucrose intake was determined at 30 min after the injection of CSF, and then mice 

were divided into two groups, CMC saline-quinine CSF group and flumazenil-quinine CSF 

group. Two days after the first injection, CMC saline or flumazenil was administered i.p. 20 

min before quinine CSF (2 ).11) injection into the fourth ventricle through the cannula and the 5 % 

sucrose intake was determined. 

Statistics 

The statistical analysis was done in the same manner as described in the experiment 1 . 

Results 

The effect of DBI on the TBF 

The DBI fragment itself did not suppress TBF (data not shown). To examine the activity 

of DBI to nullify the suppressive effect of quinine CSF, we examined the activity of the mixture 

of DBI fragment and control CSF. The suppression of TBF at 3 11M GSM by CSF was greatly 

reduced by the mixture of DBI and control CSF (Fig. 5), which was similar to that by quinine 

CSF. 

Effect of the treatment of the quinine CSF with benzodiazepine receptor preparation 

CSF was incubated with the benzodiazepine receptor preparation, which bound DBI. 

The mixture of the quinine CSF and the receptor preparation suppressed TBF at 3 ).1M GSM to a 

similar extent as the control CSF (F(3,20)=11.033, p=0.0002) (Fig. 6), indicating 

disappearance of the nullifying effect in the original quinine CSF. When the benzodiazepine 

receptor preparation was preincubated with FG7142, the nullifying effect did not disappear 

(F(2,12)=12.118, p=0.013) (Fig. 7). These results indicate that the nullifying activity in the 
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quinine CSF was removed by the specific binding of the active substance to the benzodiazepine 

receptor in a manner similar to that of DBI. 
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Fig. 6 Suppression of TBF response after 

treatment with benzodiazepine receptor 

preparation. Treatment of quinine-CSF with 

benzodiazepine receptor preparation increased the 

suppressive activity, whereas the same treatment 

of control CSF did not change the suppressive 

activity. Suppression of the TBF response was 

examined after stimulation with 3 fl M GSM. 

The vertical axis is the maximum dilution. 

Values are means ± SEM (n=6). The data were 

analyzed by the ANOV A and the post-hoc Tukey 

test. *;p< 0.05, **;p< 0.01. 
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Values are means ± SEM (n=5). The data were 

analyzed by the ANOV A and the post-hoc Tukey test. 

**; 17< 0.01. 

Antagonism by jlumazenil on the effect of the quinine CSF on sucrose intake 

We confirmed the suppressive activity of the quinine CSF on the 5 % sucrose intake in 

mice pretreated with CMC saline during 30 min after the injection (F(2,41)==4.786, p==0.01368) 

(Fig. 8). Pretreatment with flumazenil, a benzodiazepin receptor antagonist, reduced the 

suppressive effect of quinine CSF on the sucrose intake and its statistical significance was 

disappeared (Fig. 8). 
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(20 mg/kg, i.p.) on the intake of 5 % sucrose 
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during 30 min after the CSF injection was examined. 
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Discussion 

The sucrose intake was significantly suppressed in mice injected with the quinine CSF, 

indicating the presence of the active substance in quinine CSF. The Hydra behavioral test 

detected a change in suppression of TBF by CSF that was accompanied with aversive quinine 

taste stimuli. The control CSF was suppressive at all concentrations of GSM, while the quinine 

CSF was not as suppressive at 3 flM GSM. TBF was not suppressed by the rnixture of quinine 

CSF and control CSF, suggesting that a substance in the quinine CSF nullified the suppression 

ofTBF caused by various substances in the control CSF at 3 flM GSM. By means of pronase 

treatment and size-fractionation of quinine CSF, the nullifying effect of suppressive activity in 

the quinine CSF disappeared, suggesting that a proteinous substance of about M.W.lO,OOO was 

responsible for this effect. We have examined the effect of a number of peptides on TBF. No 

peptides examined previously other than the DBI fragment nullified selectively the suppression 

of the response at 3 flM GSM (Hanai, et al., 1989; Manabe, et al., 2000). 

In this study, we focused on DBI. DBI was reported as an inverse agonist to the 

benzodiazepine receptor, which elicits effects opposite to those of benzodiazepines (Costa, 

1991; Ferrero et al., 1986; Guidotti et al., 1983). DBI is the only endogenous ligand to the 

benzodiazepine receptor. No relationship between DBI and feeding has been reported at present, 

while benzodiazepines are reported to be related to the palatability (Berridge and Pecina, J 995; 

Cooper, 1982; Gray and Cooper, 1995). From the results in the experiment 2, the nullifying 

effect on the TBF at 3 flM GSM in the Hydra behavioral test is believed to be mediated 

principally by an increase in the DB I-like activity in the CSF. The effect of the mixture of the 

DBI peptide fragment and the control CSF on TBF in the present study resembled that of the 

quinine CSF. The quinine CSF treated with the benzodiazepine receptor preparation gave TBF 

similar to that of the control CSF, indicating the presence of DB I-like activity in the quinine 

CSF. Further, the suppression of the sucrose intake by quinine CSF was reduced by the 

pretreatment with flumazenil. It suggested the existence of a substance of whose activity is 

mediated via benzodiazepine receptors. These results suggest that a DB I-like peptide is released 

by the aversive quinine stimuli, and it acts via benzodiazepine receptors. 

Flumazenil did not completely antagonize the suppressive effects of quinine CSF on the 

sucrose intake. It is likely that other factors besides DBI participate in the suppressive effect on 

the sucrose intake of the quinine CSF. Also, the suppression of the sucrose intake by the DBI 

fragment alone requires a high dose when it was injected into the mouse brain (unpublished 

observation) . 

In this study, DB I-like activity increases in CSF after the aversive quinine taste stimuli. 

The meaning of the increase in DBI by quinine intake is not clear but higher CSF levels of DBI 

may be related to the feeling of disgust after intake of unfavorite foods. An increase in DBI in 

the quinine CSF, we reported here, might explain why the intake of unfavorite foods induces 
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the feeling of disgust. Further studies are necessary to detennine if DBI is specific to the feeling 

of disgust as to feeding. 

In conclusion, we suggested that aversive sensation after the quinine stimulation might 

be transmitted via a peptide in the experiment 1 and it was a DBI-like molecule which binds 

benzodiazepine receptors in the experiment 2. 
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Section 2 Effect of diazepam binding inhibitor on the fluid 

intake and preference in m ice 

Introduction 

In section 1, we suggested that DBI in the CSF from rats received by an averSIve 

quinine-HCI increased using Hydra bioassay. DBI is the only endogenous ligand for 

benzodiazepine receptor. Benzodiazepines are reported to be related to the increase in the intake 

of palatable foods (Berridge et al., 1995; Cooper, 1982; Gray et al., 1995). The benzodiazepine 

receptor is widely distributed in the brain, while an endogenous benzodiazepine-like ligand is 

unknown besides DBI. DBI is categorized into inverse agonist, which has against effect to 

benzodiazepine (Costa, 1991; Ferrero et al., 1986; Guidotti et al., 1983). All consider these 

facts, we studied the involvement of DBI in the aversion of taste. 

Materials and Methods 

Animals 

Five-week-old male Std ddY mice (Japan SLC, Hamamatsu, Japan) were housed 

individually in standard cages (33 x 23 x 12 cm) under controlled conditions of temperature (22 

+ 2 DC) and 12h lightll2h dark cycle. Food and water were available ad libitum until the day 

before the experiment. 

Surgery 

Mice were anesthetized with pentobarbital, and surgically implanted with a guide 

cannula at the fourth ventricle. Coordinates were anteroposterior = - 6.0 mm from bregma, 

lateral to right = 0.2 mm, and dorsoventral = - 4.0 mm (Paxinos, 1997). After surgery, a 

dummy cannula was placed in the guide cannula to prevent occlusion. At the end of the 

experiment, correct guide cannula placement was verified by injecting 2 /.11 of thionine blue dye, 

followed by decapitation and dissection of the brain. 

All animals received humane care as outlined in the Guide for the Care and Use of 

Laboratory Animals (Kyoto University Animal Care Committee according to NIH #86-23; 

revised 1985). 

Drugs 

DBI peptide fragment (Bachem AG, Bubendorf, Switzerland) was dissolved in 

artificial cerebrospinal fluid (aCSF; 140 mM NaCl, 3 mM KCl, 2.5 mM CaC12, 1 mM CaC12 , 

1.2 mM Na
2
HP04 , 0.27 mM NaHP04). aCSF was used as the control. The selective 

benzodiazepine receptor antagonist, flumazenil (a gift from Yamanouchi Pharmaceutical Co. 
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Ltd., Tokyo, Japan), was suspended in physiological saline containing 0.5 % carboxymethyl 

cellulose (CMC saline). 

The effect of DBI peptide fragment on the intake of solution 

We determined the effect of injection of DBI on 5% sucrose intake. For training to drink 

sucrose solution, after deprivation of water and food for 1 hr from the beginning of the dark 

period, mice were given only 5 % sucrose solution (w/w) for 1 hr once a day for 3 consecutive 

days. On the 4th day, guide cannula were implanted into the fourth ventricle. After surgery, the 

training for sucrose intake continued for another five days to allow recovery. 

On the first day for injection, aCSF (2 fll) was injected, and then 2 days later, DBI (10 flgl2 

fll) was injected using a microsyringe through the cannula over 1 min. The mice were given 5% 

sucrose just after injection, and the intake was examined at 15, 30 and 60 min. 

Furthermore, we determined the effect of DBI on the intake of water and 0.9 mM 

quinine HCI. For training to drink water or 0.9 mM quinine HCI, mice were water-deprived for 

20 hr and then given 1 h access to the water or 0.9 mM quinine HCI once a day for 3 

consecutive days. On the 4th day, guide cannula were implanted into the fourth ventricle. After 

surgery, the fluid intake training continued for another five days to allow recovery. The injection 

of DBI or aCSF was the same as above. Then, the water or 0.9 mM quinine-HCI intake was 

measured at 15, 30 and 60 min after injection. 

In a flumazenil pretreatment experiment, on the first day for injection, CMC saline was 

administered i.p., 20 min before aCSF (2 fll) injection through the cannula. The sucrose intake 

was detelmined at 15, 30 and 60 min after the injection of aCSF, and then mice were divided 

into two groups without bias in the intake on the first injection, CMC saline-DB I group and 

flumazenil-DBI group. Two days after the first injection, CMC saline or flumazenil was 

administered i.p. 20 min before the injection of DBI (l0 flg12 fll) into the fourth ventricle 

through the cannula and the 5 % sucrose intake was determined. 

Two bottle choice test 

Mice were given water and 0.05 % saccharin (Sigma Chemical Co., St Louis, USA) for 

30 min after the 20 hr deprivation of water at the same time to train selective intake of the 

favorable fluid in two-bottle choice test. Mice were deprived of food during the two bottle 

choice test. After training for 7 days, mice were implanted the cannula in the fourth ventricle. 

After surgery, the two bottle choice test continued for another four days to allow recovery. On 

the first day for injection, aCSF (2 fll) was injected, and then 2 days later, DBI (10 flg12 fll) was 

injected into the fourth ventricle. The mice were given two-bottle just after injection, and the 

intake was examined at 30 min. Preference was expressed as the intake of 0.05 % saccharin 

divided by the total intake. 
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We studied the antagonism by flumazenil. After training of the two bottle choice test, 

mice were injected CMC saline (i.p.), 20 min before aCSF injection (i.c.v.). The preference 

was determined at 15, 30 and 60 min after the injection of aCSF, and then mice were divided 

into two groups, CMC saline-DB I group and flumazenil-DBI group, without bias in the intake 

on the first injection. Two days after the first injection, CMC saline or flumazenil was 

administered i.p. 20 min before DBI injection into the fourth ventricle through the cannula and 

the intake was determined. 

Dose-dependent effect of DBI on the intake of sucrose 

We determined the dose-dependent effect of DBI on the intake of 5 % sucrose. Mice 

were treated and trained the same as above mentioned way (The effect of DBI peptide fragment 

on the intake of solution section). DBI was prepared at 0.1, 0.3, 1.0, 3.0 J.lg/2 J.ll aCSF, and 

two microliter of DBI il~jected into the fourth ventricle of mice. The mice were given 5 % 

sucrose after injection, and the intake was examined at 30 min. 

Statistics 

All statistical tests were done using StatView (SAS Institute Inc., Cary, NC). The data 

were analyzed by the one-way ANOV A and were followed by the post-hoc Tukey test or 

Dunnet test. Comparison in two groups was made using the Student's t-test. 

Results 

The effect of DBI peptide fragment on the intake of solution 

We confirmed that the effect of DBI on the intake of various kind of fluids. The injection 

of DBI (10 flg) significantly decreased the intake of 5 % sucrose at 15, 30 and 60 min after 

injection of DBI (Fig. la). Water and 0.9 mM quinine-HCl were also suppressed by DBI at 30 

and 60 min after the injection (Fig. 1 b, c). 

The effect oflJretreatment offlumazenil on the intake of sucrose 

Pretreatment of flumazenil to mice partly antagonized the suppressive effect of DB! on 

the intake of 5% sucrose, while the intake on the group of saline-DB I was significantly 

suppressed (Fig. 2). However, there was no significant difference between the group of 

saline-DB I and the group of flumazenil-DBI, which suggests the suppressive effect of DBI on 

the intake of 5 % sucrose partially antagonized by flumazenil. 
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Fig. 1 The effect of injection of DBI (10 flg/2 fll) 

on the intake in mice. DB! was injected into the fourth 

ventricle of mice, and the intake was examined at 15, 

30 and 60 min after the injection. (A) the intake of 5% .. 

sucrose (n=8). (B) the intake of water (n=7). (C) the 

intake of 0.9 mM quinine-HCI (n=8). DB! significantly 

decreased the intake of any solution (*; p<0.05, **; 

p<O.OI, the paired t-test). Values are means±SEM. 
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Fig. 2 The effect of pretreatment with flumazenil ( 

20 mg/kg, i.p.) on consumption of 5 % sucrose 

solution. Flumazenil or CMC-saline was given 20 min 

before injecting aCSF or DEI (10 flg). Data were means 

± SEM (salin-aCSF; n=17, saline-DB I; n=9, 

flumazenil-DBI; n=8). *; p<0.05, Significant differnt 

from control (Tukey test). 
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Two bottle choice test 

Two bottle choice test was studied at 30 min after injection of DBI or aCSF, because the 

effect of DBI and antagonism of flumazenil is clear at 30min. The injection of DBI decreased the 

preference of saccharin at 30 min after injection (Fig.3). Flumazenil were antagonized the 

suppressive effect of preference by DBI (FigA). The preference of the group of CMC 

saline-DB I was significantly decreased compared with the group of saline-aCSF and that of 

flumazenil-DBI. 

** ** I 

I I 
1 T 

0.8 

Fig. 4 The etTect of pretreatment with 

flumazenil (20 mg/kg, i.p.) all the preference 
Q) 0.6 u 
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H 

bottle choice Flumazenil and 
<2 

test. Q) 
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0... was 

injection (i.c.v.) of aCSF or DBI (10 flg) in 

mIce. Data are means ± SEM (CMC 0.2 
saline-aCSF; n::: I 0, CMC saline-DBI; n:::5, 

flumazenil-DB!; n:::5). Significant differences 

were observed between preference of CMC 0 
saline-aCSF and between CMC saline-DB! CMC saline CMC saline flumazeniI 
and CMC saline-DBI and flumazenil (** , aCSF DBI DBI 
p<O.OI). 
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Dose-dependent effect of DBI on the intake of sucrose 

The dose of DBI in excess of 3 /lg suppressed the intake of sucrose significantly (Fig. 

5). However, the degree of suppression of sucrose was nearly identical among three dose (3, 10 

and 30 /lM). 
3 

2.5 
~ 

bJ) 
'--/ 

.,... 
([) 

2 M T * * (Ij 
-I-' 

~ . ..., 
([) 
VJ 1.5 0 
i-< 
U 
::l 
VJ 

* 1 
tn 

0.5 

0 
aCSF 0.3 1 3 10 30 

DBI dose (/lg) 

Fig. 5 The effect of DBI (0.3-30 I-lg) on the intake' of 5% sucrose in mice.The intake of 5% 

sucrose was significantly decreased in excess of 3 I-lg DBI. Data are means ±SEM (n; aCSF=:61, 

0.3 I-lg DBI=:12, I I-lg DBI=:13, 31-lg DB I=: 15, 10 I-lg DBI=:9, 30 I-lg DBI=: 12, *; p<0,05, Dunnett 

test). 

Discussion 

The experiment in section 1 suggested that injection of CSF from rats received 

quinine-HCI into the brain decreased significantly the intake of 5% sucrose in mice. This 

suppressive effect of the intake supposed to come from DBI in CSF from rats received by an 

aversive quinine-HeI. These results in here shows the effect of DBI peptide fragment into the 

brain on the intake in mice. The injection of DBI into the fourth ventricle decreased not only the 

intake of sucrose but also the intake of water and 0.9 mM quinine-Hel solution. Furthermore, 

DBI decreased the preference for saccharin. The suppression of the fluid intake and preference 

by DBI was antagonized by preinjection of flumazenil. These antagonism suggests DBI acted 

through benzodiazepine receptor. Furthermore, we studied DBI about the effect of dose 

dependent on the intake of 5% sucrose. We estimated the lower limit of the effect of DBI on the 

suppression of the intake was 3 /lg (Fig. 5). 

It is not clear how the antagonism by flumazenil was perfect in the Fig. 2, while 
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flumazenil perfectly antagonized the suppressive effect of preference for saccharin in the Fig.4. 

It was reported that flumazenil itself might act as the inverse agonist (De Vry et ai., 1985). On 

the other hand, flumazenil was reported to act as the agonist (HaefeIyet aI., 1988). Therefore, 

we examined the effect of flumazenil itself on the intake of 5 % sucrose, which resulted in 

tending to decrease the intake, while that effect was not significant (data not shown). The 

discrepancy of effect by flumazenil between Fig.2 and Fig.4 might come from individual 

difference. 

We needs more research to clarify whether the effect of DBI on the intake is depend on 

the kind of fluid. DBI suppresses even the intake of water, which is not related to any tastes, 

suggests DBI have the suppressive effect to all fluid. Interestingly, the suppressive effect of 

DBIon the intake of quinine-HCI as a bitter taste and sucrose as a sweet taste is stronger than 

that on the intake of water. In other words, DBI seems to suppress the intake of palatable fluid 

and unpalatable food more than water. These results suggests the DBI affects palatability of taste 

in mice. 

The suppression by DBI on the intake of 5 % sucrose will be the most important 

suggestion in the sensation of the taste. At present, injection of DBI into the brain reportedly 

produced anxiogenic effects in the conflict test. Furthermore, increases in DB I-like 

immunoreactive compounds have been reported in depressive patients (Ferrero et aI., 1988; 

Roy, 1991) and in alcohol-dependent rats (Adinoff et ai., 1996; Katsura et aI., 1998). Katsura 

et a1. (1995) also reported that expression of DBI mRNA was elevated in the brains of 

ethanol-withdrawn mice after its chronic treatment (Katsura et aI., 1995). However, there is no 

research about relationship between taste and DB!. Taken together, DBI might be related to an 

aversive sensation as a biological active molecule after the stimulation of an aversive taste. Since 

injection of benzodiazepine agonists into the brain acts to enhance palatability (Berridge and 

Pecina, 1995; Cooper, 1982; Gray and Cooper, 1995; Yamamoto et aI., 1998), a 

benzodiazepine inverse agonist DBI may be involved in the aversive feeling as to taste. 

In this study, we provide evidence for a novel substance in the brain as to qUll11l1e 

aversive taste. To determine the distinct relationship between DBI and taste, we will need 

additional study such as the effect of DBI on the behavior of mice and detennination the content 

of DBI in CSF. 
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SUMMARY 

This research was about released substances in the brain related to physiological change 

using hydra bioassay system. The finding in each chapter are summarized as follows: 

Chapter I 

Since there is a little amount of bioactive substance in the cerebrospinal fluid (CSF), it 

was tough to find the change of substances in the CSF related to physiological change. We 

applied the hydra bioassay, which is useful to screen active peptides in small amounts of 

biological samples containing very low concentrations of peptides. At first, we constructed the 

hydra bioassay system appropriate to find the substances in CSF. The tentacle ball formation 

(TBF) of Hydra elicited by S-methylglutathione (GSM) was modulated by a number of 

biologically active peptides. Hydra fed with Artemia, which had been hatched in common salt 

solution supplemented with LiCl and ZnCl2, effectively developed the TBF by trypsin treatment. 

After Hydra were treated with 100 pg/ml trypsin for 10 min, TBF was sensitively suppressed 

by acidic fibroblast growth factor and other biologically active peptides for longer than 10 hr. 

Different peptides except for transforming growth factor beta (TGF-B) gave different 

suppressive patterns in a specific way depending on individual peptides. However, TGF-/3 was 

unique in that it did not suppress the TBF, but it eliminated suppression of the TBF caused by 

other peptides. Only active TGF-/3 eliminated the suppression of the TBF by other peptides. The 

latent form of TGF-B was not suppressive rior showed the elimination. Other closely related 

peptides examined, members of TGF-/3 family, were all-suppressive for the TBF. These results 

indicate that all peptides examined but TGF-/3 suppressed the TBF in a specific way depending 

on individual peptides. This assay system would be useful to learn about the type of biologically 

active substances in a biological sample by observing the modulating activity of the biological 

sample. 

Chapter II 
We have proposed the participation of transforming growth factor beta (TGF-/3) in 

fatigue from a study using TBF of hydra as a bioassay [K. Inoue, H. Yamazaki, Y. Manabe, C. 

Fukuda and T. Fushiki, Transforming growth factor-beta activated during exercise in brain 

suppresses spontaneous motor activity of animals. Relevance to central fatigue, Brain Res. 64 

(1999) 145-53]. The suppression of the CSF obtained from rats after exhaustive exercise (Fatg 

CSF) was marked lower than that of sedentary rats (Sed CSF). Addition of transforming 

growth factor-beta (TGF-/3), which is the only substance known to nullify TBF, to CSF of the 

sedentary rat reproduced this change in the suppression of the TBF. The different effect 

between Sed CSF and Fatg CSF on TBF was nullified by the treatment of Fatg CSF with 
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anti-TGF-B IgG. This suggested that TGF-B in Fatg CSF participates in the GMS-induced TBF. 

TGF-B overcomes the TBF-suppressing effect of corticotropin-releasing factor (CRF) added to 

the TGF-B- containing solution. A linear relationship was observed between the minimum 

amount of anti-TGF-B IgG necessary to nullify the TBF-suppressing effect of CRF in a wide 

range of TGF-B concentrations. This amount of anti-TGF-B IgG corresponds to the amount 

necessary to nullify the effect of TGF-B in the solution. By using this relationship, we 

quantitatively examined the TGF-B like activity in the Fatg CSF, using the anti-TGF-B IgG and 

the hydra bioassay. No TGF-B activity was detected in the Sed CSF, whereas the amount of 

TGF-B in the Fatg CSF was 1.38 pg/ml. These results also confirm that fatigue is related to an 

increase in TGF-B. 

Chapter III 

Section 1 

CSF from rats after stimulation by aversive quinine taste (quinine CSF) administered 

into the fourth ventricle of mice suppressed their intake of 5 % sucrose solution. We examined 

the effects of CSF on the TBF of Hydra to detennine the change in CSF components associated 

with the aversive taste stimuli. The suppressive activity of the quinine CSF on TBF at 3 liM 

GSM was markedly lower than the CSF obtained from the control rats (control CSF). The 

pronase-treated quinine CSF had suppressive activity similar to that of the control CSF. The 

active principle passed through an ultrafiltration membrane, with a cutoff molecular weight of 

30,000 daltons, but not 3,000 daltons. A peptide fragment of the diazepam binding inhibitor 

(DBI) nullified the suppression of TBF at 3 liM GSM by control. The nullifying activity of the 

quinine CSF was not observed after treatment with the benzodiazepine receptor preparation that 

was able to bind DBI. After application of flumazenil, a benzodiazepine receptor antagonist, to 

mice the suppressed intake of 5 % sucrose solution by the quinine CSF partially recovered. In 

conclusion, the quinine CSF was suggested to contain a DB I-like substance. 

Section 2 

To determine the effect of DBI on the fluid intake, we injected DBI fragment into the 

fourth ventricle in mice. DBI suppressed the intake of 5% sucrose, water and 0.9mM 

quinine-HCI and the preference for 0.05% saccharin. Administration (i.p.) of flumazenil, 

benzodiazepine receptor antagonist, 20 min before the injection of DBI (i.c. v.) antagonized the 

suppressive effect of DBI on the intake and the preference for saccharin. We also studied the 

dose dependent effect of DBI on the intake of 5% sucrose. Injection of DBI in excess of 3 lig 

suppressed the intake of 5% sucrose in mice. These results suggest that DBI has a suppressive 

effect of fluid intake through the benzodiazepine receptor in mice. 
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